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INTRODUCTION 

As a starting point of sexual reproduction, mating constitutes one of the funda- 

mental processes governing the growth and maintenance of insect populations. When 

or where their densities are extraordinarily low, the process will significantly affect 

their dynamics in an inversely density-dependent way. 

Rather few studies, however, have so far been accumulated on such quantitative 

aspects of this process in either natural or theoretical populations, and this makes a 

contrast with the remarkable development recently attained in ethological or physiolo- 

gical studies on the mating systems of insects. 

My purpose here is to derive simple mathematical models relating the rate of 

mating to a few basic parameters for general use in theoretical studies on the mating 

as a population process. These models will then be used to deduce some principles 

which seem to underlie the mating process in insect populations. 

MODEL CONSTRUCTION 

In modelling the process of reproduction in insect populations, FUJITA (1953) 

formulated the relation of mating rate of females (P)  to adult density (N)as  an 

exponential equation, P = e  -a~N, which shows a rise from the origin towards unity 

with a gradually decreasing rate. Later NIStiIGAKI (1963) used an empirical equation, 

-P=/((1--e-aCN-b~), to describe the relation which he observed in an experimental 

population of been weevils. If /4=1 and b=0  this equation becomes equivalent to the 

well-known NICHOLSON and BAILEY's (1935) mgdel for insect parasitism, which was 

applied by PHILIP (1957) and SCOTT (1977) without any modification to the description 

of mating process. These models so far used are, however, too simple in structure 

to represent fundamental components of the process, so it will be needed to develop 

more appropriate models based on biologically valid assumptions. 

The models here looked for are such that include parameters to represent basic 

components of the mating in insect populations, and yet that are mathematically as 

simple as possible. At first we assume that 

(1) The habitat  for the population is closed and has a finite size. 
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(2) Individuals of either sex are distributed at random within the habitat and their 

number does not change during the period concerned. 

(3) Searching by individual males for their mates (for simplicity we assume here that 

males search for females and not vice versa) is random and independent of each 

other, and its efficiency in terms of the area searched per unit time is constant 

for all the individuals. 

Then, by assuming further that males can fertilize all the females they found 

during the period, we have the simplest model called "model 0" here. For the model 

to be biologically more meaningful, it will be necessary to include a restriction in the 

male's capacity on mating frequency. This may be done most simply by adding 

another assumption: 

(4) During the period concerned each male makes a certain constant number of 

searches, in each of which he can mate only once even if more than one females 

are found. 

The models satisfying the above four basic assumptions can further be classified 

into two types, "model 1" in which the female is assumed to have the ability of 

mating more than once, and "model 2" in which only the virgin female is subject to 

attack by the male. To summarize, 

unrestricted .................................................................. model 0 

capacity onJ 
Male's freqency ( mating 

/ Female's capacity on I unrestricted ............ model 1 
restricted t mating frequency ( restricted (once) ......... model 2 

These three models are formulated as follows. 

Model 0: 

Let the area of the habitat be S, the numbers of males and females be M and F 

respectively, and the area searched by each male during the period concerned be sT. 

Then, the mating rate in females or the proportion of females mated at least once 

till the end of the period is given by 

P =  1 -  ( 1 -  -~r ) r~ = 1 -  ( 1 - a t ) "  (1) 

where ar  is the proportion of area searched by each male and represents the efficiency 

of mate-searching. This equation is equivalent to STOY's (1932) formula for insect 

parasitism relating parasitism rate to parasite density. If the area of the habitat, S, 

and hence both M and F are very large, eq. (1) is approximated to 

P :  1 - e-'Tm (2) 

where m is the density of males per unit area (=M/S). This limiting form, which 

is referred to as "model 0'" hereafter, is equivalent to NmHOLSON and BAILEY's (1935) 

model for insect parasitism, and hence to the model used by PmLIP (1957) and 

SCOTT (1977). 

Model 1 : 

In models 1 and 2, two parameters must be defined to describe mate-searching 
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activity, i.e. the number of searches made by each male during the period, k, and 

the area covered by each of these successive searches, s, or its relative expression, 

a=s/S .  Then, the probability for a male to catch a female at each search is 1-- 

(1 -a )F ,  and hence the probability for a female to mate at that search is {1- ( l - a )  F}/F. 

Thus, the overall mating rate in females for model 1 is given by 

- [1 _ 1  {1 - (1 - a )  ~} - ] ~  (3) P 

The limiting form of (3) for S~c~ (model 1') is 

P= 1 - e -~'~ (1-e-:,)/f (4) 

where m and f are the densities of males and females per unit area respectively. 

Equation (4) is formally equivalent to ROYAMA's (1971) model for parasitism derived 

by the generalization of IvLnv's (1955) empirical formula. 

Model 2: 

It is assumed here that the females once mated disppear immediately from the 

sight of searching males. Then, the strict expression of the mating rate in females 

in this case will be 

1 F 
P = T'~'~- o F~p(F~ i k M )  (5) 

where p(F~IkM)  is the probability that exactly F~ females are mated till the end of 

the period, i.e., after k M  searches were made by the males in total, which can be 

written as 

p(F,~[kM) : - p ( F ~ - I ] k M - 1 )  {1 - (I - a )  F-~m+l} +p(Fm]kM-1)  (1 - a )  ~-Fm 

Starting from calculation of P(011) and p( l [1) , i t  is possible to calculate p(FmlkM) 

for any value of F~ and then P from eq. (5), but the calculation is very laborious 

unless both F and M are small. A much simpler alternative of eq. (5) can be obtained 

as follows. Let the number of virgin females at time t be Ft. Then, the expectation 

of the change of F~ (either 0 or - 1 )  after the next search by a male is 

AFt= - {1- ( 1 - a ) ~ }  At 

where At is the interval between t and the time at the next search. As an approx- 

imation this may be replaced by a differential equation 

dF, = - {1 - (1 - a )  ~,} dt 

which gives 

I F-F~ dF~ 
k M  = - 1 - ( 1 - a )~ t  

F 

Solving this, we have 

( l - a )  ~ ( l - a )  *~,~- ( l - a )  a" 
1 - (1 - a )  a" 

Thus, the mating rate in females i,n question is 

p F~ 1 
= - ~ - = ~  ]n~i-5_a) In [ ( 1 - a )  ~ {1- (1 - a )  ~} + (1 - a )  ~] (6) 

The goodness of approximation of eq. (6) to eq. (5) is generally satisfactory. For 
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example, if a = 0.1, k = l  and F ~- M = 2, P from (5) is ( lx0 .3249+2•  

0. 1815, while P from (6) is 0. 1745, the difference being only 0.0130. 

Since the discrepancy becomes much smaller for larger values of k, M and F, the 

alternative use of eq. (6) for eq. (5) will be justified, at least in most cases. The 

limiting form of eq. (6) for S~oo (model 2') is 

P = -r  { e - ~  ( 1 - e  -~f) +e  -~} (7) 

Since m and f are continuous variables here, this is no longer an approximate, but 

an exact relation. This limiting form is again equivalent to ROYAMA's (1971) model 

based on IVLEV's formula, but here to the model for predation. 

SOME ANALYSES ON THE MODELS 

Comparison of the Three Models 
At first we make clear the relations of models 1 and 2 to model 0. Formally, 

model 0 is included in either of the other two models as its special case in which 

parameter k is increased to infinity under the condition that the total area searched 

by each male during the period (i. e. the area covered by k independent searches) is 

finite. This is proved as follows. If k is increased under the above condition, then 

(1-a )V ~ 1-aF because a becomes small here, so that eq. (3) for model 1 reduces to 

- [ 1 - 1  { 1 -  ( 1 - a F ) }  ] ~ = 1 -  ( l - a )  *~ P ~ I  

Thus, since the total area searched by each male, a~, is equal to 1 - ( 1 - a )  ~, we 

have 

P = I -  (1-aT) m 

which is equivalent to eq. (1) for model 0. Similarly, under the same condition, In 

( l - -a)  ~ - a  in eq. (6) for model 2, so that we have 

P ~ - : F  In [ ( 1 - a ) * m { 1 -  (1 -aF)}  + l - a F ]  

=ln [ 1 - a F { 1 -  ( 1 - a )  ~}  ] - 1 ~  

~-:ln {e 1- (1- a)k•} = 1 -  ( 1 - a )  ~ - - 1 -  (1-aT) ~ 

Although these models have apparently similar patterns in the mating rate (P) - to-  

population size (N) relation (Fig. 1), there are distinct differences in the properties 

between model 0 and models 1 and 2. Firstly, while the P-values in models 1 and 2 

are affected by both male (M) and female (F) population sizes, the value in model 

0 is determined only by the male population size (compare eq. (1) with eq. (3) or (6)). 

Thus, while in model 0 the number of females mated (FP) increases linearly if F is 

increased for fixed M, in model 1 or 2 there is an upper limit ( = k M )  for FP to 

which it approaches gradually--the relation comparable to "functional response curve" 

in the case of predation (Fig. 2). Secondly, P in model 0 invariably approaches 1 

with increasing N, regardless of the sex ratio, but in model 1 or 2 this is no t  

necessarily true, i.e., a certain proportion of females may remain unmated however 
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Fig. 1. Relation of mating rate of females (P) to population size (N:F+M).  
F : M = I : I ,  a=0.025,  k : 4  (aT:0.0963).  
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Fig. 2. Relation of number of mated females (FP) to number of 
females (F) when varying number of females are exposed to a 
single male. a : 0 . 2 5 ,  k : 8  (a~=0.900).  

large N becomes. Namely,  the P-va lues  for infinite N for the three models are 

Model 0 :  lira P = I  
N~oo 

Model 1 : lira P = 1 - e  -~(~-~)~ 

Model 2 :  lira P - - I  for k ~ w / O - w )  
N-~oo 

= k ( 1 - w ) / w  for k < w / ( 1 - w )  

where  w is the sex ratio ( = F / ( F + M ) ) .  



55 

Thus the asymptote for P is always smaller than 1 in model 1, and is either equal 

to or smaller than 1 in model 2, the difference from 1 depending on the values of 

both w and k. 

The above comparison shows that in contrast with model 1 or 2, model 0 has 

properties that are biologically inadequate. This, however, may not always negate its 

use, but there still seem to be a number of aspects in theoretical studies to which 

this symplest model can be usefully applied. 

If model 1 and model 2 are compared with each other, the P-value for the same 

values of the parameters is always higher in the latter (see Fig. 1). This of course 

results from the increase in mate-searching efficiency in model 2 by concentrating the 

male's attack to virgin females. The difference, however, becomes slight as k, the 

male's capacity on mating frequency, becomes large, in which case both of the models 

converge to model 0 as proved earlier. 

Effect of Population Size 
The next problem is to examine how the fundamental factors in the mating 

process, which are represented by the parameters in these models, affect the overall 

mating rate in the population. Both model 1 and model 2 derived here have four 

parameters, M, F, a and k, but it is more convenient for the discussion that follows 

to replace the first two by iV, total population size, and w, sex ratio. Then, eq. (3) 

and eq. (6) for model 1 and model 2 become respectively 

= 1 -  [ 1 - 1 N { 1  - ( 1 - a )  ~v} ],(1-~,)N (3') P 

and 

p _  1 
wN l n ( 1 - a )  ln[(1-a)~('-w)~v{1-(1-a)wN} +(1-a)wlv]  (6') 

The effect of population size N on the mating rate P has already been shown in Fig. 1 

for both of the models. Its notable characteristic is that at low levels of N where P 

is also low, N governs P nearly linearly or proportionally, but as N increases and P 

approaches to the respective asymptote ( 1 - e  -~(1-~/~ in model 1, or 1 or k (1 -w) /w  

in model 2), its action upon P becomes more and more ineffective. 

Effect of Searching Efficiency 
In the present models the efficiency of mate-searching is represented by parameter 

a, the relative area which a male can cover in a single search. The P--a relation 

(Fig. 3) is very similar in its form to the P--N relation discussed above. P rises 

from the origin with a gradually decreasing rate, the maximum (the value when 

a = l )  being 1 - { 1 - 1 / ( w N ) }  ~(1-*")N in model 1 and either 1 or k(1-w) /w in model 2. 

These maximum values also are nearly (model 1) or exactly (model 2) equal to the 

asymptotes for the P--N relation. 

Effect of Male's Capacity on Mating Frequency 

The relation of P to k, the number of searches a male can make during the 

period, is shown in Fig. 4. It is again similar to the P--N relation, and hence to the 
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Fig. 3. Re|ation of mating rate of females (P) to male's searching 
efficiency (a). F = M = 1 0 ,  k = 4 .  
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Fig. 4. Relation of mating rate of femeles (P) to male's capacity on 
mating frequency (k). F = M =-- 10, a = 0.025. 

P--a relation, showing a curve rising towards the asymptote  wi th  a gradually 

decreasing rate. The only difference is found in the asymptote  value which is always 

1 here in both models. 

Effect of Sex Ratio 

The relation of P to sex ratio, w, shows a monotonously decreasing curve in 

either model (Fig. 5). Here, however, it is more significant ecologically to consider 

the proportion of mated females to the whole population, wP, rather  than P, because 

it represents the population's  reproductivi ty more directly. Unlike the P--w relation, 
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Fig. 5. Relations of mating rate of females (P) and proportion of 
mated females in the total population (wP) to sex ratio (w=F/ 
(F+M)). N-=F+M=40, a=0.025, k=4. 
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Fig. 6. Relations of proportion of mated females in the total 
population (w_P) to sex ratio (w) for different population sizes 
(N) (model 2). a=0.025, k=4. 

the wP--w relation gives a mountain-shaped curve, indicating the existence of an 

optimum sex ratio for population reproduction (Figs. 5 and 6). In Fig. 6 it is also 

important to note that this optimum ratio changes with a change in population size, 

N, from near 1 / ( k + l )  for very large N (in model 2) to about 0.5 for very small N. 

This means that in very sparse populations their reproduction will become most 

efficient when both sexes exist in even proportions, regardless of the values of other 

parameters. 
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DISCUSSION 

The above examination seems to have shown us two basic principles concerning 

the mating process in insect populations. One is that the relations of the female's 

mating rate, P, to the three parameters, N, a and k are essentially similar in their 

patterns, or in other words, population size N governs P as critically as do the 

parameters a and k representing the mate-searching activity for each individual. 

Thus, the necessary value of either a or k to attain a given, fixed level of P changes 

nearly in an inverse ratio to the change of N, meaning, for example, that a or k 

must be increased twice in order to compensate the reduction of P due to population 

decrease to half the original size (Fig. 7). The other principle is that the efficiency of 
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Fig. 7. Necessary value of a(left; k=10) or k (right; a=0.001) to attain 
a fixed level of P, in relation to population size (N) (model 2). 

increasing N on t h e  increase of P, as well  as  the efficiency of increasing a or k, 

fal ls  accelera t ively  as P rises to high levels. Thus,  whi le  the two-fold increase of 

e i ther  IV, a or k resul ts  in near ly  the same-fold rise of P when P is at  a low level 

(say, less than 0 .1) ,  it g ives  rise to only a s l ight  increase in P, by several  percent  

at  best ,  if P has a l ready  a t ta ined a high level of 0.9 or so (see Fig .  1). 

I t  is a wel l -known fact  that  populat ions  of many  insects are  subjected to severe 

densi ty  fluctuations f rom generat ion to generat ion (e .g .  VARLEY et al., 1973). In 

connection wi th  the above principles,  this  suggests  how serious and severe a problem 

it may  actual ly  be for many  insect populat ions to secure consis tent ly high levels of 

mat ing  rate  and avoid ext inct ion over a vast  number  of generat ions.  Owing to the 

inversely  densi ty-dependent  na ture  of the process,  an e x t r e me  reduction of P, even 

for a shor t  period, might  lead the populat ion to crash and so cannot be al lowed for 

its persistence.  

We have ample  evidence to recognize how complicated and e labora te  devices 

insects have evolved to raise the efficiency of ma t ing  (e .g .  ENGELMAN, 1970). Many  

insect species have developed surpr i s ing ly  sensit ive means  of between-sexes  com o 
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munication using sight, sound, pheromones etc., which may assure a high efficiency 

for mate-searching corresponding to the parameter a (or more exactly s in a=s/S) 
in the present models. Spatial convergence in the distributions of both sexes in the 

period for mating may also be interpreted as an effective device to improve the 

searching efficiency a, here by decreasing S, the whole area for searching. Efficient 

behavioural processes for copulation, in which only a little time and energy are con- 

sumed, may be significant for raising the overall mating rate by increasing the male's 

capacity on mating frequency or k in these models. Also, the habits such as con- 

centration of adult emergence to a short period of a season or restriction of mating 

activity to a narrow time range of a day, which are common in insects, may be 

regarded as those to raise the mating efficiency by increasing the effective value of 

population size N. In view of Fig. 6, it seems possible to explain, at least partly, the 

fact that populations of most insects have sex ratio near 1:1, too, in connection with 

the optimization of reproductive efficiency, since the optimum ratio will practically be 

1 : 1 when N is so small that the population is exposed to the danger of extinction. 

It is, however, likely that there are some specific modes of life which are often 

accompanied with the population instability so severe that any such devices might be 

still insufficient to secure consistently high mating rates. In species with such modes 

of life the only possible way to avoid extinction will be to acquire the habit of 

asexual reproduction in some part, at least, of their life cycles, though it necessarily 

sacrifices the genetical merit of sexual reproduction to a lesser or greater extent. 

Various types of parthenogenesis observed among insects, particularly among aphids 

and parasitic wasps, may be interpreted as such degeneration to secure population 

persistence. 

All these facts indicate that for populations of many insects consistent attainment 

of high mating rates has actually been a serious difficulty which could have been 

overcome only with great efforts in various aspects of their behaviour, supporting 

the predictions deduced from the simple models here presented. This may confirm 

the significance of making further theoretical studies in various quantitative aspects 

of the mating process, including the effects of population distribution, migration, 

survival, intra- and interspecies interaction, etc., based on these models. Such studies 

will help understanding of the mating strategies in insects in relation to their population 

dynamics. 

SUMMARY 

Simple models are constructed to describe the rate of mating in insect populations. 

The models are based on the assumption of random mate-searching in a closed habitat, 

including four parameters, i.e., population size, sex ratio, searching efficiency and 

male's capacity on mating frequency. The modes of effects of these parameters on 

the rate of mating are analyzed and some principles deduced are discussed in relation 
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to the mating process in natural populations. 
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