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Abstract. Let C be a class of arbitrary real random elements and P an extended 
real valued function on C. Two definitions of coherence for P are compared. Both 
definitions reduce to the classical de Finetti's one when C includes bounded random 
elements only. One of the two definitions (called strong coherence) is investigated, 
and some criteria for checking it are provided. Moreover, conditions are given for 
the integral representation of a coherent P,  possibly with respect to a a-additive 
probability. Finally, the two definitions and the integral representation theorems are 
extended to the case where C is a class of random elements taking values in a given 
Banach space. 
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1 Introduction 

Nowadays, there is a well established theory of coherence for the prevision of real 
bounded random elements (r.e.'s). It was started by de Finetti in the decade 1930- 
1940, and developed in 1985 by Holzer [12] and Regazzini [14] in the conditional 
case. Instead, the case of real, not necessarily bounded, r.e.'s is not so much set- 
tied. In fact, in that case, the term "prevision" has different meanings according 
to different authors. The first definition, due to Berti, Regazzini and Rigo in 1994 
[1], retains more features of the bounded case than the second, due to Crisma, Gi- 
gante and Millossovich in 1997 [5]. In its turn, the second definition is closer to de 
Finetti's ideas. Throughout, to avoid misunderstandings, a function P on a class 
C of real r.e.'s is said to be coherent (or a prevision) if it satisfies the definition in 
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[5], and strongly coherent (or a strong prevision) if  it meets the definition in [1]. 
We note by now that a strong prevision is also a prevision, and that both definitions 
reduce to the classical de Finetti's one if each element of  C is bounded. 

In this paper, the theory of strong previsions is resumed and some new results 
are given. Denoting by P a function on a class C of r.e.'s, two distinct situations 
are dealt with. Firstly, C is a class of  real, not necessarily bounded, r.e.'s and P is 
allowed to be extended real valued. Subsequently, C is a class of  r.e.'s taking values 
in a Banach space y and P : C --+ y .  Moreover, two problems are considered 
with particular attention. The first is the checking of strong coherence of a given 
P ,  and the second is the possible integral representation for P.  Checking strong 
coherence is, in general, a difficult task; hence, some criteria are provided. For 
example, checking strong coherence notably simplifies when C is a vector lattice 
including the constants. Representing a prevision P as an integral, with respect 
to (w.r.t.) some finitely additive probability, is always possible when C contains 
only real bounded r.e.'s. Instead, when C is a class of  arbitrary real r.e.'s, integral 
representation of P can fail even if P is a prevision or a strong prevision. Thus, 
various conditions for such a representation are given. In particular, we also give 
conditions for a a-additive integral representation. Precisely it is shown that, under 
strong assumptions on C, the only real valued, coherent function on C is the integral 
w.r.t, a a-additive probability. 

1.1 Motivations and preliminaries 

Let 12 be a non-empty set and P(12) its power set. Any real function X on 12 is 
called a random quantity (r.q.). The class of  all r.q.'s is denoted by ]~, and that of  
bounded r.q.'s by 125. Apart from the final Section 3, C always denotes a class of  
r.q.'s and P a function on C, possibly extended real valued. Moreover, throughout all 
the paper, a probability is meant as a finitely additive probability measure defined 
on some field of  subsets of  12. 

Let us consider first the classical case, where C c ])b, P is real valued on C, 
and one has to decide whether P is coherent. Then, de Finetti's definition can be 
restated as follows: P is a prevision on C C "Pb if 

<_ n c iP(Xi )  sup n inf ciXi E ~- E ciXi (1) 
i = 1  i = 1  i = 1  

whenever c l , . .  �9 , cn E R, X 1 , . .  �9 , Xn E C and n >__ 1. Some consequences o f ( l )  
are remarkable: 

(i) A prevision P on C C ~2b can be extended, preserving coherence, to ]?b; 
(ii) P on C C Vb is a prevision if and only if it can be extended as a linear functional 

P~ on Vb such that inf X ~ P I (X )  <_ sup X for each X in Vb; 
(iii) P on C C 125 is a prevision if and only if there is a probability 7c on P (12) such 

that g ( x )  = f XdTr for every X E C. 

As it is well known, however, the strength of the "principle of  coherence" (1) 
is not only due to its consequences, but also to the fact that it is quite in line with 
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the heuristic meaning one attaches to the term "prevision". To explain this point, 
given c i , . . .  , Cn E R and X 1 , . . .  , Xn  E C, define G to be 

n 

G(o3) = G(Cl , . . .  , c n , X 1 , . . .  ,xn)(rd  ) = Z ci(Xi(02) -- P ( X i ) )  V ca) E J'2. 
i=1 

If  P(X) is regarded as the price of  a bet on X,  then G can be thought of  as the 
gain of  a gambler who bets on X1, .  :. , Xn with stakes c l , .  �9 �9 , cn. Suppose now 
that P is assigned by a bookie, and that the bookie is obliged to accept any finite 
combination of  bets proposed by the gambler. Since P is a prevision on C if and 
only if 

i n f G < 0 < s u p G  V G, 

no betting system with uniformly positive gains for the gambler can be found when 
P is a prevision, and this property looks very attractive for the bookie. 

Now, let us consider the case when C is a class of  real, not necessarily bounded, 
r.q.'s and let us try to define what a prevision on C should be. Whichever the 
definition is, the starting point is that (i) must hold with V in the place of)gb. In fact, 
the possibility of  extending our prevision to a larger class is one of  the major merits 
of  de Finetti's theory of  probability. Another property that seems unavoidable is 
monotonicity: if X > Y, then we want P(X) > P(Y). A simple example shows 
that these two requirements suffice to force P not to be real valued. In fact, let 
g2 = (0, +c~) ,  C the linear space generated by all the indicators, Y the identity 
function, and 7r a probability on T'(g2) such that 7r((x, +c~))  = 1 for every x > 0. 
Then, P0 (X) :=  f XdTr for all X E C is a prevision on C (by (iii)), Y _> o~I(~,+~) 
and P0(c~I(~,+~)) = c~ for all c~ > 0. Thus, P0 cannot be extended to C U {Y}, in 
such a way that the extension is real valued and monotone. 

Of course, when P(X) is not real, it can not be interpreted as the price of  a bet 
on X,  and the nice interpretation of  coherence in terms of  betting schemes falls 
down. 

It is clear at this point that, in order to define a prevision on a class C of  arbitrary 
r.q. 's, more than one solution can be sensible. 

A first definition of  coherence for P (strong coherence, in the sequel) is in [1]. 
Taking such definition as a starting point, Crisma, Gigante and Millossovich [5] 
give another definition (coherence, in the sequel) which follows closely de Finetti's 
idea that coherence is a minimal requisite for P to be called a prevision. This latter 
definition coincides with de Finetti's one in the bounded case, is interpretable in the 
usual way when P is real valued, allows the extension theorem, leads to linearity 
when it makes sense, and to the property inf X <_ P(X) <_ sup X for every 
X E C. However, it also allows previsions P which do not take care of  extreme 
evaluations like P(A) = 0 for some event A. For example, for a coherent P ,  it 
is possible that P(X > 5) = 0 and P(X) = 7 for some unbounded r .q.X. It is 
well possible to accept and justify such previsions; at the same time, we feel that a 
form of coherence, like strong coherence, that excludes them a priori deserves some 
attention. Loosely speaking, strong coherence may be thought of  as coherence plus 
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the additional request that, if P(A) = 0 for some A C f/, then P(XA) = 0 for all 
r.q.'s X.  We note that this request is satisfied in the bounded case, if P is coherent. 

Considerations o f  this type lead us to study strong coherence, as in [1 ]. 

2 Strong coherence for previsions of arbitrary random quantities 

From now on, we adopt the useful convention of  denoting a subset of  Y2 and its 
indicator by the same symbol. Thus, if A is a subset of  ~ ,  then A also denotes the 
indicator function of  A. If  ,,4 and/5 are subclasses of  P(Y2) and V, respectively, 
we write ,,4 C /5 to mean that the indicators of  the elements of .4 belong to/5. 
Moreover, all integrals are intended in the sense of  [11]; see also [3]. In particular, 
the class of  all r.q.'s which are integrable w.r.t. 7r, where 7r is any probability on a 
field, is denoted by/~1 (Tr). 

2.1 Definition and basic results 

Given a probability 7r on P(~2) and a r.q. X ,  let 

e s s s u p X  = inf{a C R : 7r(X > a) = 0}, 

ess inf X = sup{a  E R : 7r(X < a) -- 0}, 

with the usual conventions inf 0 = +c ~  and sup 0 : - c ~ .  

Definition 1 (strong coherence) Let C c V, P : C --~/~ and let 7r be a probability 
on 7~(f)). Then, P is said to be strongly coherent with 7r if 

(*) ess inf (~-~iml aiA~ + ~i~=1 biXi) 
n ~7~ n <_ E~ml a~w(A~) + Ei=l biP(Xi) <_ esssup ( E i = I  aiAi + Ei=l biX~) 

for every n,m >_ 1,al,... ,am,b1,... ,bn in R, A1,... ,Am in P(~2), and 
X1,... , Xn in C such that the quantity ~ = 1  biP(Xi) is well defined (i.e., it 
is not of  the form +c~  - c~ ) .  Moreover, P is called strongly coherent (or a strong 
prevision) whenever, for some probability ~- on P ($2), P is strongly coherent with 7r. 

We remark that, if P is strongly coherent with lr, then P(A) = 7r(A) for all 
A E C N P(~2). (Given A C C N T'(~2), just apply condition (*) with m = n = 1, 
al  = 1, bl = - 1 ,  and A1 = X t  = A). Moreover, in the sequel, even if~r is defined 
only on a field (and not on all P($2)), we will say that P is strongly coherent with 
:r whenever P is strongly coherent with some probability on Y'(~2) extending 7r. 

Plainly, when C c Vb, P is a strong prevision if and only if it satisfies the usual 
de Finetti's condition of  coherence. Moreover, a strong prevision is also a prevision, 
i.e., it is coherent according to the following definition (cf. [5]): 

Definition 2 (coherence) Let C C "P and P : C --+ R. Then P is coherent if 

inf b i X i < E b i P ( X i ) < s u p E b i X i  
i = 1  i=1 i : 1  
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for every n > 1, b l , . . .  , bn in R, and X 1 , . . .  , Xn in C such that the quantity 
~-~=1 biP(Xi)  is well defined. 

Loosely speaking, when passing from strong coherence to coherence, the es- 
sential extremes are replaced by the actual extremes. Of course, this gives rise to 
some advantages for Definition 2: its meaning is more transparent, and closer to 
de Finetti's ideas. However, as noted in Section 1, it may be that P is coherent, 
P ( X  > 5) = 0, while P ( X )  = 7 for some unbounded r .q .X .  It is to avoid sit- 
uations of  this type that, in 1994, we discarded the present Definition 2 in favour 
of  Definition 1. In fact, in a sense, Definition 1 amounts to Definition 2 plus the 
additional request that, if P(A)  = 0 for some A c f2, then P ( X A )  = 0 for 
all r.q.'s X.  The price to be paid is a more involved definition, since one needs a 
probability 7r to calculate the essential extremes, and generally C does not include 
sufficiently many indicators. However, when C contains indicators enough, Defini- 
tion 1 strongly simplifies. For example, if C D P(Y2), then P is a strong prevision 
when the restriction 7r of  P to P( f2)  is a probability, and 

essinf E ciXi < ciP(Xi) <_ esssup ciXi 
i = 1  i = 1  i = 1  

n for all n > 1, c l , . . .  ,Cn in R and X 1 , . . .  , X n  in C such that ~-~i=1 c iP(Xi )  is 
well defined. 

Let us turn now to review the main properties of  strong previsions. 

Theorem 1 Let C C V, P : C --+ [~, and 7c a probability on P (  f2). I f  P is strongly 
coherent with 7r, then: 

(i) P ( c X )  = c P ( X )  for every c in R and X in C such that c X  c C; 
(ii) P ( X  + Y )  = P ( X )  + P ( Y ) f o r  every X ,  Y in C such that P ( X )  + P ( Y )  is 

well defined and X + Y E C; 
(iii) e s s i n f X  < P ( X )  <_ esssup X for each X in C. 

Moreover, if  C is a linear space including 7~ ( ~ ) and P = 7r on ~ ( ~2 ), then ( i ), ( ii ) 
and (iii) imply that P is strongly coherent with 7r. 

Proof Condition (iii) is a direct consequence of  Definition l, and (i) trivially holds 
when P ( c X )  - c P ( X )  is not well defined. On the other hand, if P ( c X )  - c P ( X )  
is well defined, (i) follows from Definition 1 with : m = 1, n = 2, al  = 0, 
bl -- 1, b2 = - c ,  X1 = cX,  X2 = X .  Analogously, (ii) is immediate when 
P ( X )  + P ( Y )  - P ( X  + Y )  is not well defined. Otherwise, (ii) follows from 
Definition 1 with: m = 1, n = 3, al  = 0, bl = b2 = 1, b3 = - 1 ,  X1 = X,  
)(2 = Y, Xa = X + Y. Finally, the proof of  the second part of  the theorem is quite 
direct. [] 

Even if P is extended real valued, we will say that P is linear in case P meets 
conditions (i)-(ii) of  Theorem 1. 

Theorem 2 (extension theorem) Let C C Y, P : C ~ ff~ and 7r a probability on 
79( X)). I f  P is strongly coherent with 7r, then P admits an extension P'  to 12 which 
is strongly coherent with 7r. 
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The proof is only sketched, since it consists of  a straightforward modification 
of  the proof of  the analogous theorem in the classical case C C Vb. 

Sketch of the proof Without loss of  generality, it can be assumed P(Y2) C C. The 
first step is showing that P admits a strongly coherent (with 7r) extension to Ct3 {X},  
for every X in V \ C. Fix X E P \ C. Given a in/~, say that (~ is too small or too 
large according to whether 

o r  

a + E c iP(Xi  ) < essinf X +  ciXi 
i = 1  i = 1  

n 

a + E c iP(Xi  ) > esssup X +  ciXi 
i = 1  

n for some c l , .  �9 �9 , cn in R and X1, �9 �9 �9 , X~ in C such that a + ~-~i=1 ciP(Xi)  is well 
defined. It is easily seen that there is a which is neither too small nor too large, so 
that P '  defined on C U {X} by p t  = p on C and P ' ( X )  = c~, is strongly coherent 
with 7r. At this stage, a standard argument based on Zorn's lemma concludes the 
proof. [] 

The following result is a direct consequence of  Theorems 1 and 2. 

Theorem 3 Let C C • and P : C --4 ff~. Then, P is a strong prevision if and only 
if there is an extension P~ of P to ~) which satisfies the following conditions: 

(i) The restriction 7r of P ~ to 79(g2) is a probability; 
(ii) P ' ( cX)  = cP ' (X)  for every X in ~2 and c in R; 
(iii) P ' ( X  + Y)  = P' (X)  + P ' ( Y ) f o r  every X,  Y in 12 such that P ' ( X )  + P ' (Y )  

is well defined; 
(iv) e s s i n f X  _< P~(X) < esssup X for every X in ]2. 

2.2 Criteria to check strong coherence 

In principle, to check strong coherence one has to single out a probability 7r to 
calculate the essential extremes. This fact makes Definition 1 ill-suited from an 
operative point of  view. However, as already noted, checking strong coherence 
becomes easier when C includes sufficiently many indicators. In fact, in that case, 
it is enough to involve the actual extremes (and not the essential extremes) made 
on complements of  those sets A E C such that P(A)  = 0. Basing on this idea, we 
now give two criteria for checking strong coherence. Moreover, we provide a third 
criterion obtained with a slightly different argument. 

Theorem 4 Let C c )2, P : C ~-+ [~, and let G be the class of the indicators in C. 
Assume that: 

(i) ForeachX inthelinearspacegeneratedbyC, { X  < a} E ~ foreverya in  
some dense set D ( X )  C R; 
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(ii) 0 �9 C and P(O) -- O; 
n n n 

(iii) infA c )-'~=t c~X~ _< )--~=1 c~P(X~) < suPAc )-~-~=1 c~X~ for all n > 1, 
Cl , . . .  , Cn in R, X1 , . .  . , Xn in C such that ~i~=l c iP(Xi)  is well defined, 
and for all A in G with P(A)  -- O. 

Then, P is a strong prevision. In fact, P is strongly coherent with 7r for every 
probability 7r on 79(f2) which agrees with P on G. 

Proof. Since P(0)  = 0, condition (iii) holds at least for A c = g2, and this implies 
that P I~ is coherent. Let 7r be any probability on P( /2)  extending P ]~; we 
show that P is strongly coherent with 7r. In view of  (i), fixed Cl , . . .  , Cn in R and 
X t , . .  �9  X~ in C such that ~ n  c~P(X~) is well defined, condition (iii) gives 

n n 

ess inf  E ciXi <_ ciP(Xi)  < esssup E ciXi (2) 
i = l  i=1  i=1  

where the essential extremes are made w.r.t. 7r. Now, define Q on C u P ( D )  by 
Q(X)  = P ( X ) f o r X  �9 C, a n d Q ( A )  = 7 r ( A ) f o r A  �9 P ( ~ ) ,  and choose 
C 1 , . . .  , Cn in R and X x , . . .  , X,~ in C U 79($2) in such a way that ~ i ~ 1  ciQ(Xi) 
is well defined. By (2), condition (*) in Definition 1 holds if Xi belongs to C for 
each i, and clearly (*) holds if Xi  belongs to 79($2) \ C for each i. Hence, let us 
assume that Xi  is in C whenever i < k and Xi  is in 7~(~2) \ C if i > k, for some k 

k n 
in { 1 , . . . ,  n - 1}. Setting X ---- E i = I  c i X i  and Z -- Y~=k+t  c~Xi, we prove that 

n 

~ i = 1  ciQ(Xi) < e s s s u p ( X  + Z). Let s :=  e s s s u p X .  I f s  = + o c  then, since Z 
k is bounded, ess s u p ( X  + Z) = +oc .  I f s  = - o c ,  then )-~i=1 ciP(Xi)  <_ s -- -oc ,  

which in turn implies n )--~=1 ciQ(Xi) = - c ~ .  Hence, let s �9 R. Let us choose 
b < s and c > 0 in such a way that b and s + c belong to D(X) ,  and let us introduce 
the subdivision b = a0 < al < . . .  < am = s + c of  [b, s + *] with: a~ r D ( X )  
and ai - a i -1  < * for every i. Moreover, put Ai = {X  < ai} for / = 0 , . . .  , m 
and 

m 

V = aoAo + ~-~ai(Ai - Ai-1). 
i=1  

By applying (2) to the r.q. V - X,  

m k 

0 _< ess in f (V - X )  < aoP(Ao) + E a i  (P(Ai)  - P(Ai -1) )  - E c i P ( X i )  
i=1  i = l  

k 

= f VdTr - E ciP(Xi) .  
i=1  

Hence, setting Xb :=  bAo + (1 - Ao)X,  one has 

k 

i=1  

(3) 
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Since Z is bounded, b can be determined in such a way that 

and from (3): 

ess sup(Xb + Z) = ess s u p ( X  + Z),  

k 

~ c~Q(Xi) = ~-~ ciP(X~) + f z&r 
i=1 i=l 

f 
<_ e + J ( X b  + Z)dTc <_ e + ess sup(Xb + Z). 

n 
Thus, ~ i = 1  ciQ(Xi)  <_ e s s s u p ( X  + Z). In a similar way, one proves that 
Ei~=l e~Q(Xi) >_ es s in f (X  + Z).  [] 

Corol lary  1 Let C, P and ~ be as in Theorem 4. Assume that: 

(i) C is a linear space including the constants; 
(ii) For each X in C, { X  < a} E G for every a in some dense set D ( X )  C R; 
(iii) P ( ~ )  = 1; 
(iv) P is linear, i.e., assumptions (i)-(ii) of Theorem 1 hold; 
(v) P ( X )  >>_ O for each X in C such that P ( X  < -e )  = O for every ~ > 0 with 

- e  in D(X) .  

Then, P is a strong prevision. In fact, P is strongly coherent with ~r for every 
probability zc on P (  Y2) which agrees with P on G. 

Proof It suffices to prove (iii) of  Theorem 4. Fix cl, . . .  , cn in R and X 1 , . . .  , Xn 
in C such that ~ 1  c~P(Xi) is well defined, and let A C G with P(A)  = 0. Setting 

n 

i = 1  

we now show that a _< ~ i = 1  c iP(Xi) .  This is trivial if a = - o c ,  so that assume 
n 

a E R. By (i), ~ i = 1  ciXi - a belongs to C and 

P c i X i - a < - e  = 0 f o r e v e r y e > 0 w i t h  - e c D  c i X i - a  . 
\ i = 1  i = 1  

Hence, (iii), (iv) and (v) yield 

~ c iP(Xi )  - a = P ciXi - a > O. 
- -  \ i = 1  

n n 
Likewise, one proves that ~ i = 1  c iP(Xi )  < SuPAc E i = I  ciXi" [] 
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Finally, we give two more theorems. The first one is needed to prove the second, 
and furthermore it will be useful in next Subsection 2.3. The second one provides 
a further criterion for checking strong coherence. In both theorems, C is a vector 
lattice containing the constants, i.e., C is a linear space, Y2 E C ,  and X V Y and 
X A Y are in C whenever X,  Y E C. Further, we let 

.To :=  {A c O : V e  > 0 ,3X ,  Y E C w i t h X  <_ A < Y and P ( Y -  X )  < e}. 

We also recall that, when the domain of  P is a linear space, P is a prevision if 
and only if it is linear (in the sense that (i)-(ii) of  Theorem 1 hold) and inf X _< 
P ( X )  <_ sup X for each X in the domain; cf. [5], Theorem 3.3. 

Theorem 5 Let C be a vector lattice including the constants, and P : C -+ R a 
prevision. Then, .To is afield, and there is a unique probability 7to on .To such that 
C A ~)b C /~1 (7r0) and P ( X )  = f XdTrofor every X C C fq Vb. Moreover, 

C s a n d P ( X )  >_ f X d T r o  X 

whenever X C C, P ( X )  < +oo,  and X > a for some real a. 

Proof Let Q be the restriction of  P to C M)3b. Then, Q is real valued, and thus it is a 
linear positive functional on the vector lattice C fq 1;5 which includes the constants. 
Let 

.T1 : {A c f2 : Ve > 0, 3X,  Y E C A ~;b w i t h X  <_ A <_ Y and Q ( Y  - X )  < e}. 

By a result in [13] (Lemma l, p. 171), .T1 is a field and, for each X C C f3 Vb 
with X > 0, one has {X  > a}  �9 .T1 for all but countably many a > 0. Since 
C is a vector lattice including the constants, .To = .T1. Thus, .To is a field and 
C fq ~;b C Z~ I(L') for every probability ~ on .To. Next, fix any probability 7r on T'(~2) 
such that P ( X )  : f XdTr for each X �9 C N Vb, and call 7to the restriction of  7r to 
.To. I f X  �9 C fq Vb, since X �9 then P ( X )  = fXd  = fXd o. Further, 
let u be a probability on .To such that P ( X )  = f X d u  for X �9 C n Vb, and let 
A �9 .To. Given e > 0, take X,  Y �9 C N Vb with X _< A < Y and P ( Y  - X )  < e. 
Then, 

f -- p(r) < P(x) : f Xd o <  o(A) + /](A) _< 

Hence, L,(A) < 7to(A) for each A �9 .To, and taking complements yields L, ---- 7to. 
Finally, fix X �9 C with X >_ a for some real a and P ( X )  < +oc .  By replacing X 
with X - a, it can be assumed a = 0. Since X A n �9 C M ldb, one has 

f ( X  = P ( X  n) < P ( X )  < +oc n, A n ) d Tr o A for all 

and thus limn,m f ] X A n -- X A m ] dTro = 0. Further, the set {X > a}  belongs 
to the family A s  = {{X A k > a}  : k �9 N},  and Am C -To for all but countably 
many c~ > 0. Hence, for all but countably many ~ > 0, one has 

{] X - X A n  ]> c} = {X > n + ~ }  �9 .To for all n. 
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Given E > 0 as above, one obtains 

 o(I x - x A n  I> =  0(x > n + c )  _< - -  

1 
< - P ( X )  --+ O. 

n 

1 [ ( x  A (n + E) )&ro 
n + e  J 

By Theorem 4.4.20 in [3], p. 114, it follows that X E s (Tr0) and f XdTro = 
sup n f ( X  A n)dT:o = SUpn P ( X  A n) ~ P(X).  [] 

Next Theorem 6, in addition to give a criterion for checking strong coherence, 
makes clear the differences between previsions and strong previsions. Define 

C + = { x  E C  : x > 0}, 

C + + = { X E C : V e > 0 , B Y E C  + w i t h P ( Y )  <e 

and Y >_ I on the set { X  < - e } } ;  

and note that, if 0 E C and P((~) = O, then C + C C ++. Then, a strong prevision 
takes non negative values on all C ++, while a prevision P only meets the ordinary 
positivity property P(X)  > 0 for X E C +. At least in the particular case where 
C is a vector lattice including the constants, this is the only difference between a 
prevision and a strong prevision. 

Theorem 6 Let C be a vector lattice containing the constants and P : C - +  ffL If 
P is linear (i.e., conditions (i)-(ii) of Theorem 1 hold), P(g2) = 1, and 

P(X)  > 0 whenever X E C ++, (4) 

then P is strongly coherent. 

Proof First note that P is a prevision, and thus Theorem 5 applies. Let 7r be a 
probability on P(J~) extending 7to. We prove that P is strongly coherent with 7r. 
Fix a l , .  �9 , am, bl, �9 �9 �9 , bn in R, A1, �9 �9 , Am in P(J2),  and X1, �9 �9 , Xn in C such 
that ~ i = 1  '~ biP(Xi) is well defined. Let X = ~i=ln biXi and Z = ~i=tm aiAi. 
Since X E C and ~i~=1 biP(Xi) is well defined, P(X)  = ~i~1 biP(Xi). Hence, 
we have to show that P(X)  + f ZdTc > ess in f (X  + Z). To this end, it can be 
assumed that P(X)  < +c ~  and ess inf X > - o o .  (In fact, ess in f (X  + Z) = - c ~  
whenever ess inf  X -- - c~ ) .  Let a be a real number such that a < ess inf  X ,  and 
let e > 0. Since (X V a - X)  E C +, by arguing as in the proof of  Theorem 5, there 
i s 6  E (0, e] such that A :=  { X - X V a  < - 5 }  E 5%. S inceA c {X  < a}, 
7co(A) = 0. By definition of  .To, there are V, Y E C N )/b with V _< A < Y 
and P ( Y  - V) < e. By Theorem 5, P(V) = f VdTco < ~-o(A) = 0, and thus 
P(Y)  < P(Y)  - P(V) < e. Also, Y _> A >_ 0 and, since ~ < e, Y > 1 on the 
set {X  - X V a < - e} .  It follows that (X  - X V a) E C ++, and thus (4) implies 
P ( X  - X V a) >_ O. Since X V a _> X,  one has P(X)  = P ( X  V a). In particular, 
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Theorem 5 implies X V a E / :1  (Tro) and P ( X V a) >_ f ( X V a ) dTr o = f ( X V a ) dTr. 
Hence, 

P(X)+ /ZdTr=P(XVa)+ /Zdlr~ f (XVa)dTr+ f ZdTr 

f f 
J XdTr + J ZdTr > e s s i n f ( X  + Z).  

Likewise, one proves that P(X)  + f ZdTr <_ ess s u p ( X  + Z).  [] 

2.3 Integral representation of previsions 

The prevision of  a r.q. is the counterpart, within the theory of coherence, of the usual 
expected value of a random variable. It is therefore natural to investigate when a 
prevision is, like an expected value, an integral w.r.t, some probability. Of  course, 
when a prevision P admits an integral representation, it is also a strong prevision. 
However, not all strong previsions admit an integral representation. 

Let 7r be a probability on some field f of  subsets of  Y2. 
I f C  c El(Tr) and P(X)  = fXdTr for every X E C, then P is strongly co- 

herent with 7r. Indeed, let 7r p be a probability which extends 7r to 7~($2), and let 
P'(X)  = fXdTr' for every X in El(Td). Then, Corollary 1 implies that P '  is 
strongly coherent with 7d, and in particular P is strongly Coherent with 7r. Con- 
versely, assume that C c ~1 (71") and P is strongly coherent with 7r. Then, P 
coincides with the integral w.r.t. 7r on C fq 1)b, but not necessarily on C \ );b- For 
instance, let C = f t3 {X},  where X C E 1 (71"), X ~ 0 and ess sup X = +co ,  and 
let 

P(A) = 7r(A) for all A in T and P(X)  = c. 

Then, P is strongly coherent with 7r for each c >_ f Xdyr. 
The integral has, however, a special status among the various previsions. For 

instance, if P is strongly coherent with 7r, then P(X)  >_ f XdTr for each X in 
C fq E 1 (7 0 such that X > a for some real a; cf. Theorem 5. 

To our knowledge, the first integral representation theorem for previsions (and, 
in particular, for strong previsions) is in [1] (cf. Theorem (2.13)) and covers the 
case C = L:l(Tr). It states that, if P : El(Tr) --4 R is a linear positive functional 
which agrees with 7r on ~-, then P is the integral w.r.t. 7r. Since a prevision is linear 
and positive, it follows that the only real valued prevision on E 1 (Tr), which agrees 
with 7r on 5 r ,  is the integral w.r.t. 7r. 

One more related reference is [10]. 
Basing on results in [2], in the present section we improve the earlier integral 

representation theorem. Roughly speaking, we will obtain that, if P is coherent and 
real valued on sufficiently many r.q.'s then P is the integral. One consequence is 
that when C is sufficiently large, any real valued prevision is necessarily a strong 
prevision. In a sense, this supports the notion of strong prevision. In fact, even if 
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a prevision P is allowed to be extended real valued, from the point of view of 
interpretation it is desirable that P is finite as often as possible (cf. [5], Remark 
5.3). Hence, each sufficiently good (i.e., real valued for sufficiently many r.q.'s) 
prevision must be a strong prevision. 

The following three results give conditions under which the integral, possibly 
w.r.t, a cr-additive probability, is the unique real valued prevision. Since a real valued 
prevision on a linear space is a linear positive functional, they are just corollaries 
of Theorems 2, 3 and 8 in [2], and thus proofs are omitted. 

Let 7to be the probability introduced in Theorem 5. As usual,/21 (Tro) is a normed 
space under the norm [[XII1 = f I X I dTr0 (and by quotienting according to 
X ~ Y if and only if 7r_~ (I X - Y I> c) = 0 for all e > 0, where 7r~ denotes the 
7r0-outer measure). By C, it is denoted the closure of C in the 121 (Tr0)-norm. 

Theorem 7 Let C be a vector lattice including the constants, P a real valued 
prevision on C, and 7to the unique probability on #7o such that P ( X )  = f XdTro 
for all X E C f3 Vb. Then, C C/21 (Tro). Moreover, P ( X )  =- f XdTrofor all X E C 
if and only if 

s u p { P ( Z )  : 0 < Z < I#, Z E C} < +cx~for every Y E d, Y >_ O. 

Theorem 8 Let C, P and 7to be as in Theorem Z In order that P ( X )  =- f XdTro 
for all X E C, it is sufficient that 

Y EC, Y >_OandY A n E g f o r e a c h n E  N ~ Y EC. (5) 

Condition (5) trivially holds when C is closed in the s and thus 
Theorem (2.13) of [ 1 ] is a corollary of Theorem 8. Further, a suitable strengthening 
of (5) yields a a-additive representation for a real valued prevision. 

Theorem 9 Let C, P and 7to be as in Theorem 7. I f  

Y > 0 a n d Y  A n E Cforeach n E N ~ Y E C, (6) 

then 7to is (r-additive and P ( X )  = f Xdrcofor all X E C. 

Of course, condition (6) is very strong. However, under (6), the only way to be 
coherent and real valued is to calculate the integral w.r.t, a a-additive probability. 
This kind of phenomenon is typical of the unbounded case. In fact, if only bounded 
r.q.'s are concerned, a prevision need not admit a a-additive integral representation 
even if it is defined on its "maximal" domain (which, in this case, is ]2b). 

Till this point, given a prevision P on C, we have found conditions under which 
P has an integral representation. Now, we start with a given strong prevision P .  
Then, it is always true that P is the integral on all essentially bounded r.q.'s in its 
domain. 

Theorem 10 Let 7r be a probability on "P(s and 

s = {X E 1; : --oo < ess inf X < ess sup X < + ~ } .  

I f  P : C --~ 1~ is strongly coherent with 7r, then P(  X ) = f X dTr for all X E C fq C. 
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Proof Fix X E C N E, and let a : ess inf X,  b -= ess sup X.  Fixed e > 0, define 
A = {a - e < X _< b + e}, so that 7r(A) = 1. Let P '  be an extension of  P to 
Y strongly coherent with 7r. Then, P ( X )  = P ' ( X A )  + P ' ( X A  c) = P ' ( X A )  = 
fA XdTr = f XdTr, where the second equality is because P '  is strongly coherent 
with 7r, and the third depends on X A  E ])b. [] 

3 Coherence and strong coherence for previsions of random elements 
taking values in a Banach space 

So far, the notion of  coherence has been investigated with reference to r.q.'s, i.e., 
real r.e.'s. In this section, we deal with the extension of  such a notion to r.e.'s taking 
values in a general Banach space y .  Indeed, a definition of  coherence, for the 
prevision of  r.e.'s with values in spaces different from R, is necessary at least for 
theoretical reasons: to make complete the theory of  coherence, in analogy with the 
usual (i.e., Kolmogorovian) theory of  probability, where Banach valued r.e.'s play 
a role. But, a general notion of  coherence can be useful for more practical reasons, 
too. For instance, it can find applications in mathematical finance; cf. [4]. 

To our knowledge, the only specific reference is [1]; we resume and extend the 
work done in that paper, by studying mainly the problem of  integral representation 
of  previsions. 

In Section 1, we have shown that it is necessary, in order to get the extension 
theorem and the monotonicity property, that a prevision can take non real values. 
The natural ordering on R suggests the adoption of/~,  instead of  R, as the range 
of  a prevision. When the r.e.'s take values in a general Banach space y ,  no natural 
ordering is available that can suggest the value of  P on some X ,  when every 
element of  y is inadequate. Consequently, we will confine ourselves to previsions 
taking values in y .  Moreover, we give both the definition of  coherence and that of  
strong coherence; our main concern is strong coherence, however, for the reasons 
explained in Section 1. 

Let y*  denote the dual space of  the Banach space y ,  i.e., the space of  all real 
valued, continuous, linear functionals on y .  Suppose y = R and P does not assume 
infinite values. For the sake of  simplicity, suppose also that C D 79(J2). Then, the 
definition of  strong coherence can be restated as (cf. Definition 1): P is a strong 
prevision if the restriction 7r of  P to T'(Y2) is a probability, and 

n n 
ess inf  ~ f i (Xi )  <_ ~ f i ( P ( X i ) )  <_ esssup f i (X i )  

i=1 i=1 i=1 

for every n >_ 1, X 1 , . . .  , Xn in C and continuous linear functionals f l ,  �9 �9 �9 , f,~. In 
other words, strong coherence of  P on r.q.'s means (essential) internality w.r.t, the 
result of  linear operations on finite families of  r.q.'s. According to us, this property 
has to be preserved when passing from r.q.'s to more general r.e.'s. 

In the sequel, a function X : g2 --+ y is called an y-random element (y-r.e.), 
C is any family of  y-r.e. 's, and 2: denotes the class 

5[ = {yA : y  E Y , A  C ~2}, 
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where yA denotes the 3)-r.e. taking value y on A and 0 on A c. Moreover, given any 
probability ~- on a field, L~(~-) denotes the class of  all 7r-integrable y-r.e. 's .  

Definition 3 (coherence on a class of  y-r .e . ' s )  P : C -+ y is said to be coherent 
if 

n n n 

inf Z fi(Xd < ~ f i (P(Xi ) )  <_ sup Z f i (Xi)  (7) 
i = 1  i = 1  i = 1  

for all f l , . . .  , f,~ in y* ,  X 1 , . . .  , Xn in C and n >_ 1. A coherent P is called a 
prevision. 

Definit ion 4 (strong coherence on a class of  y-r.e.'s)  Let P : C --+ y and 7r a 
probability on T'(f2). In case 

P(yA) = y~r(A) for every yA in C N Z, (8) 

define Q on C u Z as Q(X) = P ( X )  for X in C and Q(yg) = yTc(A) for yA in 
Z. Then, P is said to be strongly coherent with 7r if (8) holds together with 

n n n 

ess inf  Z f~(X~) <_ Z f i (Q(Xi))  < ess sup  Z f i (Xi)  
i = 1  i = 1  i = 1  

for all f l , . - .  , fn  in 3;*, X 1 , . . .  , Xn in C U Z and n > 1. Moreover, P is said to 
be a strong prevision if it is strongly coherent with some probability 7r on 7~(g?). 

Clearly, a strong prevision is also a prevision. Moreover, a prevision P is linear, 
in the sense that P ( a X  + bY) = aP(X)  + bP(Y) whenever X,  Y, aX  + bY are 
in C and a, b are real numbers. In fact, if P is a prevision, for every f E Y* one has 

f ( P ( a X  + bY) - aP(X)  - bP(Y)) = 0, (9) 

by applying Definition 3 with: n = 3, f l  = f ,  f2 = - a  f ,  f3 = - b  f ,  X1 = 
aX + bY, X2 = X and Xa = Y. Since (9) holds for every f in y* ,  one obtains 
P ( a X  + bY) = aP(X)  + bP(Y). 

When y = R, Definition 4 (Definition 3) reduces to Definition 1 (Definition 2) 
provided that, in the latter, the range of  P is assumed to be a subset of  R. Because 
of this restriction on the range of P ,  no general extension theorem, of  the type of 
Theorem 2, is available. This remark gets us to think that no general theory can 
be based on the previous definitions. On the other hand, it is true that the integral 
w.r.t, some probability 7r is the only prevision (necessarily strong), if the domain C 
is sufficiently large. 

In particular, Theorem (3.2) of  [1] covers the case C = /2~(7r). To state it, 
suppose 7r is a probability on a field 5 c and P : /21 (~-) -+ y .  Then, P ( X )  = f XdTr 
for all X E L~(~r) if and only if P is linear and 

inf f ( X )  < f ( P ( X ) )  < sup f ( X ) f o r  every X �9 L)(Tr) and f �9 y*, (10) 
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IIP(Y A) II = 7r(A)for every A in ~ and for  some y in y with Ilyll = 1. (11) 

Since a prevision is linear and meets (10) by definition, it follows that the only 
prevision on E~(Tr) satisfying (1 1) is the integral w.r.t. 7r. 

One more consequence of Theorem (3.2) is that P : E~(Tr) --~ y is strongly 
coherent with 7r if and only if it is the integral w.r.t. 7r. In fact, i f P  is strongly coherent 
with 7r, then P is linear and satisfies ( 1 0) and (11) by definition. Conversely, suppose 
that P ( X )  = f XdTr for all X E E~ (7@ Let 7r' be a probability on 7~(Y2) extending 
7r, and let P'  (X)  = f X dTr' for X in E~ (Tr'). Then, P' (yA)  = f yA&r'  = yTr'(a) 
for every yA  ~ Z. Moreover, given f l , .  -. , f,~ in 3]* and X 1 , . . .  , X,~ in E~(Tr'), 
one obtains 

i•lfi(P'(Xi)) = fi  XidTr' = fi(Xi)dTr'. 
"= i = 1  i = 1  

Thus, pi  is strongly coherent with 7r t, and in particular P is strongly coherent with 
71". 

At least in the case C = E~(Tr), thus, coherence and strong coherence admit a 
nice characterization. In particular, condition (10) plays the role of the usual positiv- 
ity condition and has a clear geometrical meaning. Indeed, (10) can be equivalently 
stated as 

P ( X )  belongs to the closed convex hull of the range of X, for each X E/2~ 0r). 
(12) 

In fact, by a standard separation theorem (cf. [11], V.2.10), (10) implies (12), while 
the converse is straightforward. 

There is another case in which the theory of coherence and strong coherence 
for 3~-r.e.'s is quite simple. Precisely, this happens when C c K;, where/C is the 
set of all y-r.e.'s whose range has a compact closure. If y = R, then/C coincides 
with the class 12b of all bounded r.q.'s. As next Theorem 11 shows, the theory of 
coherence and strong coherence on/C parallels the classical de Finetti's theory 
reminded in Section 1. In particular, when C C K, the notions of coherence and 
strong coherence coincide. 

Theorem 11 Let C C )U and P : C ~ y .  Then, P is a prevision if and only if  
there is a probability 7r on 79(Y2) such that P ( X )  = f XdTr for  every X E C. In 
particular, P is a prevision if  and only if  it is a strong prevision. 

In order to prove Theorem I 1 (and the subsequent results), we need a lemma. 
Given any class C of y-r.e.'s, let C denote the linear space generated by the r.q.'s of 
the form f o X, for all f E Y* and X E C. Further, given a prevision P on C, let 

D fi  o Xi  = f i  (P(X i ) )  for every n E N, f l , . . -  , f~ in y*  
\ i = 1  i = 1  

and X1, . . .  , Xn  in C. 

Lemma 1 I f  P is a prevision on C, then D is well defined and it is a real valued 
prevision on d. 
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P r o o f  S u p p o s e ~ _ l f i O X  i m g . .  = Y]j=I joYj  fo r somef l ,  �9 , fn,  g l , . . .  ,g,~ E 
y* and X1 , . . .  , X,~, Y1, �9 �9 �9 , Ym E C. Then, coherence of P implies 

0 = inf ) fi o Xi - g~ o Yj <_ 
j = l  

< E f i ( P ( X i ) ) - E g j ( P ( Y j ) ) < _ s u p  f i o X i - E g j o Y  j = 0 .  
i = l  j = l  i = 1  j ~ - i  

m Hence, ~ i n l  fi (P(Xi ) )  = ~ j = l  gJ (P(YJ))' that is,/5 is well defined. By defi- 

nition,/5 is real valued. Finally, since C is a linear space and/5 is linear and such 
that inf r </5(4)) < sup ~b for each q5 E C, it follows that/5 is a prevision. [] 

Proof (of Theorem 11.) The "it"' part is straightforward. We prove the "only if"' part. 
Let P b e  aprevision. SinceC C/C, each element of L := { f o X  : X  E C, f E Y*} 
is a bounded r.q.. Indeed, [ f o X ]< I If  I[ I lSl[ _< ~ for some suitable a. By Lemma 
1 , /5 ( f  o X )  = f ( P ( X ) )  is well defined and coherent on L. Hence, there is a 
probability 7r on P(12) such that 

f (P(X))=/5( f  o X ) = / ( f  oX)d~=f  ( / X d ~ )  forall f E y* a n d X  EC, 

where the last equality depends on the fact that, since X is in/C, X is 7r-integrable. 
Hence, P ( X )  = f XdTr for all X in C. [3 

One consequence of Theorem 11 is that, if C C K:, then P : C -+ 3; is a 
prevision if and only if P can be extended as a linear function P~ :/C -+ y such 
that, for each X E/C, P t ( X )  belongs to the closed convex hull of the range of X. 

We close the paper with three more results. The first one is the analogous, for 
y-r.e.'s, of Theorem 10. 

Theorem 12 Let zc be a probability on 7a([2) and 

gl = { X  : X is an y-r.e, and rc(X E K)  = l for some compact set K C Y} .  

l f  P : C --+ y is strongly coherent with 7r, then P(  X ) = f X dTr for all X E C M ~1. 

Proof Given f E Y*, let Cf = {f  o X : X E C}. By Lemma 1 , /5 ( f  o X) = 
f ( P ( X ) )  is well defined on C S. Moreover, a direct calculation shows that/5 is 
strongly coherent with 7r. Now, fix X E CfqE1. Since X E s X is 7r-integrable, and 
since f o X  E CyNs Theorem 10yields f ( P ( X )  ) = ~5( foX)  = f ( f  o X )  dTr = 
f ( f  XdTr). Since f E 3;* is arbitrary, this concludes the proof. [] 
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Finally, given a prevision P on C, let/5 be the prevision on C involved in Lemma 
1 and, as in Section 2, let 

5%={Acf2:Ve>0,3r162162162162162 <e}. 

By Theorem 5, if C is a vector lattice including the constants, then ~-0 is a field 
and there is a unique probability 7r0 on Uo such that/5(r = f CdTro for every 

r E C N Vb. By using the material in Subsection 2.3, it is possible to improve the 
quoted Theorem (3.2) of [1]. This is done, in two slightly different ways, by next 
Theorems 13 and 14. 

Theorem 13 Suppose C includes a non zero constant 32-r.e., P : C -+ 32 is a 
prevision, and C is a lattice. Then, P ( X )  = f XdTro for every X E C fq /2~(7r0) 
provided 

r E C whenever: r n E C for each n E N, 0 >- O, 

and 0 is in the closure o f f  in the/21 (Tro)-norm. (13) 

Proof Since C is a lattice and C includes a non zero constant 32-r.e., C is a vector 
lattice containing the constants. By Lemma 1,/5 is a real valued prevision on C. 
By (13), condition (5) of Theorem 8 holds with C in the place of C. It follows that 
/5(r = f r for every r E C. Hence, given X E C M/2~(7r0), one has 

f ( P ( X ) ) = / 5 ( f o X ) = f ( f o X ) d T r o = f ( f X d T r o )  for every f E y*,  

and thus P ( X )  = f XdTro. [] 

Theorem 14 Let C be a linear space including all constant y-r.e.'s, P : C --4 y 
a prevision, and 7r any probability on 79(~) such that P(O) = f r for all 
0 E C fq 12b. (One such 7r exists by Lemma 1). Suppose that, for eachfixed f E Y*, 

(i) C: = { f  o X : X E C} is a lattice; 
(ii) r E C: whenever: r A n E Cy for each n E N, r >_ O, and 0 is in the closure 

of Cy in the/21 (Tr)-norm. 

Then, P ( X )  = f XdTr for every X E C fq /2~(7r). 

Proof Fix f E 32", f 7~ 0. By (i) and the assumptions on C, C: is a vector lattice 
including the constants. By Lemma 1, /5(f  o X) = f ( P ( X ) )  is a real valued 
prevision on C:. Further,/5(r = f r for all r E CI N 125. Hence, Cf c 121 (Tr) 

and, by (ii), P ( r  = f r for all r E CI; see [2], Theorem 3. Thus, given 

X E C M/2~(7r), one has f ( P ( X ) )  = P ( f  o X )  = f ( f  o X)dTr = f ( f  XdTr). 
Since f is an arbitrary non zero element of 32", this concludes the proof. [] 
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