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Abstract--The objective of this feasibility study is to evaluate the use o f  the 
"Physilog" device, an ambulatory physical-activity recorder based on acceleration 
measurement, for the monitoring of daily physical activities. Accelerations measured 
at the level of  the chest and the thigh are recorded by Physilog over a per iod of I h 
in five normal subjects. A specially designed studio-like room al lowing the perfor- 
mance of most usual activities of everyday life is used. A video f i lm synchronised 
with the Physilog is obtained for each subject to check the accuracy o f  the data 
derived from Physilog. Based on the analysis of the average and the deviation of the 
acceleration signal, an algorithm is developed to classify the activities in four 
categories, Le. lying, sitting, standing and locomotion. Compared with the video 
observations, the results from the algorithm show an overall misclassification of 
10.7%, which is mainly due to confusion between dynamic activities and the 
standing posture. In contrast, the misclassification between postures is negligible. 
It is concluded that Physilog can be used in the clinical setting for the reliable 
measurement and long-term recording of most usual physical activities. 
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1 Introduction 

DAILY PHYSICAL activity (or the restriction of it) is a deter- 
mining factor of the quality of life. To date, this variable has 
only rarely been evaluated objectively, and in most cases its 
assessment has been unsatisfactory or imprecise. Self-assess- 
ment of physical activity based on questionnaires is subjective, 
and the discrepancy between patients' and physicians' evalua- 
tions is significant (LIEBERMAN et al., 1996). However, a 
reliable measurement of the physical activity in everyday life 
would allow a better assessment of the utility and the relevance 
of a number of medical treatments. 

In previous studies, the measurement of ambulatory physical 
activity often relied on the use of a single accelerometer 
strapped on the waist, the wrist or the ankle (PATTERSON 
et al., 1993; SIEMINSKI et al., 1997; NG and KENT-BRAUN, 
1997) although heart rate monitors have also been used 
(HASKELL et al., 1993). The problem with these methods is 
that they provide no information on the type of activity. 
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Recently, new systems have been developed to identify the 
type of activity, but these methods need to be evaluated fi.u'ther 
in the domestic environment (MAKIKAWA and IIZUMI, 1995; 
VELTrNK et al., 1996). 

Using neural network-processing of the acceleration signal, 
we have developed a new system for the measurement of 
movements, called Physilog (AMINIAN et al., 1995a, b). This 
light, portable system is equipped with miniature acceler- 
ometers that can be attached to various parts of the body. 
The system allows the measurement of the incline, speed and 
distance covered by healthy subjects or patients with various 
disorders, such as, for instance, peripheral vascular disease. 

The objective of this paper is to evaluate the accuracy of the 
Physilog system in discriminating between several static 
postures and dynamic activities, to allow reliable long-term 
monitoring of activities such as lying, sitting, standing and 
locomotion. 

2 Method 

2.1 Body  movement  recording a n d  classification 

The recordings took place in a studio-like room (5 m x 5 m) 
specifically designed for this purpose. The furniture and the 
equipment in the room included a bed, chairs, a table, a TV, a 
treadmill, a step-ladder, journals, books and food, so that the 
subject could easily reproduce most basic activities of daily life. 
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Two miniature accelerometers* were strapped on the chest 
and on the rear of  the thigh to measure the chest acceleration a c 
in the vertical direction (parallel to the gravitational direction) 
and the thigh acceleration a t in the forward direction (ortho- 
gonal to the gravitational direction) (Fig. 1). The chest accel- 
erometer was attached with a belt, and the thigh accelerometer 
was strapped on the skin using medical tape. Both sensors were 
placed in the standing position. 

Both signals were amplified, calibrated, digitised at l0 Hz by 
the Physilogl" and stored on a 2 Mbytes SRAM memory card. 
To achieve prolonged monitoring of  the physical activity, it is 
essential to choose a low sampling frequency. A 10Hz 
sampling frequency was the best compromise, allowing both 
the detection of changes in posture and a long recording time 
(around 14h with a 2 Mbytes memory size). 

Five subjects (four males and one female) were studied. 
Each subject spent 1 h in the studio-like room, where he or she 
was free to act. To collect meaningful data, the subjects were 
asked to perform each type of  activity (lying, sitting, standing 
and treadmill walking) for at least several minutes. 

The acceleration signals are a function of both gravitational- 
and movement-related accelerations of  the part of  the body that 
carries the sensor. The 'static activities' (postures) were 
determined from the orientation of  defined segments of  the 
body in relation to the direction of  gravitational acceleration. 
The 'dynamic activities' were quantified by analysis of  the 
acceleration signals resulting from body movements during 
locomotion (Fig. I). Owing to the relatively low sampling 
frequency, only a short frequency range of acceleration (0-  
0.5 Hz) was used for processing. 

The physical-activity detection algorithm is shown schema- 
tically in Fig. 2. The calibrated acceleration (with its gravita- 
tional component) was lowpass filtered (0-0.5 Hz). The median 
values (MED) and the mean absolute deviation (MAD) of  the 
filtered acceleration acf and aft, recorded from the chest and 
thigh, respectively, were computed every second. The MAD 
function corresponds to the average of  the absolute difference 
between a set of  acceleration data and the mean of the samples 
of  this set. This led to the following parameters: 

acmea = M ED( acf ) (1) 

atmea = MED(aft)  (2) 

amaa = MAD(acf  + MAD(af t )  (3) 
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Fig. 2 Algorithm for physical-activity detection 

These functions are an estimate of  the mean MED) and the 
amplitude deviation (MAD) of  accelerations and are less 
sensitive to outliers than mean and standard deviation. 

For each period At = 10 s, the median values of  acmed , armed 
and area d were computed. Although a shorter At increases the 
discrimination sensitivity for dynamic activites, it is associated 
with increased errors related to artefact movement, such as the 
transition between posture or segmental body movement while 
standing. In addition, because of  the low frequency range of 
analysis (0-0.5 Hz), the value of At must be expanded to a few 
seconds. A At value of 10 s is chosen in this case. This leads to 
360 samples for each parameter, corresponding to a recording 
of lb .  

Five classes of  activities were defined: lying, sitting, stand- 
ing, dynamic and 'others', which includes all activities not 
identified as belonging to one of  the first four classes. Discrimi- 
nation between static and dynamic activities was accomplished 
by applying a threshold th to area d. Lying, standing and sitting 
postures were identified by the analysis of  acmeU and atmea 
values. 

2.2 Video recording and classification 

Each subject was filmed on a video that was synchronised 
with the Physilog device at the beginning of the recording. To 
compare the video with the acceleration recordings, the film of 
each subject was divided into 360 sequences of  At. For each 
sequence, the activity viewed on the video was attributed to 
one of the five classes by observers. 

There is no gold standard for the monitoring of physical 
activity. Even the use of  video images does not prevent 
subjectivity in the assessment of  the observations. For 
example, brief lower-limb movement while standing could be 
classified as a dynamic activity as well as static standing. To 
improve the objectivity of  the visual assessment and a reliable 
classification of  each performance, the following criteria were 
adopted: 

�9 Walking and running were considered a dynamic activity if 
the subject accomplished more than two steps. If  not, the 
performance was classified as standing. 

�9 For each posture, voluntary movements not involving loco- 
motion, but of  a cumulative duration of more than At~2, 
were considered as dynamic. 
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�9 A single movement associated with the transition between 
postures (i.e. standing to sitting) was not considered as 
dynamic. 

�9 A series of  movements associated with two or more con- 
secutive transitions between postures (i.e. lying to sitting to 
lying) were considered as dynamic. 

2.3 Evaluation o f  the classification 

For each At, the video and Physilog classifications were 
compared, and the following features were defined: 

�9 duration of  each activity according either to Physilog (Tp) or 
to video (Tv) 

�9 predicted error of  Physilog for each activity 

~ - ~  
Ep -- Tv (4) 

�9 sensitivity of  Physilog for each activity, defined as 

total time that video and Physilog agree 
about activity 'A '  at the same time 

S = total time that activity 'A '  occurred (5) 
according to video 

�9 misclassification error for each subject 

total time that video and Physilog 
disagree at the same time 

em = total time of  recording (1 h) (6) 

3 R e s u l t s  

The algorithm shown in Fig. 2 was used for each subject. Fig. 3 
illustrates the results obtained from a single subject. Figs. 3a 
and b show how the static and dynamic activities were 
separated using an appropriate threshold th. Fig. 3c compares 
the categorisation of  activity resulting from Physilog with what 
was seen on the video. Disagreement occurred mostly with 
transition movements (i.e. from sitting to standing), when 
visual observation (video) becomes less objective. 

The histogram of  activities corresponding to the values of  T v 
and T v, is presented in Fig. 3d. The values of  Tp and T v for all 
subjects are reported in Table 1. 

Table 2 shows the Ep, S and em values for each subject. The 
comparison of  Ep values shown in Table 2 indicates that sitting 
and lying were underestimated, whereas dynamic activity was 
overestimated. This can be explained by the fact that a short but 
strong movement (lasting for less than At/2) occurring during 
sitting or lying could be interpreted as dynamic by Physilog, 
whereas the video observer would classify it as static. 

The sensitivity S of  Physilog decreases during standing. This 
is probably related to an incorrect classification of  this posture 
when it is associated with transit movements that accompany 
posture changes (i.e. lying or siting to standing), resulting in 
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the registration of  a dynamic instead of  a static event. This 
discrimination error could also explain the increase in Ep for 
subject 2, who was very active during standing. 

Table 2 also shows that the misclassification error is mainly 
due to the confusion between dynamic activities and static 
standing, whereas the misclassification between postures is 
negligible. 

To evaluate the system in a real environment, three patients 
were tested during their hospital stay. They carried the Physilog 
device for 12 h (8 a.m.-8 p.m.). Each patient used a diary to 
report his personal assessment of  time spent in various 
postures, including locomotion. The results show a significant 
discrepancy between the Physilog recording and patient self- 
assessment (Fig. 4). 

4 D i s c u s s i o n  

Our study suggests that recognition of  most usual daily 
physical activities can be achieved reliably using the portable 
Physilog device. The system was validated in a studio-like 

Table 1 Time duration of each activity: Physilog Tp against video recording Tv 

Sitting, min Standing, min Lying, min Dynamic, min Others, min 

SubjecU Tp Tv Tp Tv T p  Tv Tp Tv Tp Tv 

1 13.0 13.2 5.8 5.7 11.8 12.8 28.8 27.0 0.5 1.3 
2 16.0 18.0 6.7 5.7 9.2 9.3 28.2 25.3 0.0 1.7 
3 20.3 20.7 5.0 4.7 11.3 12.2 23.3 22.5 0.0 0.0 
4 29.0 30.3 2.5 2.3 4.7 4.8 23.8 22.5 0.0 0.0 
5 18.7 19.3 12.2 13.2 7.3 7.8 21.8 19.3 0.0 0.3 
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Table 2 Prediction error Ep and sensitivity S of  Physilog for each subject and each activity, em 
represents misclassification error 

Sitting, % Standing, % Lying, % Dynamic, % e,~, % 

Subject Ep S Ep S Ep S Ep S 

1 -1 .5  95 +1.8 74 - 7 . 8  88 +6.7 91 11.4 
2 -11.1 87 +17.6 65 -1.1 95 +11.5 92 14.2 
3 - 1.9 96 +6.4 64 -7.4 93 +3.6 89 9.7 
4 --4.3 94 +8.7 64 -2.1 93 +5.8 93 7.5 
5 -3.1 95 -7.6 81 -6.4 89 +13.0 90 11.1 
Overall -4.4 93 +5.4 73 -5.0 91 +8.1 91 10.7 

room equipped with a video recorder. Each film was synchro- 
nised with the recording of  the Physilog and carefully viewed 
by several observers who classified the physical activity of  
each subject in four categories (lying, sitting, standing and 
locomotion). 

Physilog was also tested in a hospital environment, and 
discrepancy with self-reported patient activity was clearly 
established. The inaccuracy of  the patient self-assessment is 
probably due to subjective bias. Over-, as well as under- 
estimation of the time spent in various activities is unpredict- 
able and can be related to the context or to patient's 
expectations. Nevertheless, further clinical investigation invol- 
ving a larger number of  patients is needed better to understand 
the differences between Physilog and self-assessed physical 
activity. 

The measuring system only needs two miniature sensors that 
can be placed easily on the subject without causing significant 
discomfort, even if worn for a prolonged period of time. 
However, several parameters, i.e. threshold th, angular 
threshold, sampling frequency Jk and observation period At, 
need to be carefully selected to obtain reliable results. 
Furthermore, the magnitude threshold th used to recognise 
dynamic activity and the angular threshold used to discriminate 
between postures need to be adapted to each patient. 

To provide long-term recordings, we have chosen a low 
sampling frequency (10Hz), whereas other studies used 16- 
100Hz (MAKIKAWA et al., 1995; AMINIAN et al., 1995a; b; 
VELTINK et al., 1996). Therefore, to avoid distortion in the high 
frequency components of  motion, processing of  a narrow 
frequency range (0-0.5 Hz) was applied. This problem can be 
avoided by increasing the Sampling rate, although a larger 
memory is required. 

The effect of  decreasing the duration of  the observation 
period At, over which area a is averaged, is shown in Fig. 5, 
where a resting period, followed by a normal and a slow 
walking period occurs. As can be seen, the selection of the 
threshold th becomes difficult for a short At, and therefore 
misclassification .between dynamic activity and rest increases. 
Assessing physical activity with 10 s resolution is sufficient for 
the majority of  clinical observations. However, this period can 
be reduced, provided the sampling frequency is increased. 

Reducing the number of  sensors (i.e. only one accelerometer 
on the trunk) increases the misclassification error (MArdKAWA 
et al., 1995). Two sensor sites appear to provide optimum 
results and allow standing, sitting, lying and locomotion to be 
recognised with an overall misclassification error of  10.7%, 
which is acceptable for most clinical applications. 

In certain cases, however, more accurate and detailed 
performance recognition may be needed, i.e. walking pattern 
(uphill or downhill), sitting positions (on a chair or in a bed), 
bowing, biking and running. The discrimination can be 
improved by using more sensors and upgrading the signal 
processing. The use of  numerous sensors may be uncomfor- 
table for the subject and could interfere with normal or 
spontaneous physical activity. Therefore it is essential to seek 
new techniques of  acceleration signal processing to determine 
the most significant parameters for each specified activity. 

In conclusion, the Physilog device provides the capability to 
record a series of  posture features as well as dynamic activities. 
In addition, we have previously reported the measurement of  
step time, speed and distance using the same device. Physilog 
emerges as a promising tool for the long-term monitoring of 
mobility in various clinical applications, including chronic 
pain, spasticity, cardiovascular and Parkinson's disease. 

Fig. 4 Comparison between ([]) self-report evaluation of three 
patients and ( I )  Physilog estimation. Activity rate is 
scaled as percentage of  12 h of  recording 

Fig. 5 Values o f  area d obtained for (a) A t = I s  and (b) At=lOs. 
Better distinction between 'static' and 'dynamic" activity is 
obtained with At= lOs 
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