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On t h e  T r a n s l a t i o n  l n v a r i a n e e  o f  
W a v e l e t  S u b s p a e e s  
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Communicated by R. Strichartz 

ABSTRACT. An examination of  the translation invariance of  V 0 under dyadic rationals is presented, gen- 
erating a new equivalence relation on the collection of  wavelets. The equivalence classes under this relation 

are completely characterized in terms of  the support of  the Fourier transform of the wavelet. Using operator 

interpolation, it is shown that several equivalence classes are non-empty. 

1. Introduct ion 

A wavelet ~ ~ L 2 (R) is a complete wandering vector for the unitary system { D n T l : n, 1 G Z}, 
i.e., the collection { D n T l ~  : n, l E Z} is an orthonormal basis for L2(R), where D, T are defined 
on L2(R) as: D f ( x )  = ~/2f(2x)  and T f ( x )  = f ( x  - 1). Every wavelet can be associated 
with a Generalized Multiresolution Analysis, or GMRA (see [1]). Indeed, define the subspaces 
Vj = s--fffi-fi{DnTl~ : n < j ,  l E Z}. Then it is routine to verify that these subspaces satisfy the 
following four conditions: 

1. vj c vj+~, 
2. DVj = Vj+l, 
3. f ] j~zV j  = {0} and U j ~ z V j  has dense span in L2(R), 

4. V0 is invariant under T. 

We shall call V0 the core space for ~.  Item 4 is of interest because the core space is invariant under 
translations by the group Z. A natural question is: Are there other groups of translations under which 
V0 is invariant? This paper will answer this question by looking at groups of translations by dyadic 
rationals. 

Denote by Ta the unitary operator T a f ( x )  = f ( x  - ~).  T is to be understood as Tl. Note 
that ~ = Me- i~ .  In this paper, we shall consider the groups of translations Gn = {T~r : m ~ Z}, 
and the group G~ = {Tu : ot e R}. Denote by s the collection of all wavelets whose core space is 
invariant under ~n. Note that these collections are nested: 

~ 0  D ~1 D ~ 2 . - .  Z) /~n [D ~ n + l  D . . .  D ~oo  �9 
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We can then define an equivalence relation whose equivalence classes are given by .A,4n = 
s - s with .Adc~ = s Hence, A4n is the collection of all wavelets such that V0 is invariant 
under Gn but not Gn+l- The goal of this paper is to characterize these equivalence classes, while 
showing that several of them are not empty. 

In general, V0 can be quite complicated in structure. Indeed, it may not even be generated by 
translations of a finite number of functions. Hence, we wish to restrict our analysis to W0. Recall 
that Wj is defined by Vj+I = Vj t~ Wj.  Clearly, Wj = ~ { D J T I ~ f  : l E Z}. 

L e m m a  1. 
Let r < n be integers, and let p = n - r. The space Vr (resp. Wr ) is invariant under ~k if and 

only if the space Vn (resp. Wn) is invariant under ~k+p. 

Proof .  By definition, f ~ Vr if and only if DP f E Vn. Suppose that g ~ Vn and define f ~ Vr 
such that D P f  = g. Consider the following commutation relation: 

m m 
= + = ( x  + = 

This calculation establishes the statement. [ ]  

By Lemma 1, another way to describe .A/In is that ~ e .A/In if n is the largest integer such 
that V-n is invariant under integral translations. If a p e  A4n, we shall say ~ has the translation 
invariance of  order n property. 

Theorem 1. 
The core space Vofor ~ is invariant under the action Of ~n if and only if Wo is invariant under 

the action of  ~n. 

Proof .  If. Suppose that W0 is invariant under ~n- Then, by Lemma 1, for k > 0, Wt is invariant 
under ~n+k, whence V0 -L = ~ = o W k  is invariant under Gn- If follows that V0 is invariant under ~n. 

Only If. Suppose V0 is invariant under ~n- Then, again by Lemma 1, Vl is invariant under Gn+l, and 
hence ~n. Since Vl = V0 ~ W0, it follows that W0 is also invariant under Gn. [ ]  

For the purposes of this paper, we shall say that a set E C R is partially self-similar with 
respect to o te  R if there exists a set F of non-zero measure such that both F and F + c~ are subsets 
of E. Additionally, if G, H are two subsets of R, we shall say that G is 22r translation congruent to 
H if there exists a measurable partition Gn of G such that the collection {Gn -I- 2nJr : n ~ Z} forms 
a partition of H, modulo sets of measure zero. The letter ~. will denote Lebesgue measure. Define a 
mapping r : R --+ [0, 2zr) such that r (x)  - x = 2zrk for some integer k. 

2. A Characterization of  M ~  

Recall that a wavelet set is a set W C R such that the function ~p defined by ~ = 1 -~,, X w 
is a wavelet. Such a wavelet ~ is called a Minimally Supported Frequency (MSF) wavelet. The 
following theorem reveals some structure of wavelet sets. 

Theorem 2. 
Let W C R. Then W is a wavelet set if and only if  the following two conditions hold: 

1. W is 2zr translation congruent to [0, 2zr), 

2. Uj~z2JW = 

modulo null sets. 

The proof can be found in [3, Chapter 4]. 
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Theorem 3. 
Let ~p be a wavelet. Then, the following are equivalent: 

i) p is a MSF wavelet, 

ii) the subspace Vo is invariant under translations by all real numbers, 

iii) the subspaces Vj of the corresponding GMRA are invariant under integral translations. 

iv) the subspaces Wj of the corresponding GMRA are invariant under integral translations. 

Proof.  i) ~ ii). If ~t is a MSF wavelet with wavelet set W, Woo = L2(W). Clearly, u  R, 
Wo is invariant under Tu since Wo is invariant under multiplication by e -ia" . It follows that Vo is 
invariant under all translations. 

ii) =~ iii). Since Vo is invariant under Gn for all n > 0, by Lemma 1, V-n is invariant under Co. 

iii) =~ iv). By definition, Vj+I = Vj @ Wj. If both Vj+t and Vj are invariant under integral 
translations, it follows immediately that Wj is also invariant under integral translations. 

iv) =~ i). Let C be the collection of all operators for which W0 is invariant. An easy calculation 
shows that C is WOT (weak operator topology) closed. 

If Wj is invariant under integral translations, then again by Lemma 1 W0 is invariant under ~j 
for all j .  Since t_Jn>_OGn is dense in ~ ,  in the strong operator topology, it follows that Wo is invariant 
under G~. If we take the Fourier transform, then we get that Wo is invariant under multiplication by 
e -iu~ . The linear span of these operators are dense in the collection {Mh : h E L~176 with respect 
to the WOT. It follows that Wo is invariant under multiplication by any L ~176 (R) function. 

Next, we wish to show that Wo = L2(E), where E = supp(p). First note that since 
{e-in~.~(~)} forms an orthonormal basis for Wo, ~(~) has maximal support in the sense that if 
f ~  Wo, then the support of f is contained in the support of ~.  This immediately implies that 
Wo C L2(E). 

Let g(~) be a compactly supported simple function, whose support F is contained in E. Define 
En = {~ : ~ > p(~) > ~}, and define Fn = F f3 En. Since g is a simple function, it is uniformly 

and bounded by some constant M. Let E > 0 be given. Choose an N such that )qUn>NFn) < ~ ,  

define ho to be ~Xu~<~F~. Then, ho(~)p(~) = g(~) on t.Jn<_NFn, so that Ilho~ - gll < E. Since 

Wo is closed, g e Wo; furthermore all such gs are dense in L2(E), whence L2(E) C Wo. 
Since Wj _l_ Wk, 2 j E fq E is a set of measure zero, and since @Wj is dense in L 2 (R), it follows 

that Uj 2 j E = R. []  

Corollary 1. 
The equivalence class .A4~ can be characterized in the following two ways: 

1. A4~  ~ s = N n=  0 n, 

2. A4~ is precisely the collection of all MSF wavelets. 

Proof.  By Theorem 3, V0 is invariant under Gn for all n if and only if Vo is invariant under 
translations by all real numbers. This is equivalent to p being a MSF wavelet. [ ]  

3. A Characterization of  Mn 

Suppose p is a wavelet that is in ZZl. If T~ f ~ W0, then by taking the Fourier transform, we 

have e -i ~r- f ~ Woo, and vice versa, so W0 is invariant under translations by half integers if and only 
if ~ is invariant under multiplication by e -i 9". Because of this, we shall proceed with the analysis 
in the frequency domain. 
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If f ~ W0, then we can write f = )'-~k~z c k T k ~  t ,  SO taking the Fourier transform of both 

sides yields fi = h e  for some h ~ L2([0, 27r)). Hence, we can describe ~ by {h(~)~(~) : h 
L2([0, 2zr))}. Suppose that ~ e E = supp(~). If ~ is invariant under multiplication by e - i t  ~, 
then for m = 1, 

�9 1 ^ 

e- '  ~h (~ ) r  = g(~)r  

for some g ~ L2([0, 2Jr)). Note that if ~ 6 supp(~/), then e-i�89 = g(~). Let ~ ~ supp(r  
let k be an odd integer. Then, 

g(~) r  + 2kJr) = g(~ + 2k~r) ~(~ + 2kzr) 

= e -i(�89 h(~ + 2kzr) r  + 2kzr) 

= -e-J�89 ~ h(~) r + 2kJr) 

= -g (~)  r  + 2krr). 

This calculation shows that ~ cannot have both ~ and ~ + 2k~r in its support. We have established 
the first characterization theorem. 

Theorem 4. 
Let r be a wavelet. Then ~p ~ E1 only/fE = supp(~) is not partially self similar with respect 

to any odd multiple of 2~r. 

Corollary 2. 
/ f supp(r  = JR, then r ~ MO. 

Corollary 3. 
If r is compactly supported, then r E .A4o. 

It is interesting to note that most of the wavelets used in practice have this property. It is unclear 
at this point if this has a meaningful interpretation from a numerical analysis point of view. 

Theorem 4 extends to Ln in the following natural way. 

Theorem 5. 
Let r be a wavelet. Then ~ ~ En only if the support of ~ is not partially self similar with 

respect to any odd multiple of 2JTr for all j = 1, 2 . . . . .  n. 

Proof .  Let lp ~ En. Hence, 

�9 1 ^ 

e-'~r~h(~)~p(~) = g(~)~(~) 

for some g ~ L2([O, 2Jr)). Let 1 _< j _< n, and let k be an odd integer. Then, by a similar 
computation, 

= e-i(~r)(~+2Jkn'h (~ + 2Jk:rr) ~0 (~ -I- 2Jkrc) 

= e-i2"k~-jJre -i~r~ h(~) ~t (~ -t- 2Jkrr) 

=e-i2nk~-jng(~) ~ (~-l- 2Jkzr ) 

as above. [ ]  

We have now established necessary conditions for wavelets to be in the equivalence classes 
A4k for k not equal to 1 or ~ .  This does not shed light onto whether such wavelets exist. Fortunately, 
to aid in the search, the converse of Theorem 5 also holds. 
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Theorem 6. 
Let ~ be a wavelet and let E = supp(~)  be such that it is not partially self similar with respect 

to any odd multiple of2Jzt for j = 1,2 . . . . .  n. Then Vt ~ s 

P r o o f .  It suffices to show that 

�9 l ^ 

e - ' ~ p ( ~ )  = g (~ )~ (~ )  

for some g E L2([0, 2:rr)). 
Let F C E be such that ~ : F -+ [0, 2~r) is a bijection. (It can be shown easily that 

r : E --+ [0, 2Jr) is a surjection.) The injeetive property of  �9 can be assured in the following manner: 
for each ~ ~ [0, 2zr), define the set Z~ = {m~ ~ Z : ~ + 2m~r  ~ E}, then for ~ choose k~ to be 0 if 

6 E,  if not, choose k~ = min{m > 0 : minZ~}, or else choose k~ = max{m < 0 : m ~ Z~}. Let 
F = {~ + 2k~Jr : ~ 6 [0, 2~r)}. Note that by construction, F is 27r translation congruent to [0, 27r). 
Hence, 

�9 1 

e-'~r~ XF(~ ) --_ g(~) 

where g(~) e L2(F)  and is 2zr periodic. Thus, for ~ e F,  

�9 I ^ 

e - '  ~ l p ( ~ )  = g ( ~ ) ~ ( ~ ) .  

For almost any ~ 6 E \ F ,  there exists a ~'  6 F and an integer l~ such that ~ - ~P = 21ur. 
Moreover, by hypothesis, l~ is an even multiple of  2 n, since E is not partially self similar with respect 

to any odd multiple of  2Jzr. Since e -i ~ is 2nrr periodic, we have that for ~ ~ E - F ,  

e - i ~ ( ~ )  = e-i~r((+2l~n)~p (~' + 2l~zr) 

This completes the proof. [ ]  

�9 1 t ^  

= e - '  ~r~ ~ (~' + 2l~zr) 

= g (~') ~ (~' + 2 l ~ r )  

= g ( ~ ) ~ ( ~ ) .  

We have established the following characterization of the AdnS. 

Corollary 4. 
The equivalence class .A/In consists of all wavelets ~ such that the support of ~ is not partially 

self similar with respect to any odd multiples of 2kTr, for k = 1, 2 . . . . .  n but is partially self similar 
with respect to some odd multiple of 2n+ l rr. 

4. Examples 

In this section, we will present examples of  wavelets that are in the first four equivalence 
classes, with the last being in Ado but it is not an MRA wavelet, and hence cannot be compactly 
supported. The tool used to generate these wavelets is operator interpolation. Let ~Owl and ~w2 be 
MSF wavelets, with corresponding wavelet sets WI and W2, respectively. By Theorem 2, W1 is 2zr 
translation congruent to W2. I f  tr : W1 ~ W2 is affected by this translation congruence, then tr 
can be extended to a measurable bijection of R by defining tr (x) = 2-ntr  (2nx) where n is such that 
2nx ~ Wl. 

If  tr is involutive, i.e., 0 .2 is the identity, and if h l and h2 are measurable, essentially bounded, 
2-dilation periodic functions (i.e., h l (2x) ---- h i (x)) ,  then lp defined by 

= hi 'w1 d- h2~w2 
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is again a wavelet provided the matrix 

( h2otr  -1 h l o a -  ] 
(4.1) 

is unitary almost everywhere. (Since tr -1 is 2-homogeneous, and the h i s  are 2-dilation periodic, in 
general it suffices to check this condition on W1.) A complete discussion of this can be found in [3]. 
Note that the interpolated wavelet ~ has the property that supp(~/) C WI U W2. Further, note that 
since tr on W1 is given by translations by integral multiples of 2zr, tr completely describes the partial 
self similarity of W1 U W2 with respect to multiples of 27r. 

In the following examples, tr will always be involutive. 

Example  1. We shall now present an example of a wavelet in A41, which by Corollary 4 is 
equivalent to E = supp(~) being not partially self similar with respect to any odd multiples of 27r, 
but does have partially self similarity with respect to some multiple of 4~r. Consider the following 
two wavelet sets: 

W I = [  8Zr 4Zr [24:rr , 32~r) 

W2 =  [ 8:rr 4:rr [ 2 ~ , 3 ~ , )  

[ 3 ~  3 ~ ) [ ~ 0 ~  ~ )  
U ' 7 U ' 7 " 

A routine calculation shows: 

~r(t) = l! -4~ ,  ~ s  

This cr is involutive. Indeed, since a([3~_.~.~, 3~_~)) = [~. ,  ~ )  and [~-, ~-) = 2[~-, ~ ) ,  for 
~: ~ [.3..~_, L~.), ~r2(~) = tr(~ - 4zr) = �89 - art)) = �89 - 8rr + 8~r) = ~. A similar 

computation shows that ~r 2 is the identity on [ ~ ,  ~ ) .  
Construct hi and h2 as follows: 

1 
h l  = Xwlnw2 ~ ~Xr4Jr 6rr~, ,r30~t 31rt~ ~/2 t -7- ' "]- ) w t ""if ' "-~'-- ) 

1 
= x 

[ 7 ' 7 " /  " 

We need to check the condition of the matrix in Equation 4.1. 
It suffices to verify that the matrix is unitary on W1. Clearly, on W1 A W2 the matrix is 

unitary, indeed it is the identity there. On [L~., L~.), hi = h2 o tr-1 = ~'1 Furthermore, if 

E [ - ~ ,  ~ - ) ,  h2(~) = h2(2~) = -722" Finally, tr-l(~) = ~ -4n"  ~ [~-, ~ )  = � 8 9  

hence hi o tr- l(~) = ~ .  Thus, the matrix is simply: 
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which is unitary as required. A similar computation shows that the matrix is also unitary on [ ~ ,  ). 
[ ]  

Example 2. Here we give an example of a wavelet in .A/[2, which by Corollary 4 is equivalent 
to E = supp(~/) being not partially self similar with respect to any odd multiples of 2Jr or 47r, but 
does have partially self similarity with respect to some multiple of 8:r. Consider the following two 
wavelet sets: 

[ )[ )[ ll2sr 16st -st  U 14st 
W1 = -8st, 15 U - 1--ft" 15 '  

[8sr 14st) [ 16zr] [ll2sr ) 
U i-5' 15 U Jr, 15 ] t ' JL 15 ,8st 

[ 112.)[14. 2 )  
w2= -sin ~ u 15' 

t.J 14sr , , , )  
15 ) U  L 30 ' L 1 5  ' " 

A routine calculation shows: 

.. [~ 
1~ + 16~r, 

~ ~WINW2 
r 112. 225sr.'~ 

~ L  15 , 30 ] 

As in Example 1, a is involutive, and define h l and h2 analogously: 

1 
hi  = Xwlnwz + ---~X,_16n __~, ,rll~ z~n~ ~/2 t -rr, ,,),~t-rr-.-3-0-J 

1 (X[ ,~ '~)- X[-~,15rt)) �9 h2= ~ x  --ff '-~ 

These functions satisfy Equation 1. []  

Example 3. We shall now present an example of a wavelet in M3. Consider the following wavelet 
sets: 

[ 480rr'~ [ 32n" ) [  30rr 16sr'~ 
WI = -16zr, ~- ] U  ~ , - J r  tO 31 ' "~ ] 

U [  16zr-'31 30zr'~]U [rr, 32:r ~--~-] U L[480rr31 ' 16rr) 

[ 4 8 0 s t ) [  30st 2 )  
W2 = -16st, 31 t.J 31 ' 

U [  16Jr 30Jr~u[zr,  32zr~u[3-~-,16zr)  U[9601r 31Jr~ 
31 ' ~i ) -77-I k ~ '  : " 

Then, cr is given by: 

I! a(~) = - 16st, 

+ 327r, 

~WtnW2 
r4~. ~) 

~L 31 , 
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Again,  as in Example  1, cr is involutive;  analogously  define h i  and h2 as: 

Example 4. 
wavele t  sets: 

1 
h l  = X w i n w 2  q- ---'~X, 32rr _~, ,r4SO;r 31~rx ~/2 t-- -rr  ' - "  '~t--rl- ' --~- J 

1 
h2 = . [ ]  

In this example  we  shall construct  a n o n - M R A  wavele t  in .h4o. Cons ider  the fo l lowing  

W I =  7 7 U 7 U U - 

[ 8rr 4 7 )  [ ?  ? ) [ 2 4 Z r  32:rr) 
W 2 . . . .  U U . 7 '  ' ' 7 

Both o f  these wavelets  are n o n - M R A  wavelets .  It is shown in [8] that the interpolated wavele t  also 

is not  an M R A  wavelet .  We have that tr is given by: 

 )o[v =) 
t r ( ~ ) =  ~ - - 2 z r ,  ~ E L 7 ,  7 ]  

Construct  h l and h2 as fol lows:  

1 
h l  = X w l n w 2  "JI- --~Xr 32rr 281r . . . .  6st 7srx 

~/2 l - - 7  ' - - T  )vl '7  ' -7-" 

1 

- -  [ 7 , 7 , !  " 

[] 

References 

[1] Baggett, L., Carey, A., Moran, W., and Ohring, P. (1995). General existence theorems for orthonormal wavelets, an 
abstract approach, Publ. Res. Inst. Math. Sci., 31, 95-111, MR 96e:42060. 

[2] Baggett, L., Medina, H., and Merrill, K. Generalized multiresolution analyses, and a construction procedure for all 
wavelet sets in ~n, j. Fourier Anal. AppL, to appear. 

[3] Dai, X. and Larson, D. (1998). Wandering vectors for unitary systems and orthogonal wavelets, Mem. Am. Math. Soc., 
134, no. 640, MR 95m:47067. 

[4] Hernandez, E. and Weiss, G. An Introduction to Wavelets, CRC Press, Boca Raton, FL. 

[5] ionascu, E., Larson, D., and Pearcy, C. (1998). On wavelet sets, J. Fourier Anal. Appl., 4, 711-721, CMP 1 666 001. 

[6] Merrill, K. Lecture Notes, Wavelet Seminar, University of Colorado, Boulder, CO. 

[7] Speegle, D.M. (1999). The s-elementary wavelets are path-connected, Proc. Am. Math. Soc., 127, no. 1,223-233. MR 
991):42045. 

[8] Weber, E. Applications of the wavelet multiplicity function, Contemp. Math., to appear. 

Received April 8, 1999 

Revision received September 21, 1999 

Department of Mathematics, Texas A&M University, College Station, TX 77843-3368 
e-mail: weber@math.tamu.edu 


