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Abstract. In some classification problems it may be important to impose con- 
straints on the set of allowable solutions. In particular, in regional taxonomy, urban 
and regional studies often try to segment a set of territorial data in homogenous 
groups with respect to a set of socio-economic variables taking into account, at the 
same time, contiguous neighbourhoods. The objects in a class are thus required not 
only to be similar to one another but also to be part of a spatially contiguous set. 
The rationale behind this is that if a spatially varying phenomenon influences the 
objects, as could occur in the case of geographical units, and this spatial information 
were ignored in constructing the classes then it would be less likely to be detected. 
In this paper a constrained version of the k-means clustering method (MacQueen, 
1967; Ball and Hall, 1967) and a new algorithm for devising such a procedure are 
proposed; the latter is based on the efficient algorithm proposed by Hartigan and 
Wong (1979). This algorithm has proved its usefulness in zoning two large regions 
in Italy (Calabria and Puglia). 

Key words: k-means clustering, constrained optimisation, contiguity matrix, spa- 
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1. Introduction 

In certain classification problems it may be important to impose constraints on the 
set of allowable solutions. For example, restrictions can be placed on the properties 
of classes in a partition (number of groups, maximum number of members in a 
cluster, shape of the clusters) or on the topology of a tree diagram specifying a 
hierarchical classification. The reasons for imposing such additional conditions on 
a classification depend on the application and include, for example, the need to 
match a sales area to resource constraints in market segmentation (DeSarbo and 
Mahajan, 1984) or to obtain enumeration districts for administrative or electoral 
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purposes (Mills, 1967; Openshaw, 1977; Taylor, 1973). Besides these external rea- 
sons, one might want to constrain the classification in order to test a specific theory 
or hypothesis (e.g. De Soete et al., 1984). 

In the analysis of spatially located data, constrained classifications are usually 
obtained by using relational constraints, that is symmetric and reflexive relations 
in addition to proximities between objects. Depending on the application relational 
constraints may be defined in different ways; for example, in image processing 
where the image consists of pixels characterised by different grey-level intensi- 
ties, the eight neighbouring pixels (west, south-west, south, etc.) may define the 
contiguity relationships for any given pixel, Another example comes from soil sci- 
ence: scientists study the properties of soil profiles at many different sites aiming, 
for convenience of soil management, to create parcels of land with similar soil 
properties (Webster, 1977). The terrain may be subdivided into square parcels and 
the neighbours of a parcel may be defined as its eight adjacent parcels. Lebart 
(1978), Lechevallier (1980), Batagelj (1984), Ferligoj and Batage|j (1982, 1983, 
1992, 1998, 2000) among others, deal with clustering problems with relational 
constraints. 

In regional taxonomy, urban and regional studies often try to divide (regionalize 
or zone) a set of territorial data (administrative units, regions, countries, etc.) into 
homogenous groups with respect to a set of socio-economic variables, while taking 
into account contiguous relationships. The rationale behind this is that if a spatially 
varying phenomenon influences the objects and the spatial information were ignored 
in constructing the classes then it would be less likely to be detected (Monestiez, 
1977; Legendre, 1987; Gordon, 1996). 

In the case of territorial objects, the most common and easiest way to express the 
neighbour relationships is by a binary matrix, with a contiguity value c~j E {0, 1} 
defined for each pair of objects. The specification of a contiguity matrix on a set 
of geographic objects is not a simple matter owing to surface irregularities such 
as rivers or lakes that make definition difficult. This problem has been directly ad- 
dressed by some authors (Gordon, 1973, 1999) and usually areas sharing a common 
boundary are regarded as contiguous. 

A number of approaches for overcoming contiguity constrained clustering pro- 
blems has been proposed; extensive reviews are provided by Murtagh (1985), Zani 
(1993) and, more recently, by Gordon (1996). One approach has been to adopt 
traditional procedures which have proved their worth in standard problems and 
to enforce geographic connectivity by incorporating contiguity constraints, e.g. 
the use of agglomerative hierarchical algorithms (e.g. Lebart, 1978; Lefkovitch, 
1980; Gordon, 1973, 1980, 1987; Legendre, 1987) and local optimisation clustering 
procedures (Ferligoj and Batagelj, 1982, 1983). 

However, as far as we know, despite the number of constrained clustering algo- 
rithms proposed, there have been a few practical applications of such procedures 
in real situations. 

In this paper a constrained version of the k-means (Mac Queen, 1967; Ball and 
Hall, 1967) clustering method and a new algorithm for devising such a procedure 
are proposed; the latter is based on the efficient algorithm proposed by Hartigan 
and Wong (1979). It has proved its usefulness in the zoning of two large regions in 



A constrained k-means clustering algorithm for classifying spatial units 239 

the south of Italy (Calabria and Puglia). The aim was to detect sub areas in the two 
Italian regions in order to target development policies more efficiently. 

The paper is organised as follows. In Section 2, the model on which the new 
algorithm is based is formally introduced; next, in Section 3, the algorithm devel- 
oped for the model is described and, finally, case study applications are presented 
in Section 4. 

2. The model 

The k-means clustering problem can be posed in the following terms (De Soete 
and Carroll, 1994). Let X = [xik] be the matrix containing measurements of K 
variables (k = 1 , . . . ,  K)  on N individuals or objects (i :- 1 , . . .  , N) .  If  the 
aim of the analysis of the data matrix X entails clustering the N objects into L 
(L < N)  homogenous (non overlapping) clusters starting from X, let M =  [mlk] 
be the L • K matrix specifying the centroids of the L clusters and let U be an 
N • L binary indicator matrix designating the cluster membership for each object 

1 if object/ belongs to cluster l 
ua = 0 otherwise 

The k-means clustering requires that each object be assigned to one and only one 
L 

cluster, that is ~ uit = 1 holds for i = 1 , . . .  , N.  The matrices M and U are 
I= l  

determined so that the sum of the squared Euclidean distances between the object 
and the centroids of the clusters to which they belong is minimal; that is M and U 
are determined so that the least-squares loss function 

F(M,U) = IIX - UM[I  2 = t r ( X  - UM) ' (X - UM) 
N K L N L K 

i=1 k= l  /=1 i=1 /=1 k = l  

is minimal. 
In a contiguity-constrained formulation of this problem, it is required that the 

objects in a class are not only similar to one another but also that the classes comprise 
a spatially contiguous set of objects.l The contiguity relationship between spatial 
objects may be defined in different ways depending on the application (cfr. Murtagh, 
1985); geographical contiguity is a special case of contiguity constraint and rests 
on the physical closeness of bordering geographical areas. 

However, the above is not the only possible definition of contiguity for spa- 
tial objects. For example, in spatial statistics where data are frequently organized 
as contiguous quadrats the following definitions of contiguity can be considered 
(Upton and Fingleton, 1985): a) the rook's case where quadrats abut only if they 

J Actually, the main idea of a local optimisation procedure for clustering with relational constraints 
has been discussed by Ferligoj and Batagely (1982). In their procedure the local optimisation neigh- 
bourhood of clustering is based on the transformation which transfers an object from one cluster to 
another one. 
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have touching edges; b) when interest is focused on diagonal spatial trends a more 
relevant definition of contiguity is the bishop's case, where quadrats abut if they 
have touching corners; c) another composite definition of contiguity is the queen's 
case where quadrats abut if they have either touching corners or touching edges. 

Neighbourhood information based on distance, e.g. Euclidean, may be also 
specified; for example, any site which is within a specified distance value p of the 
i TM site can be considered a neighbour of this site. Other definitions may be based 
on certain probabilistic rules; for example, site k can be defined as neighbour of 
site i if the conditional distribution of the spatial process Z(i), given all other site 
values, depends functionally on z(k), for k ~ i (cfr. Cressie, 1993, pp. 414-416). 

Whatever the contiguity definition one considers, let C be an N x N binary 
matrix that expresses the contiguity relationship among the objects to be clustered, 
with a contiguity value 

1 if object i is contiguous to object j 
cij --- 0 otherwise 

defined for each pair of objects. 
In a constrained partitioning object i belonging to cluster l is required to be 

contiguous to, at least, one of the other contiguous objects in the same class. That 
is, we require that each object i belongs to a "contiguous" cluster. The idea of 
contiguous clusters can be conveniently handled by borrowing some basic principles 
from graph theory, namely those of connectivity and reachability (see Christofides, 
1975, Ch. 2). 

Various authors investigated the relationships between graph theory and the 
clustering of a set of objects (see for example Hubert, 1974 for a review), while 
others approached their classification problems directly through graph-theoretic 
models (e.g. recently Maravalle et al., 1997, on relational constraints). 

Actually, matrix C can be considered as an adjacency matrix, say A, of a graph 
with all its diagonal elements set to 1 (assuming that each object is contiguous to 
itself), that is C = I + A, where I is the N x N identity matrix. Since the adjacency 
matrix defines the structure of the graph completely, contiguity matrix C induces a 
(non directed) graph G(N,C) where the set of the objects {1, 2 , . . .  , N} is the set 
of the vertex or knots of the graph, while c~j = I means that there is an edge or link 
between vertex i and vertex j .  For graph-theory terminology we refer to Wilson 
(1996) or Harary (1969), while some basic terms are illustrated in Fig. 1. 

Let Cl be the contiguity sub-matrix of the matrix C for the lth cluster, for 
the above contiguity constraint to be satisfied, the sub-graph G(N(/),Ct) induced 
by Ct needs to be connected. That is, every pair of vertices in the graph must be 
joined by a path. Another way to define the connectivity of a graph is in matrix 
terms, if there is no labeling of the knots of the graph such that its adjacency matrix 
can be reduced to a block diagonal matrix (see Harary, 1969 pp. 150-159). The 
latter condition could be used to ascertain the contiguity of the clusters. However, 
a computationally simpler and more direct way to establish the connectivity of the 
clusters of a classification which also allow us to render the contiguity constraint 
in formal terms is based on the cardinality of a path, that is the number of edges 
appearing in the path. 
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Fig. L A graph, its contiguity matrix and a reachable set 

For a given object i in a cluster l consider the following sets 

Fl(i)={j E 1 : cij =1;  j # i}; 
Fl(Fl(i))  = F~(i)  = {k E l :  cjk = 1;Vj E Fl(i); k C j } ;  

F~(i)  = {r E l :  c,~ = 1;Vs E Ft(P-1)(i) ;r  ~ j} .  

That is the sets of  objects which are reachable from i along a path of  cardinality 
1, 2, . . .  , p respectively, where p is bounded by the number of  vertices in the graph 
minus one, N ( l )  - 1. 

Let us assume that F~ = {i} and let ISI denote the number of  elements in 
S, that is the cardinality of the set S; if the cluster 1 is connected 

P 

I U C( )I = N(I) 
~ '=0  

P 
with p <_ N(1) - 1. That is, reachable set R( i )  = U F~( i )  is obtained by 

-3,=0 
performing the union operations from left to right until the current total set is no 
longer increased in size by the next union. 2 When this occurs any subsequent union 
will not add new members to the set. Thus if i is a member of  a contiguous cluster 1 

2 Note that there are some slight differences between our definition of a reachable set and the one 
given by Christofides (1975) mainly due to the use of the contiguity matrix instead of the adjacency 
one.  
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then all the objects in the cluster must be reachable from i along (at least) one path, 
that is R(i) must be equal to the size of the cluster. An example of a reachable set 
is given for the graph in Fig. 1. 

Let us indicate ~)  the Boolean arithmetic sum (i.e. 0+0 = 0, 0+ 1 = 1 + 1 = 1), 
the above contiguity constraint can be expressed in an equivalent form involving 
the columns of the matrices C and U. 

Let ut be the column vector of U so that uil = 1, denoting the cluster 1 to which 
object i belongs, and let e~ be the column vector of C, the contiguity-constrained 
k-means problem can be posed in the following terms: 

N L K 

minimize F(M, U) = E E uil E ( x , k  - mtk)2 (1) 
i = l  / = 1  k = l  

with constraints 

jERt (i) 
sub L i = 1 , . . .  , N; l = 1 , . . .  , L (2) 

E ?Zil ~ 1 
/ = 1  
u~ e {0,1} 

The k-means clustering problem then entails determining U and M so that the loss 
function (1) subject to constraints (2) is minimized. 

The minimization procedure for solving such a constrained optimisation prob- 
lem involves alternating between minimizing the loss function F(M,U) with respect 
to U subject to constraints (2) given the current estimates of the cluster centroids 
M, and minimizing F(M,U) with respect to M given the current cluster assignment 
U. 

In other words, the minimization of F(M,U) can be achieved by means of an 
alternating procedure that we can roughly summarize in the following two steps: 

a) given current estimates of the cluster centroids M updating U through new 
estimate cluster assignment l~l so that: 

E - mt ) 2 < E (x k - 2 
k = l  k = l  

~2il= l i f  ( ) u ~  jCR~(i)~ ej = u~ul l ' = l , . . . , L ; l ' r  

0 otherwise 

b) given the new cluster lSl assignment, updating M by computing new cluster 
N N 

= ~((- i~1 ^ ' where N(1) = ~ s is the number of objects in centroids talk l) UzlXzk, 
i=l 

cluster l until, step by step, no more changes occur in U and hence in M. 
In the next section we present an algorithm to implement this basic two step 

procedure. 
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Actually, there are a number of versions of the (standard) k-means algorithm. 
They essentially differ with respect to (i) how the clusters are initiated, (ii) how 
objects are allocated to clusters (that is the movement rule), (iii) how some or all of 
the already clustered objects are reallocated to other clusters (that is the updating 
rule). The different rules have an effect on calculation time, storage requirements, 
convergence to at least a local optimum, expected difference between the local 
optimum and the global optimum. They are also usually employed in evaluating 
and comparing the different algorithms (see Seber, 1984, Hartigan, 1975 and Sp~ith, 
1980 for a discussion on the k-means algorithms). 

The algorithm developed for the model outlined in the previous section is based 
on the algorithm KMNS proposed by Hartigan and Wong ( 1979, Algorithm AS 136, 
pp. 100-108) for performing a standard k-means cluster analysis. 

The KMNS algorithm aims at finding a k-partition with a local optimal within- 
cluster sum of squares which cannot be reduced by moving points from one cluster 
to the other. 

One attractive feature of this algorithm is the reduced number of optimal transfer 
iterations considerably reducing calculation time through the use of a "live set" of 
clusters, an optimal transfer stage (OPTRA) and a quick-transfer stage (QTRAN). 
Clusters involved in a transfer at a given step are, in fact, memorised (in the "live 
set") and only these updated clusters enter the calculations at the subsequent step. 
The iterative relocation procedure stops when the live set is empty. Moreover, at 
the stage where each point is examined in turn to see if it should be reassigned to 
a different cluster, the algorithm searches for two cluster centres, the closest one 
and the second closest one. In fact, the use of the closest centre alone to check 
for possible reallocation of a point does not guarantee an optimal solution since 
a cluster centre other than the closest (in a Euclidean sense) one, may result in a 
lower value of the objective function (cfr. Hartigan and Wong, 1979). 

The constrained k-means algorithm proposed in this paper, uses a three stage 
procedure: a constrained optimal assignment (COPASS) stage, a constrained opti- 
mal-transfer (COPTRA) stage and a constrained quick-transfer (CQTRAN) stage. 
The latter two stages being obtained by modifying the OPTRA and QTRAN stages 
of KMNS algorithm by allowing for contiguity constraints. 

The general procedure for solving the constrained problem outlined in the pre- 
vious section involves finding a partition by moving points from one cluster to 
another in such a way that in transferring a point the following conditions are met: 

i) with respect to the cluster the point has to be reassigned to: object is contigu- 
ous to at least one of the other objects in the target cluster and its transfer results 
in a smaller value of the objective function. Given current cluster assignment U, if 
d(i, l) denote the Euclidean distance between the point i and the centroid of cluster 
t, this is attained by considering object i for transfer from cluster l to cluster I r if 

{N(l ' ) /[N(l ' )  + 1]} d2(i, l') < {N(1)/[(N(1) - 1])} d2(i, l) 
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and 

N 

~-~ CijUjl, ~ 1 
j = l  

that is if i is contiguous to, at least, one other object belonging to cluster 1 ~. 

ii) with respect to the cluster the point has to be transferred from: the transfer 
of point i does not cause the cluster 1 to which it belongs to be divided into more 
than one contiguous cluster, that is if uit =0  we should have 

u ~ (  R~\ jE  ,(i) Cj) = U~Uz = N(l) - l Vk E1 

Similar conditions on the reassignment of the points are given by Ferligoj and 
Batagelj (1982). 

Given a matrix X of N points in K dimensions, a matrix S of L initial cluster 
seeds in K dimensions and an N • N contiguity matrix C, define IC 1 and IC2 
two N-dimensional column vectors representing cluster membership variables. 
They denote for each point i, the closest and the second closest contiguous cluster 
centres respectively. Further, we assume that IC2(i)=0 means that the second closest 
contiguous cluster does not exist. The general structure of the constrained k-means 
algorithm CKMNS is shown in Table 1. 

To start the algorithm an initial estimate of M is required; in Step Oa and Step 
Ob initial estimates of cluster centres are formed starting from L seeds, randomly 
chosen or selected on the basis of some a priori information about the objects to 
be classified. 

Note that the CKMNS algorithm differs from the KMNS algorithm in that some 
objects at a particular step can not have a second closest contiguous cluster. This is 
the case, for example, with those objects that, in the initial cluster formation process 
of aggregation to the starting nucleus L, fall "inside" the clusters: at the COPASS 
Step i it can happen that they belong to just one cluster. The subsequent allocation- 
reallocation iterative procedure of the algorithm avoids objects being forced to 
stay in the starting cluster. However, in the case of geographical contiguity, some 
spatial units, for example, those on the border of the area to be segmented, can be 
neighbours to just one cluster. A control structure for such units has been considered 
in the algorithm. 

The check before the transfer of objects in Step 3a is actually performed in 
two separate steps 3a. 1 and 3a.2 to save calculation time while taking into account 
complex cluster shapes. In fact, in our experience in real and simulated applica- 
tions, during the formation process clusters are in general more likely to grow into 
spherical or chain like structures. In the latter case problems can arise in the relo- 
cation process if the candidates for transfer represent the joining ring points of the 
chains. Step 3a.1 on the contiguous points allow us to check this kind of situation. 
At the same time, owing to the complexities of the links between the units in an 
area, more complicated structures, such as one cluster encapsulated inside another, 
can develop (this was the case, for example, with one of the applications considered 
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Step 0 Initialisation 

Step 0a Given L seeds aggregate their contiguous points i (i 5~ l; l = 1 , . . .  , L; i ---- 
1 , . . .  , N) .  If object i is contiguous to more than one seed aggregate to the closest (in a 
Euclidean sense) one. 

Step 0b Determine L centres to start the algorithm: compute the L initial centres to be the 
averages of the points added to the L seeds. 

Step 1 The constrained optimal-assignment stage (COPASS):  objects are progressively assigned 
to the L clusters. For each object i(i = 1, ..., N) ,  find its closest and, if it exists, the second closest 
contiguous cluster centre, ICI(i) and IC2(i) respectively. Assign point i to cluster ICI(i). At each 
assignment cluster centres, IC1 (i) and IC2(i) are updated. Repeat until all objects are allocated. 

Step 2 All clusters belong to the live set. 

Step 3 Consider each of those points for which there is a second closest contiguous cluster in 
turn. Let point i be in cluster/1.  If cluster l l  is updated in the last constrained quick-transfer 
(CQTRAN)  step, then it belongs to the live set through this stage. Otherwise, at each step, it is 
not in the live set if it has not been updated in the last constrained optimal transfer step. 

Step 3a Before considering object i for transfer check if it can moved from its starting cluster 
l l .  

Step 3a.1 Consider the subset of cluster/1 of  the objects contiguous to the candidate 
moving point i. Check if its relocation causes this subset to be divided into two or more 
contiguous subsets. If this is not the case, point i can be considered for transfer at this 
stage and go to Step 3b. Otherwise do Step 3a.2. 
Step 3a.2 This step is the same as Step 3a.1 except that the check is extended to consider 
all the objects belonging to 11. If at this step transfer of  point i does not cause cluster 11 to 
be divided into more than one contiguous clusters it can be considered for the subsequent 
relocation procedure. 

Step 3b The constrained optimal-transfer stage (COPTRA): if l l  is in the live set, do Step 
3b.1; otherwise, do Step 3b.2. 

Step3b.1 Computetheminimumofquanti ty R2 = N(l) xd2(i, l)/(N(1)+l),overall 
contiguous clusters l (1 7~ l 1, l = 1, 2 , . . .  , L). Let 12 be the contiguous cluster with the 
smallest R2. If this value is greater than or equal to R1 = N ( l l )  • d 2 (i, l l ) / ( N ( l l ) - l )  
no reallocation is necessary and t2 is the new IC2(i)*. Otherwise, point i is allocated to 
cluster 12 and l l  is the new IC2(/). Update cluster centres to be the mean of the points 
assigned to them, if reallocation has taken place. The two clusters that are involved in 
the transfer of  point i at this particular step are now in the live set. 

Step 3b.2 The same as Step 3b. 1, except that here the minimum R2 is computed only 
over clusters in the live set. 

Step 4 If the live set is empty then stop. Otherwise go to Step 5. 

Step 5 Constrained quick-transfer (CQTRAN): each point i for which l l  = ICI(i) and 12 = 
IC2(~) have changed in Step 3 is considered in turn and the following values are computed: 

R1 = N(I1) • d2(i, l l ) / (N(l )  - 1) and R2 = N(12) • d2(i,12)/(N(12) + 1) 

If R1 is less than R2, point i remains in cluster l l .  Otherwise, ICI(i) and IC2(i) are switched and 
the centers of clusters l l  and 12 are updated. The clusters involved in a transfer at this step are in 
the live set. 

Step 6 If no transfer has taken place in the Step 5 go to Step 1 to optimal assign (after one pass 
thorough the data set) to the (new) cluster centers those objects for which in the last step has been 
IC2(i) = 0, Otherwise go to Step 5. 

* As in Hartigan's KMNS algorithm, R1 is remembered and will remain the same for object i until 
cluster 11 is updated. 
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in the following section). In this instance, if a candidate for transfer in Step 3a.1, 
cannot be moved from its starting cluster because it causes the cluster to which it 
belongs to divide, in Step 3a.2 we need to check if it is lying on an outer cluster of 
an encapsulated structure. In this case, in fact, its transfer will not cause the cluster 
to which it belongs to be divided into more than one contiguous clusters. 

As in Hartigan's algorithm the constrained optimal-transfer Step 3b has been 
split into two separate steps 3b. 1 and 3b.2 through the use of a "live set" of clusters. 
That is, if cluster 1 (l = 1 , . . .  , L) has been updated in the last constrained quick- 
transfer stage, then it belongs to the live set throughout this stage and step 3b. 1 is 
considered. Instead, cluster l is not in the live set, if it has not been updated in the 
last constrained optimal transfer step; in this case step 3b.2 is considered. 

Finally note that when in Step 6 the algorithm goes back to Step 1 the objects 
which have not been involved in the last relocation stage because they were contigu- 
ous to just one cluster, may change cluster and/or be contiguous to more than one 
contiguous cluster after this step. They may now enter the subsequent relocation 
stage. 

The algorithm described has been written in SAS-IML language. It comprises 
three main modules, COPASS, COPTRA and CQTRAN, and two sub-modules CAT 
and CER to check if an object can be moved from the cluster it belongs to. 

As is usual for all k-means clustering, CKMNS algorithm produces a clustering 
which can be locally optimal only. Subject to contiguity constraints, the within 
cluster sum of squares may not be decreased by transferring an object from one 
cluster to another; however, different partitions may have the same or smaller within 
cluster sum of squares. It is advisable in that case to use several initial partitions 
and to use those final partitions with minimal value of the objective function. 

4. Case-study 

POM (Programma Operativo Multiregionale) is an acronym for a series of policies 
by which the Italian government financially supports research projects investigat- 
ing less developed areas of the peninsula where defining regional development 
programmes is a priority, especially with respect to the traditional agricultural sec- 
tor. Since regional development is related to a series of spatially varying attributes 
and since aid policies can be more efficient if they are tailored for the specific needs 
of an area, the aim of the research project was to segment basic territorial units 
to establish regional sub areas, which were both homogeneous with respect to the 
selected attributes and, in addition, spatially connected, so that planning would be 
more efficient, 

The research studied two large regions in the south of Italy, in particular Puglia 
and Calabria; the algorithm discussed in the previous section was applied to zon- 
ing their administrative units (basic spatial units), 256 and 409 respectively. Each 
administrative unit (comune) in the two regions is described by a descriptor vector 
comprising eighteen socio-economic indicators: 3 

3 S•urces•fthedata:•STAT:censiment•generaledellaP•p•lazi•needelleAbitazi•ni•99•;1STAT: 
censimento generale dell'lndustria e dei servizi 1991; ISTAT: Censimento Generale dell'Agricoltura 
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earth surface for agriculture use per capita (SAU); 
SAU for farms larger than 50 hectares per capita; 
number of farms; 
population density; 
natural population turnover rate (SALDO); 
population not of working age; 
population enrolled in higher education; 
working population; 
population working in agriculture; 
population working in industry; 
population working in public services; 
working women; 
number of employees in firms; 
electricity consumption per capita, 
number of powerful cars (greater than 2000 c.c.) per capita; 
number of houses built after 1981 per capita; 
per capita income; 
IRPEF tax (local rates). 

In order to eliminate the different average dimension and the different kinds of 
measurements all the variables were divided by their respective mean, while the 
two geographical contiguity matrices were defined on the assumption that admin- 
istrative units sharing a common boundary were contiguous. 

Table 2 presents the results for the Puglia region of the criterion function F(M, 
U) 4 for ordinary KMNS and constrained CKMNS algorithms in 10 groups for 20 
initial random configurations and for three configurations obtained by consider- 
ing the ten administrative units furthest apart with respect to the indicators SAU, 
SALDO and IRPEE The values of the criterion function for the initial configura- 
tions (after the OPASS step in the CKMNS case) are termed F0 (M, U), while the 
values for corresponding (local) minimum are denoted F10(M, U). 

Note how the decrease of the criterion is somewhat larger in the case of the 
ordinary clustering KMNS than in the constrained case. This could be due to the 
fact that in the constrained case the initial step of assignment of the objects to the 
L initial centres is optimised; in fact in the COPASS step each time an object is 
assigned to a cluster, the cluster centroid is updated. The evident divergence between 
the values of the criterion in the two cases proves the effectiveness of the C K M N S  
algorithm in discovering spatially connected groups. In fact, given the same initial 
configurations, in the constrained situation objects are not free to associate on the 
basis of the minimum of their distances from the cluster centroids only, but they 
must also satisfy various contiguity constraints. On the other hand, from Table 2 
we can see that the constrained situation exhibits more variability in the values 

1991; ANCITEL-ENEL 1991; ANCITEL-ACI 1991; ANCITEL-Ministero delle Finanze 1991. The se- 
lection of the 18 attributes for the analysis was highly influenced by the data availability as well as by 
the knowledge of the socio-economic structure of the two regions. 

4 The criterion function has been normalized to express the goodness of  fit of the final solution. For 
variables column-centered, the normalized version of the criterion function in Section 2 is F*  (M, U) 
= F(M,  U)/11X II 2 (De Soete and Carrol, 1994). 
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Table 2. Criterion function for 20 different initial configurations (Puglia) 

Initial Ordinary KMNS Constrained CKMNS 

configurations 

Fo(M,U) t"10(M,U) F21(M,U) Fo(M,U) Flo(M,U) F21(M,U) 

1 0,601 0,370 0,229 0,781 0,594 0,448 

2 0,577 0,391 0,234 0,775 0,629 0,406 

3 0,553 0,374 0,230 0,772 0,592 0,430 

4 0,620 0,367 0,227 0,770 0,571 0,413 

5 0,547 0,378 0,233 0,753 0,622 0,478 

6 0,493 0,392 0,229 0,612 0,572 0,422 

7 0,529 0,358 0,234 0,648 0,619 0,426 

8 0,614 0,378 0,229 0,764 0,635 0,425 

9 0,638 0,361 0,231 0,806 0,630 0,441 

10 0,619 0,361 0,233 0,798 0,631 0,415 

11 0,584 0,371 0,230 0,622 0,564 0,414 

12 0,609 0,363 0,234 0,788 0,646 0,420 

13 0,580 0,345 0,230 0,646 0,599 0,416 

14 0,629 0,361 0,224 0,795 0,639 0.491 

15 0,551 0,355 0,229 0,783 0,649 0,423 

16 0,536 0,361 0,232 0,749 0,573 0,429 

17 0,531 0,365 0,251 0,622 0,564 0,419 

18 0,574 0,357 0,231 0,793 0,642 0,425 

19 0,651 0,371 0,241 0,798 0,634 0,422 

20 0,549 0,379 0,230 0,646 0,599 0,416 

SAU 0,586 0,357 0,232 0,769 0,627 0,405 

SALDO 0,618 0,345 0,237 0,770 0,563 0,421 

IRPEF 0,571 0,403 0,229 0,652 0,578 0,498 

of  F lo (M,  U) compared to the ordinary case. One reason for this is that, as one 
would expect, the C K M N S  algorithm is likely to be more dependent on the starting 
configuration than the ordinary algorithm. Nevertheless, there is agreement among 
the values of  the criterion function when the number of  clusters increases, as can  
be observed from Table 2 where we also present values F21 (M, U) of  the criterion 
function for an "optimal" clustering in 21 groups obtained starting from the 20 
corresponding initial configurations in ten clusters. Figure 2(a) plots the minimum 
value of  criterion function in Table 2 for any given number of  clusters, from ten to 
thirty. 

In fact to determine the unknown number of  clusters, we increased their number 
in a sequential way by picking the group with the greatest error (variance within) 
at the end of  the procedure ( K M N S  and C K M N S )  for a given starting number 
of  clusters L (L = 10 for these applications) and by adding the object with the 
largest distance from the corresponding centroid as the new seed for a new run of  
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Fig. 2. Criterion function (a) and CH index (b) against the number of clusters (Puglia) 

the algorithm with a number of  clusters equal to L + 1.5 When a selected seed was 
already included in previous stages, it was (temporary) deleted and the variances 
within clusters were recomputed; again the object with the largest distance from 
the centroid is considered as a new seed for a new run of  the algorithm. In the 
applications considered in this paper we started from ten clusters and stopped to 
"add seeds" according to the outlined above procedure when we reached thirty 

5 There are, in fact, several suggestions (Ball and Hall, 1967; MacQueen, 1967) which warn against 
rigid adherence to the assumed number of clusters, but to split up into two clusters the group with the 
greatest value of the sum of squares after each "step". 
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clusters. For economic reasons, the two extremes of ten and thirty clusters were 
chosen as the smallest and the largest number of classes to segment the two regions. 

One significant problem that need to be addressed was the determination of the 
proper number of clusters in the final solution. Apart from the relative value of the 
objective function, there is no strong evidence about this number (i.e. an elbow 
point) in the "scree plot" in Fig. 2a owing to the smooth monotone tendency of the 
curve. 

Numerous strategies have been proposed for selecting the number of clusters 
in the "standard" clustering procedures (and for hierarchical methods in particu- 
lar). We refer to Vicari (1990) and Gordon (1996a) for a review. However, few 
constrained classification studies have addressed this problem. Amongst the few 
formal tests are some stopping rules proposed in the case of constrained agglom- 
erative methods (references are given by Gordon (1996)). Anyway, if no suitable 
"rule" for the situation at hand exists the number of clusters can be determined 
solely by the interpretability of the partitions (i.e. Gordon and Vichi, 2001). 

In our case we investigated the behaviour of the index proposed by Calinsky 
and Harabasz (1974) 

C H  = [ B / ( L  - 1 ) ] / [ W / ( N  - L)] 

where W and B denote the total within-cluster sum of squared distance (about 
the centroids), and the total between-cluster sum of squared distances respectively. 
In this index the same quantities as in the objective function and also the weights 
which take into account the different number of clusters (L) are involved. Thus 
it can provide guidance in the selection of the number of clusters. In fact, a value 
of C H  increasing monotonically with L suggests no cluster structure, whereas CH 

decreasing monotonically with L suggests a hierarchical structure. However C H  

rising to a maximum at L suggests the presence of L clusters (see Milligan and 
Cooper (1985) regarding the use of C H  in estimating the number of clusters). 

Figure 2b plots the values of the index for the corresponding partitions in Fig. 2a. 
The behaviour of the index suggests twelve as a suitable number of groups because 
in this partition it gets its maximum value. 

However, the economic need to have a more detailed segmentation for this re- 
gion together with information from previous economic research led us to consider 
the relative maximum points in Fig. 2b as candidate partitions as well. Tile relative 
value of objective function and the interpretability of the results indicated the clas- 
sification of twenty-one groups as the proper segmentation of the Puglia region. A 
map of this classification is shown in Fig. 4. 

The analysis of the composition of the clusters on the other hand confirmed 
the suitability of this choice. Actually, the classification in twenty-one groups is, 
roughly speaking, a "segmentation" of that partition in twelve clusters. In fact, 
the small groups are almost the same in size and composition for both partitions. 
For example, group 6 we will illustrate later, "looses" only two units passing from 
12 to 21 clusters, while the group surrounding the city of Taranto (group 12 on 
the map in Fig. 4), composed of nine administrative units, stays exactly the same. 
Further, in the classification of 21 clusters some groups are clearly originated from 
the division of some big groups in the classification of 12 clusters; for example, the 
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Initial Ordinary KMNS Constrained CKMNS 

configurations 

Fo(M,U) F18(M,U) F3o(M,U) Fo(M,U) F18(M,U) F3o(M,U) 
1 0,626 0,336 0,249 0,879 0,783 0,697 
2 0,499 0,331 0,259 0,852 0,730 0,645 
3 0,739 0,330 0,259 0,871 0,720 0,642 
4 0,667 0,348 0,253 0,877 0,774 0,686 

5 0,597 0,354 0,255 0,857 0,695 0,626 

6 0,651 0,324 0,258 0,889 0,780 0,660 
7 0,761 0,336 0,258 0,844 0,717 0,657 

8 0,657 0,330 0,258 0,880 0,786 0,613 
9 0,582 0,338 0,254 0,897 0,734 0,621 
10 0,612 0,338 0,258 0,803 0,723 0,643 

very large cluster comprising the city of Bari and its surrounding district gave rise 
to approximately three clusters, one of which is a singleton in the classification of 
21 clusters (the three clusters are the groups 2, 10 and 17 on the map). 

The segmentation in twenty-one groups has allowed for a detailed territorial 
analysis which enabled us to identify sub-areas within the region with similar 
developmental contexts, which are also geographically connected. The latter aspect, 
not necessarily emerging in an ordinary clustering, together with the knowledge 
of the group profiles, can facilitate aid development policies because they can be 
directed more effectively towards the specific socio-economic characteristics of the 
sub-areas. For example, cluster 6 in Fig. 4 emerged from the zoning comprising 
11 administrative units whose mountainous terrain forms the Gargano National 
Park. Also given the orographical features, this area shows (as emerged from the 
cluster profile interpretation) very little tendency towards industrial and agricultural 
activities but a very positive attitude towards tourism. Another compact sub-area 
emerging from the analysis is group 5 comprising 19 administrative units covering a 
flat area called Tavoliere di Puglia. Also in this case, the spatial characteristics of the 
area influence economic attitudes, which are mainly connected to the agriculture. 
Whereas a group which shows a very positive attitude towards the industrial activity 
is the city of Taranto with its surrounding district. 

Finally, observe that the partition selected as the optimal one is the partition in 
21 clusters from the starting configuration in ten clusters selected on the basis of 
the indicator SAU. 

Table 3 presents the results of the criterion function for ordinary and constrained 
algorithms for 10 random initial configurations and a number of clusters raising 
from ten to thirty for the Calabria region. Figure 3(a) and (b) plot the minimum 
value of criterion function in Table 3 for any given number of clusters and the 
corresponding values of the index C H  respectively. Also in this case, there was not 
any clear indication about the number of groups in the "scree plot", while the plot 
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Fig. 3. Criterion function (a) and CH index (b) against the number of clusters (Calabria) 

of the index CH clearly suggests a suitable candidate number. Figure 5 shows the 
"optimal" segmentation in eighteen sub-areas chosen as indicated by the maximum 
value of the index. Here too from the interpretation of this classification a strong link 
emerged between the segmentation and the territorial characteristics of the region. 
For example, from the resulting segmentation a cluster emerged of 32 administrative 
units covering approximately the fiat area called Piana of Sibari (group 2 on the 
map) and for which one dominant common characteristic is the "strong presence" 
of technologically advanced agricultural activities compared with the rest of the 
region. Another compact cluster is group 18 comprising 40 administrative units 
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Fig. 5. Segmentation of Calabria in 18 contiguous subareas 

most of which belonging to the mountainous area of the Aspromonte Park. Once 
again, the spatial characteristics of the area influence economic attitudes, which are 
mainly connected to traditional agricultural activity. 

For a deeper analysis of the composition of the classes and a detailed interpre- 
tation and discussion of the sub-area profiles of the segmentations illustrated in this 
paper we refer to Anania et al. (2001). 
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