
1 Introduct ion 

IN NEUROMAGNETISM, information about electrical currents 
in the brain is obtained by measuring the magnetic-flux 
density at several points outside the head (HAM~.L~INEN et 
al., 1993). Like many other inverse problems, that of 
neuromagnetism is non-unique; there are infinite current 
distributions that can explain the measurements. 

The most common method to deal with the inverse 
problem is to characterise the current distribution with a 
small number of parameters. However, it is often difficult 
to find a source model that is simultaneously restrictive 
enough to make the problem unique and also capable 
of describing the essential features of the current 
distribution. A widely used model, suitable for interpreting 
the simplest neuromagnetic field patterns, is the current 
dipole (WILLIAMSON and KAUFMAN, 1981). 

Application of the dipole model in locating brain 
activity implicitly presupposes that the source current is 
localised in one small area (or in several separate sites in 
multi-dipole models). Misleading results can be obtained if 
these assumptions are not valid. 

In this paper, we present minumum-norm estimates 
(MNEs) for the source-current distribution. These are the 
best estimates for the current when minimal a priori  
information about the source is available. When no 
assumptions about discrete current elements are made, the 
estimates turn out to be continuous current distributions. 
This approach was introduced in a technical report 
(H.~M,~LXlNEN and ILMONIEMI, 1984) and at a conference 
(ILMoNIEMI et aL, 1985); it has subsequently been discussed 
by several authors (KULLMANN et aL, 1989; CLARKE et aL, 
1989; CROWLEu et aL, 1989; IOANNIOES et aL, 1990; DALLAS, 
1985; SINGH et aL, 1984; JEFFS et aL, 1987; SMITH et aL, 
1990). Although our specific examples deal with the 
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interpretation of neuromagnetic data, an identical treat- 
ment is also suitable for electro-encephalography (EEG). In 
a companion paper (NENONEN et al., 1994), the method is 
applied to the inverse problem in electro- and magneto- 
cardiography (ECG and MCG). 

As a solution to the difficulty encountered in interpola- 
ting or extrapolating magnetic-field or electric-potential 
maps, we propose the use of minimum-norm estimates. 
From the original data, the MNE is computed first; the 
magnetic or electric field at desired points on a given surface 
can then be calculated directly from the MNE. 

2 Methods  

We shall analyse the inverse problem of magneto- 
encephalography, proposing that a linear combination of 
magnetometer lead fields should be used as an estimate for 
the primary-current distribution in the brain. The lead field 
is a vector field that describes the sensitivity pattern of a 
magnetometer to the primary current. 

2.1 Definition o f  the lead f ield 

Let us denote the primary-current density with JP: 
JP(r) = Jtot(r) - a(r)E(r), where r is the position vector, J~ot 
is the total current density, cr is the conductivity, and E is 
the electric field..P' is the result of a change of other types 
of energy into electrical form: it provides the battery of the 
circuit (PLONSEY, 1969), driving volume currents (aE) in the 
conductor. We consider a, an', and E on a macroscopic scale, 
so that these quantities are the average or effective values 
over  a volume of about 1 mm 3. 

The output of a magnetometer Bi is linearly related to 
the primary-current distribution. We can therefore find a 
vector field Li(r) satisfying 

B i = [" Li(r ) �9 JP(r)dv. (1) 
J 
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Ldr) is called the lead field; it describes the sensitivity 
distribution of the ith magnetometer  (MALMlVUO, 1976; 
TR1PP, 1983). In addition to the coil configuration of the 
magnetometer, the lead field depends on the conductivity 
a = cr(r). Although the use of realistically shaped conductor 
models is emerging (HXM,KL.KINEN, 1989), in this paper, we 
assume a spherically symmetric or horizontally layered 
conductor (CuFFIN and COHEN, 1977); our results are 
directly applicable to any linear conductor model 
(NENONEN et al., I994). 

The lead field, as defined by eqn. 1, can be computed, 
provided that it is possible to calculate the magnetic field 
Bi = Bi(Q, r'), resulting from an arbitrary current dipole Q 
at r'. This requires knowledge of the conductivity 
distribution cr(r), so that the effect of volume currents can 
be properly taken into account. For  Q at r', JP(r)= 
Q6(r - r'), where 6(r) is the Dirac delta function. Inserting 
this dipolar primary-current distribution into eqn. 1, we 
obtain 

Bi(Q, r') = Li(r')'Q (2) 

With eqn. 2 all three components  of L~(r') can be found for 
any r'. 

2.2 Minimum-norm estimate for a current distribution 

In the following, primary-current distributions (in 
general, continuous) are considered as elements of a 
function space ~ that contains all square-integrable current 
distributions, confined to a known set of points G inside a 
conductor;  ~ is called the current space. The set G, in which 
JP is confined, may be a curve, a surface or a volume region, 
or a combination of discrete points, depending on the 
nature of  the problem. When we refer to current 
distributions as elements of the current space, we use capital 
letters. The inner product  of two currents J t e o ~  and 
J2 E ~ is defined by 

(J~, J2)  = j~ Jt(r)" J2(r) dG (3) 

The overall amplitude or ' length '  of a current distribution 
is described by its norm: 

= (Jk, Jk) = j~ I/~(r)l = dG (4) IIJkll z 

From eqn. I, it is evident that measurements Bi = (L~, JP), 
i = 1 . . . . .  M, only yield information about primary currents 
lying in the subspace Y '  of the current space J~. This 
subspace is spanned by the lead fields; ~ ' = s p a n  
(L~ . . . . .  LM). The idea of an M N E  is that we search for an 
estimate J* for JP that is confined to Y ' .  J* will then be a 
linear combination of the lead fields: 

M 

J*= Z w~Lj (5) 
j = l  

where wi are scalars to be determined from the 
measurements. Requiring J* to reproduce the measured 
signals ( L ~ , J * ) = B i =  (LI, JP), we obtain a set of 
linear equations b = Fw, where b = (B1 . . . . .  BM) r, w = 
(w~ . . . . .  WM) r, and F is an M x M matrix containing the 
inner products of the lead fields F~j = (L~, L j). With this 
notation, eqn. 5 can be compactly written as J * =  wrL, 
where L = (L1 . . . . .  LM) r. 

The term minimum-norm estimate derives from the fact 
that, in the sense of the norm defined by eqn. 4, J* is the 
shortest current vector capable of explaining the measured 
signals. The non-uniqueness of the inverse problem is 
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manifested by the fact that the actual  current distribution 
producing b may be any current o f  the form J = J* + Ja ,  
where Jz  satisfies ( J z , L i )  = O, i =  1 . . . . .  M. In other 
words, any primary-current distribution (together with 
volume currents) to which the measuring instrument is not 
sensitive may be added to the solution. 

2.3 Reyularisation 

If the lead fieIds are linearly independent, which is 
generally the case when the measurements are made at 
different locations, the inner product  matrix F is 
non-singular and 

w = F -  Ib (6) 

However, in practice, the Lis m a y  be nearly linearly 
dependent. Thus, F can possess some very small 
eigenvalues, which leads to large errors in the computat ion 
of w. 

To avoid this numerical instability, the solution must be 
regularised. This means that directions in ~ '  with poor 
coupling to the sensors must be suppressed. Let F = VA V r, 
with V r V = I  and A = d i a g  (X 1 . . . . .  2M), where 2 1 >  
22 > . . . 2  u > 0 are the eigenvalues of F. Then, F - l =  
V A - I V  r. Regularisation may be carried out by replacing 
A-1  by A - l = d i a g ( 2 i - 1  . . . . .  2 ~ I , 0  . . . . .  0) to obtain a 
regularised inverse ~ - - 1 =  V ~ - t V  T. The cut-off value 
K ~< M is selected so that the regularised MNE does not 
contain excessive contributions f rom noise. The minimum- 
norm estimate does not then exactly reproduce the  
measured signals, but the misfit b - b ,  where b = 
F& = FP-~b,  is in accordance with measurement errors, 
(SARVAS, 1987). In terms of current distributions, regularisa- 
tion means that those eigenleads that  correspond to small 
eigenvalues, and thus are hard to measure with sufficient 
signal-to-noise ratio, are ignored. The regularised mini- 
mum-norm solution is 

J* = (F-  Ib)rL (7) 

In the remainder of this paper, we always apply, 
regularisation and denote the estimates simply by J* instead 
of J*. 

2.4 lsocontour maps 

A conventional way to present the spatial pattern of 
M E G  data is to display i socontour  plots at selected lime 
instants. This approach is straightforward as long as all 
measurements are uniform in the sense that the same field 
component,  usually the radial componen t  Br, is measured. 
However, with wide-area multichannel magnetometers, it 
can be difficult or even impossible to align all channels in 
the radial direction. Therefore the isocontour plots may be 
misleading because some channels are tilted or further away 
from the head than others. 

There are also planar multichannel magnetometers 
(AHoNEN et al., 1992; KAJOLA et al., 1989) that are sensitive 
to off-diagonal derivatives of the magnetic field. It would 
be useful, for the purpose of da ta  comparison, to show 
results obtained with planar gradiometers as isocontour 
plots as well. For  this we need an estimate of Br from field 
derivatives. As different laboratories use magnetometers 
with different coil configurations, it would be desirable to 
establish a common form of da ta  representation. Such 
standardisation would facilitate the comparison of measure- 
ments between laboratories and also within a laboratory, 
and between different sessions on an individual subject. 

MNEs are convenient and reliable for neuromagnetic 
data interpolation and extrapolation;  from the MNE, all 
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components of the magnetic field at any desired location 
can be directly computed (ILMONIEMI and NUMMINEN, 
1992). Suppose we want to obtain field values in some target 
grid. Let the lead fields of the virtual magnetometers be 
L'~ . . . . .  L~, and the corresponding virtual measurements be 
b' = (b'~ . . . . .  b~,) r. By combining the definition of the lead 
field b~, = (L~,, J* )  with eqn. 5, we obtain 

M 

b'k = ~ wi(L J, L'k) (8) 
j = l  

o r  

b' = F'w (9) 

where F)k = (L~, Lk). With the expression for w from eqn. 
6, we finally obtain the interpolation or extrapolation 

b' = F ' F -  lb (10) 

Of course, if F possesses small eigenvalues, the regularised 
inverse must be used, but in this case, as the measured field 
pattern is to be displayed, a milder regularisation is 
probably preferable. 

Our  MNE-based interpolation method automatically 
takes into account  the mechanism, described by Maxwell 
equations, that generates the magnetic field. The result is 
free of artefacts and smooth in the way required by the 
electromagnetic theory, which is not the case with the purely 
mathematical interpolation methods applied so far in this 
context. Other source models, e.g. a collection of current 
dipoles, could, in principle, also be used in the interpolation. 
However, finding the best source model would then require 
a least-squares fit, and furthermore, restricting assumptions 
about the source would be inevitable. 

2.5 Utilisation of potential measurements 

Far older than biomagnetism is the study of human body 
functions by means of surface potential measurements. The 
changes in the electrical potential on the scalp, as obtained 
by EEG, are due to the same source currents that are 
responsible for the magnetic field outside the head. 
However, as M E G  is insensitive to the radial current 
sources detectable with potential measurements, it is, at 
least in principle, possible to widen the scope of the 
source-current estimates by combining EEG and MEG 
data. 

Let V~ be the voltage between two electrodes. The lead 
field L~(r) of the electrode pair can be defined analogously 
with eqn. l: 

V~ = f L~(r)" JP(r)dv (11) 

We now assume magnetic-field measurements b = 
(B 1 . . . . .  BM) r and voltage measurements v = (V 1 . . . .  , VN) r. 
The MNE then lies in the subspace spanned by the magnetic 
lead fields L 1 . . . . .  L M and the electric lead fields L~ . . . . .  L~, 
and eqn. 5 becomes 

M N 

J* Z wjL j+  y~ ,E E = ~ k L k  (12) 
j = l  k = l  

E The weights wj and w k are now determined from the 
equations (b) 

= \F~b F~,Vj\wE ] (13) 

where Fb~' = (Li, Lj),  F})' = (LIE, L~), F/b) ' = (Li, L f )  and 
F,+ = (F/'+) r. 

As MEG and EE G are formally in an identical role, their 
separate treatment is unnecessary. However, for certain 
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distributions of the conductivity and the set of points that 
define the current space, the cross terms F by and F ~b vanish; 
in such cases, M E G  and EEG provide completely 
independent information. Spherical symmetry is one such 
situation. In the general case, EEG and MEG bring data 
that are partially redundant.  Voltage measurements provide 
signals from radial source currents, which make only a small 
contribution to the magnetic field outside the head (in the 
spherical model, zero contribution). Tangential source 
currents affect both the voltage and the magnetic field. By 
using MEG and EEG simultaneously, a better source- 
current estimate can be obtained than by either method 
alone (NENONEN et  al., 1994). 

3 Results 

We investigated the properties of MNEs with simulations 
and applied them to brain measurements. 

3.1 Simulations without noise 

We shall describe two series of simulation experiments. 
In the first set, the area covered by the magnetometers was 
kept fixed but the number  of channels was varied. In the 
second set, the number was fixed but the mutual distances 
between channels changed. 

The conductivity geometry was assumed to be such that 
no volume currents had to be taken into account explicitly. 
This assumption is valid, for example, in the case of a 
conducting half-space, where a is a function of z only. Our  
choice of conductivity distribution is for convenience only; 
currents in more complicated geometries would not 
essentially change the results, as long as the effect of a(r) on 
the lead fields is properly calculated to satisfy eqn. 1. Point 
magnetometers, measuring the z-component of the magne- 
tic field, were assumed in the simulations. The integration 
area G (eqn. 3) was chosen to be part of a plane parallel to 
the xy-plane. The restriction means that the source current 
is assumed to be confined to this area. 

Once the arrangement of the sensors had been chosen, 
the signal in each magnetometer  was calculated from 
test-current dipoles. Normally distributed random num- 
bers, representing a specified level of white noise, could be 
added to each signal. 

The estimates, which are continuous primary-current 
distributions, are visualised with arrow maps, where each 
arrow points in the direction of the estimated current 
density at the centre of the arrow. Its length is proportional 
to the current density at that point. 

The M N E  can be calculated for any number and 
arrangement of sensors. In particular, it is not necessary to 
cover the whole source area. However, the resolution is 
degraded if the number  of channels is reduced or if the 
magnetometers do not adequately cover the field pattern. 

In the first set of experiments, 4, 9, 16, 25, and 36 point 
magnetometers were placed in a planar square lattice to 
cover an area of 80 x 80 mm 2 in the z = 30 mm plane. 
Therefore the lattice constants, i.e. distances between 
neighbouring channels, were 80, 40, 26-6, 20 and 16 mm, 
respectively. The source current was assumed to be confined 
to a square of 200 x 200 mm 2 in the xy-plane. 30 mm from 
the magnetometer plane. The test source was a single- 
current dipole. 

Fig. 1 shows the results of experiments with 16 and 36 
magnetometers. The current estimate is more tightly 
localised when there are 36 magnetometers than when there 
are only 16 magnetometers. 
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Effect o f  the number o f  magnetometers on the current 
estimate in the ease o f  a dipolar test source. The estimates 
are continuous current distributions, but here they are 
displayed as arrow maps, centred at the location of  the test 
source. Eaeh arrow denotes the estimated primary-current 
density at its centre. The lattice constant in the arrow maps 
is 10 mm. The positions o f  the magnetometers relative to 
eaeh other are indicated by the crosses in the panels to the 
left o f  the current estimates. The magnetometer grids are 
shown in the same scale as the arrow maps. In the 
simulations, the measurement 9rid was 30 mm directly 
above the test source, which was a vertically-oriented 
current dipole. (a) 16 magnetometers, (b) 36 magnetome- 
ters 

The second set of experiments used 25 point magneto- 
meters in a square lattice 30 mm from the source-current 
plane�9 The neighbouring magnetometers were 10, 20 and 
30 mm from each other. The integration area and the test 
current were the same as in the first simulations. The results 
were similar; the estimates were most precisely localised 
when the magnetometers were close to each other. If the 
dipole was outside the area covered by the magnetometers, 
the estimate became distorted. However, even then, a n  
experimenter could form an idea about the location of the 
source, being able to move the magnetometer array to cover 
the appropriate area. 

3.2 Effect o f  noise 

To simulate a realistic measurement situation, we 
assumed a coil configuration identical to that in our 
24-channel system (KAJOLA et al., 1989). Its planar 
gradiometers sense the off-diagonal derivatives OBJOx and 
?B: /@ at 12 locations simultaneously; B.. is the field 
component perpendicular to the curved bottom of the 
dewar. The array covers a spherical cap with a diameter of 
125 mm (Fig. 2). 

The source dipoles were lying on a spherical surface of 
90 mm radius. The centre of this surface coincides with the 
centre of curvature of the gradiometer coils. 

3 8  

Fig. 2 

30 mm Y 

2> 
X 

125 mm 
I,,, I 

Coil configuration o f o u r  24-channel gradiomeier, projected 
to a plane. Each of  the 12 units consists of  two orthogonal 

figure-of-eight loops. Those illustrated with solid lines sense 
the derivative gB:/Ox, and the loops shown with dashed lines 
measure OB=/@. Here B~ denotes the field component 
normal to the dewar bottom at each sensor-pair location 

Uncorrelated Gaussian noise of different amplitudes was 
added to the test signals computed from the dipole sets. In 
the examples shown, an RMS noise of 12 t T c m  - t  was 
assumed. This is about twice the actual noise level of our 
instrument, thus also accounting for some additional noise 
from random brain activity�9 

The regularisation technique described in Section 2.3 was 
applied to suppress the effect of  noise on the current 
estimates. It was found that the selection of the cut-off point 
K, needed to compute the current estimate according to 
eqn. 7, was not critical. Judging from the behaviour of the 
current estimates and the scaled norm of the misfit to the 
experimental data 

g = ~ l ( b - b ) r ( b - 1 ) )  (14), 

where M = 24 is the number of measurements, it was found 
that any value 17 ~< K ~< 22 gives satisfactory results. Fewer 
eigenleads resulted in missing the details of the current 
distribution, whereas larger values for K exhibited spurious 
noise currents. Here we show results for K = 21. The 
selection of proper regularisation could be automated with 
cross-validation techniques (GOLUB et al., 1979). 

The current estimates are depicted in Fig. 3. We note that 
essential features of the test-current configurations can be 
resolved by the estimates. Here, because the test sources 
consist of current dipoles, the maxima of the estimates are 
approximately at the sites of the test dipoles. If the current 
dipole nature of the sources were not  assumed prior to the 
measurement, the location of activity should be judged 
directly from the current estimates, instead of using the sites 
of equivalent current dipoles. It should be emphasised that 
no assumption about the number  or nature of sources is 
needed in this procedure. The spatial resolution is poor, but 
there is no way to do better without  additional constraints 
on the solution. 

3.3 Isocontour maps 

As an example of the M N E  data  interpolation method, 
described in Section 2.4, we show how the effect of tilted 
magnetometer orientations is eliminated. 

This simulation assumed a multichannel magnetometer 
sensing Br, the component  of  the magnetic field 
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perpendicular  to a curved surface with 125 mm radius. The 
device was assumed to have 25 channels, evenly distr ibuted 
in a close-to-square lattice of 125 mm diameter, 

Two measurements  were simulated; one with all 
magnetometers  oriented normal  to the spherical surface of 
the head, and another  with the whole array tilted by 12 ~ . 
The distance of the magnetometers  from the surface of the 
head was 15 mm in the until ted orientation. The current 
source was a dipole (Q = 10 nAm) at a depth of 15 mm from 
the surface of the head. 

Three field maps were constructed; the first was 
constructed from the untilted measurement with a s tandard  
interpolat ion method (MCLAIN, 1974), the second from the 
tilted measurement  with the same procedure, and the third 
from the tilted measurement  using the new M N E  
interpolat ion method (Fig. 4). With the tilted array, M N E  
interpolat ion produced a result that is almost  identical to 
that from the until ted measurement,  whereas conventional  
interpolat ion gave a s trong asymmetry and a slight shift of 
the zero-line. It appears  that  M N E  interpolat ion offers a 
possibility to compare  field maps obtained with different 
devices or with different placements of one device. This may 
be essential for the compar ison  of da ta  between 
laboratories.  

Fig. 3 Estimates from sionals originatin 9 from various source 
configurations. The lattice constant in the arrow maps is 
6.3 mm, correspondin 9 to an angular step of  4 ~ on the 
90 mm surface. The assumed test dipoles (Q = 10 ham)  
are depicted by the large arrows. For the two-dipole case 
(b), an additional activation area, caused by the 
simulated noise in the measurement signals, appears 
in the bottom part of  the Figure. For other sets o f  noisy 
signals with the same sources, the additional activity was 
smaller or appeared elsewhere in the source area 

between 850 and 1250ms. Each group of six stimulus 
presentat ions was separa ted  from the next group by an 
interval of about  5 s, dur ing which the subject could relax. 

Fig. 5a shows the averaged signals from the 24 
magnetometer  channels, reflecting the electrical activity of 
the visual cortex as a consequence of the parafoveal 
stimulus pattern in octant  7. The first major  deflection 
occurs at about  70 ms after the stimulus. At present, we do 
not know how many s imultaneous sources produce the 

4 Analysing evoked responses 

The est imation procedure  described above was applied 
to visually evoked magnetic  signals.We measured the field 
pattern as a function of t ime over the occipital part  of the 
head, during and after the presentat ion of stimuli to the 
subject (AHLFORS et al., 1992). These are checkerboard 
pat terns modified so that  the check size increases as a 
function of distance from the centre of the visual field, in 
order  to compensate  for the lower acuity in the periphery 
(Fig. 5b). Stimuli were presented in one octant  of  the visual 
field at a time, either in the reveal or the parafoveal  area. 
The subject was instructed to look at a fixation point  on a 
computer  screen. The different stimuli were then shown for 
a period of about  250 ms in random order, so that  the time 
between their successive appearances varied randomly 
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Fig. 4 Example o f  M N E  interpolation: (a) tilted and ideal mag- 
netometer surfaces: (b) conventional interpolation from a 
measurement on the ideal (untilted) surface; (c) and (d) 
conventional and M N E  interpolation from the tilted surface. 
Notice the large and potentially misleadin 9 asymmetry 
in (c) 
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Fig. 5 Visual experiment (AtfLFORS et al., 1992): (a) 
averaged magnetic field as a result of  the presentation 
of  a parafoveal pattern in octant 7, from all 24 
channels, as a function of  time. The horizontal line 
segment below one o f  the traces corresponds to the first 
lOOms after the stimulus onset. The recording 
passband o f  O.05-100 11,-_ was reduced to 1-35 Hz with 
a software f l t e r ;  (b) M N E s  for parafoveal stimuli, 
shown to the left o f  each current estimate. The MNEs  
have been calculated using the convenient assumption 
that the primary current lies on a spherical surface 
placed 10 mm below the scalp; thereJbre no depth 
information is obtained. However, it is evident 
from these M N E s  that f o r  left visual-field stimuli, the 
primary current is on the right, and that for right 
visual-reid stimuli, the current is on the leJ?. The area 
shown has an angular extent o f  40~ the centre o f  the 
depicted area is 30 mm above inion towards vertex. 

magnetic field at different times. However, we may form a 
rough idea of the cerebral locations that are involved by 
calculating the minimum-norm estimates of the source- 
current distribution. Fig. 5b shows these during the 70 ms 
deflection of the magnetic field, evoked by parafoveal 
patterns presented in visual field octants 5-8. It is apparent 
that the activity is on the side of the brain opposite to the 
stimulus. 

5 Discussion 

We have applied estimation theory to the problem of 
determining primary-current distributions from measured 
magnetic fields. In this procedure, essentially nothing is 
assumed about the source currents except that they are 
confined to a certain region, for example the brain. A known 
conductivity distribution is assumed, however, so that the 
effect of volume currents can be properly taken into 
account. In the sense of the Euclidean norm, our estimate 
is the shortest vector in the source-current space that can 
explain the measurements. The error is orthogonal to the 
subspace defined by the lead fields. Therefore the only way 
to improve the estimate is to provide some additional 
information. An example is the assumption of the dipole 
model when interpreting evoked responses. 

It would be desirable to improve the MNEs by finding 
ways to inject some a priori  knowledge or assumptions of 
the experimenter (SMITH et  aL, 1990). We emphasise that 
we should make only such restrictions as are justified by 
prior knowledge. For example, if magnetic-resonance 
images are available, it is possible to find the shape of the 
cortex and accordingly restrict the integration area. 

We feel that minimum-norm estimates are better than 

magnetic isocontour maps in expressing the results of MEG 
measurements. The magnetic field is only a medium that 
conveys information from the brain. As we are primarily 
interested in the distribution of activity in the brain, we 
should express our results in the form of current-source 
distributions. In the transformation of data into minimum- 
norm estimates, practically no information is lost; the 
results are only transformed into another form. Even when 
the dipole model is applied, the minimum-norm estimate 
can be the starting point. For example, it is possible to guess 
from the maxima of Fig. 3 the location of some of the 
current dipoles. 

The simulation experiments show that our estimates can 
describe the structure of the current distribution fairly well. 
By increasing the number of magnetometers, the estimate 
can be made more localised. 
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Appendix 

This Appendix describes in detail  a fast method for 
computing the dot  p roduc t  of magnetic lead fields in a 
spherically symmetr ic  conduc tor  earlier outlined by De 
Munck et al. (DE MUNCK et al., I991). The method is about  
four orders of magni tude  faster than s tandard  numerical 
integration techniques previously applied. 

The magnetic scalar potent ia l  outside a sphere containing 
the conducting source region can be expressed as a series 
expansion in spherical harmonics :  

~,.(/) = ~ ~ (r')-"- 'E<,. r~.m(O ', ~o') + <m r~ ', ~')3 
n =  1 m = 0  

(15) 
where 

Y,~,, = P,,,(cos 0) cos mqo and yo,, = P,,,(cos 0) sin mq) 

(16) 

are the even and odd terms, respectively. Here, P,,,(cos 0) 
denote the associated Legendre polynomials  of the first 
kind. 

The magnetic field outside the conductor  is obtained by 
taking the gradient  of eqn. 15, B = --~oV'gbm, where #o is 
the permeabil i ty of vacuum and V' denotes differentiation 
with respect to the pr imed co-ordinates.  

The coefficients of the series expansion (eqn. 15) for a 
dipole source in a spherically symmetric conductor  are 

e,o = rn I 1 

a,,, (n + 1)(2n + 1) [I Y, mll-2t_Q0 sin 0 (?q) 

-Qo~IY~,', ,~ (17) 

where r, 0 and ~o are the spherical  co-ordinates of the dipole 
location, Qo and Qo are  its two tangential  components,  and 
11 II,,,[I is the norm:  

U Y,,,IP 2 - 4~ (n + m)! (18) 
(2n + 1)(2 - 6o,,) (n - m)! 

Our  task is to compute  the integral 

( L1, Lz )  = .[ Ll(r)" L2(r)dv (19) 

where L~ and Lz are the lead fields of point  magnetometers  
at r t  and r 2. Their sensitivity directions are denoted by the 
unit vectors nt and n 2, respectively. 

F r o m  the definition of the lead field 

Lk(r) = [B~ r) " nk/Qo]eo + [B~~ r). nk/Q~]e ~ (20) 

where Bq(rk, r) denotes the magnet ic  field at r k due to a 
dipole Q = Qqeq at r. 

We can now express eqn. 19 in terms of the scalar 
potential:  

(i. 

(L , ,  L2) = It8 J (n~ "VO(n 2 �9 V2)Eq~~ r)O~ r) 

+ 0~(r , ,  r)O~(r:, r)]dv (2 I) 

Medical & Biological Engineering & Computing January 1994 41 



where V k denotes differentiation with respect to r k and 
Oq,,(rk, r) is the scalar potential at rk, obtained by setting 
G =  1. 

We now exchange the order of integration and differen- 
tiation, so that 

<L,, L2> = #~(nl ' V,)(n2" V2)H"(r,, r2) (22) 

where 

= j [q%.(~1, ~)q~(r~, r) I-Im(r. r2) 0 0 

+ qS~(rl, r)q~(r2, r)]f(r)dv (23) 

and f (r)  is a radial weighting function. When integrating 
uniformly over a sphere, we take f ( r ) =  1 for r < %, 
whereas, for a spherical shell, f(r)  = 6(r - %), where 6(r) is 
the Dirac delta function. 

With eqns. 15 and 17, eqn. 23 becomes 

ITm(rt, r2) = ~ t r [ " - t r2 'C -1  ? f(r)r ~+w+z dr 
nn'==' k do 

I it K,.ll _ 2it y.,,~,l/_ 2 
x ,,,,~' (n + 1)(2n + 1)(n' + 1)(2n' + 1) 

x Y~.,.(O. ~" q~ ~1) 

f)f: ]} x I.,.., m, sin 0 dO dcp (24) 

where ~, c( = e, o and 

~, 1 0 c :c 
I..,..,,,. -- sin2 0 0qo Y,=,.,(O, qo) &P Y..,..(O, (p) 

+ ~ r~=(O, qo) ~ Y,,,.,,(O, tO) (25) 

The integration over qo yields 2rca==,a.,.,,/(2- 6o,.). The 
remaining integral over 0 can be evaluated using the identity 

msin2 0 P,m(COS 0)P,,,.(COS 0) 
- 1  

sin E 0P',,,(cos 0)P',,m(COS 0)~ sin 0 dO + 

2n(n + 1) (n + m)! 
= 6.., (26) 

2 n +  1 (n - -m) !  
Thus 

I)i; l.m.',.' sin 0 dO de  = O..,5,~m,n(n + 1)ll Y,,,.H 2 (27) 

and 

l-I"(rl' rz) = ~ ~ (n + 1)(2n + 1) ( r i r2) -" - I  

x f ]  f (r )r  Z"+z dr 2 (2 - 60,,) 
(n m )  I. 

m (n + rn)! 

x [Y~.,.(Ot, (01)yem(02, q92) 

+ Y~ (Pl)Y~ q)2)]} (28) 

Finally, using the addition theorem for spherical harmonics 
on the second line of eqn. 28, we arrive at 

1 ~ I ~) n l-I"(rl '  r2) = ~ .  ,.=0 (rlr ,.+ 1 (n + 1)(2n + 1) 

x P.(cos .,) fo~ rZ"+Zf(r)dr] (29) 

where 

cosy = cos 01 cos 02 + sin 0 t sin 02 cos(q0, - r 

= rl "rz/rlr2 (30) 

If the integration goes over one spherical shell only, f i r)  = 
6(r - to), and we obtain 

1 ~ # . + l  n 
l"Im(r'' r2) = 4= .=i  (n + l)(2n + i) P.(cos ?) (31) 

with/3 = r2/rlr2 . 
To find the lead-field products,  we will still have to 

differentiate eqn. 31 according to eqn. 22 and multiply with 
#2. With r k = rk(ckl G + G2ey + Ck3e.), we obtain 

a21-im 4 
H~ ~ - Z qv52v (32) 

~Clj~C2k p = l  

where 

ql  ~ CtjC2k 

"~1 = ~ l ' / ( /q~ 1)) /3n+lPn(CO S )') 
.=1 2 n + l  

q2 = 2CuC2k COS )' - -  CUClk --  C2kC2j 

~, n /3. + 1p,.(cos ,,,) 
'Y~2 = 2 n +  1 n= l  

q3 = q2 + 6aa -- CuCak COS y (33) 

fl" P',(cos 7) 
n 

523 = + 1 
.= ,  (n + 1)i}.  + 1) 

q4 = (c2j -- Clj  c o s  ?)(Clk - -  C2k COS 7) 

n /3" + ~ P;~(cos 7) 524 = 
.=,  tn + 1)(2. + 1) 

The primes denote the derivatives of the Legendre poly- 
nomials with respect to the argument  cos 7. The lead-field 
product can be now combined from the partial derivatives:, 

#oa 3 
<L I, L2> = ~ nun2kI-lj~ (34) 

rtr2 j.k=l 

where we have used nk = (nk~ex -I- haze v + nkae=) as before. 
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