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ABSTRACT. The Carles•n •perat•r is cl•sely related t• the maximal partial sum •perat•r f•r F•urier series. 

We study generalizations of  this operator in one and several variables. 

1. Introduct ion 

Let "n" = [0, 2"I"] and for f ~ L I ( T )  let S n f ( x )  denote the partial sums in the Fourier series 
for f .  Carleson [1] proved that if f E Lz(T), then Snf (X)  converges to f ( x )  almost everywhere. 
Hunt [4] extended this result and proved that if p > 1 and f e Le(T),  then the above convergence 
also holds. The proof of the convergence is based on the following fact. Set 

N f ( x )  = sup ISn f ( x ) l ,  x E 7s f E LI(T) �9 
n 

Then the maximal partial sum operator N is bounded on LP('rf), 1 < p < oo. 

The Carleson operator C is closely related to N and is defined by the formula 

1 I 
C f ( x )  = sup - -  e-i~t f ( t )  dt , 

~ x -- t 
x ~ T ,  f E L I ( T ) ,  

where the integral is taken in the principal value sense. It is proved in [4] that C is bounded on LP(T) 
for 1 < p < oo and the boundedness of N is a consequence of this result. 

An alternative proof of convergence almost everywhere of Fourier series was obtained by 
Fefferman [2]. 

Sj61in [7] considered an analog of the operator C in several variables. This is obtained by 
replacing the kernel 1Ix by a Calder6n-Zygmund kernel k. Let s > 2 be an integer and assume that 
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k is a complex-valued function on R s \ {0}, which is homogeneous of degree - s  and belongs to 
C s+l OR s \ {0}). Also assume that 

f k(x)d S(x) ---- O, 
Ss- I  

where d S denotes the area measure on the unit sphere S s-1 . Set 

Cf (x )=  sup l ]  k(x- t )e- i~ ' t f ( t )d t  , x ET  s, f EL I(T s) , 
~ R  s g 

where the integral is taken in the principal value sense. It is proved in [7] that the operator C is 
bounded on LP(T s) for 1 < p < oo. 

The proof in the case of several variables is different from the one-dimensional proof in [4] at 
some points. The greatest difficulty in the case s > 2 lies in the proof of the inequality needed for 
the change of pairs, in which one estimates an expression of the form 

f k ( x - t )  ( 1 - e i ~ ' ( x - t ) ) h ( t ) d t ,  

o) 

where w is a cube in ]~s, x ~ w, and h 6 Lt(w).  In the one variable case k(t) = t -1 and 

k(t) ( 1 - e i ~ ' t ) = t - l ( 1 - e  i~t) 

is a C ~ function, which makes the estimate of the above integral easy (see [4, p. 252]). In the case 
when k is a Calder6n-Zygmund kernel, the function k(t) (1 - e i~'t) has a singularity at the origin 
and we need a new idea to get the desired estimate (see [7, p. 72-75]). 

The operators C can also be defined in a similar way for f ~ LP(•s), 1 < p < c~, s > 1. By 
use of  the homogeneity of  the kernels 1/x and k(x) it is proved in [7, p. 78] that the corresponding 
operators are bounded on Lp(Rs), 1 < p < ~ .  

Here we shall consider some generalizations of  the above operators. To formulate the problem 
let us first introduce some notation. Assume that ~p E C ~ ( R )  is even and that supp ap C {x; 1/2 < 
Ix l _ 2} and also that 

OO 

E ~ ( 2 J x ) = I  f o r x # O .  
--00 

Set qg(x) = ~p(x)/x so that 

1 ( 2 J x )  . ~0(2Jx)---- 2-'~X~ 

We also set (pj (x) = 2J~o(2Jx) and then have 

1 
~oj(x) = x ~ 

and supp ~oj C {x; 2 - j - I  _< Ixl _< 2-J+l} .  It is also clear that 

1 
- ,  x ~ 0 ,  ~Oj(X) = X 

--00 



A Littlewood-Paley Inequality for the Carleson Operator 459 

and 

(x) = i ,  
x 

0 

0 < l x l < l .  

We let ( r j ) ~  denote the Rademacher functions and set 

O~ 

ks(x) = ~'~rj(s)~oj(x), x E R, s E [0, 1] . 

We then ask the question if it is possible to replace the kernel 1Ix in the definition of the operator 
C by the kernel ks. We shall prove that this question has a positive answer. More than that we shall 
prove a more general result. 

It is clear that ks satisfies the following conditions: 

k E C2(R \ {0}), 

1 
Ik(x)l _< C Ixl (1.1) 

1 
x2-- , 

Ik'(x)l _< C (1.2)  

1 
Ik"(x)l ___ c ixl---- 3 , (1.3) 

k is odd,  (1.4) 

and 

suppk C [ -2 ,  2] .  (1.5) 

Here the constants C can be taken to be independent of s. We can now formulate our first theorem. 

Theorem 1. 
Assume that k E C2(• ",. {0}) and that k satisfies conditions (1.1) through (1.5). Set 

S f ( x ) = s u p  / k ( x - t )  e - i~ t f ( t )d t  , x E T ,  f ELI( '~) .  
~ER 

Then 

IISfllp ~ Cpllfllp, 1 < p < oo , 

where II lip denotes the norm in LP(T). 

We remark that one cannot directly apply Hunt's proof in [4] to prove this theorem. This is 
because the function k(t) (1 - e i~t ) is not necessarily continuous at the origin. However, if one uses 
the modifications in Sj61in [7] mentioned above, a proof can be obtained. 

As a corollary we prove the following Littlewood-Paley type inequality for the Carleson oper- 
ator. 

Corollary 1. 
Let n be a measurable real-valued function on T. Set 

C j f ( x ) = f ~ o j ( x - t ) e - i n ( x ) t f ( t ) d t ,  x E T ,  j = 0 , 1 , 2  . . . . .  

T 
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Then 

I1( o )"211 Icj f l  z <_ Cpll f l lp ,  1 < p < oo ,  

p 

where the norms are taken in LP(T), and Cp is independent o f  the function n. 

Theorem 1 has the following analog in several variables. 

Theorem 2. 
Let s >_ 2 and assume that f2 E C s+l (R s \ {0}) and that s is homogeneous o f  degree 0 and 

also that 

f f2(x)d  S(x)  = O. 

SS-I 

Let s ~ C s+l (0, 00) and assume that 

1 
le(r)l ~ c - - ,  

r s 

1 
le'(r)l < C r.~+-~- i- , 

{ { 1 
s <_ C r2S+----- ~ , 

and also that e(r) = O for  r > 2. Set k (x )  = s163 for  x ~ R s ~ {0} and 

Then 

S f ( x )  = ~R."sup iL f k(x  - t) e-i~'t f ( t )  dt  , x T', 

IISfllp <_ Cpilf l lp,  1 < p < o0 ,  

where the norms are taken in LP(TS). 

We shall also prove weighted estimates with respect to Ap weights (Theorem 4) and moreover 
vector valued estimates (Theorem 5). This last result has an application in [5]. 

2. Proofs of  Theorems  1 and 2 and Corollaries 

We shall now prove Theorem 1. We shall first use some standard Calder6n-Zygmund theory, 
but for completeness we give some details. 

Assume that k satisfies (1.1) through (1.5). It is easy to see that 

r>0Sup ~r r ei~Xk(x) dx  < C ,  

where the integral is taken in the principal value sense. See Stein [8, p. 36--37]. Then set 

k(x) ,  Ix[ > e 
k~(x) = [0,  Ixl _< 6 '  

6 > 0 ,  
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and T e f  = ke * f .  We then have ke E L 2 and Ikel ~ C. One also has 

f lk~(x - y) - k ~ ( x ) l _  C, y # O, dx 

Ixl>2[y[ 

and 

f lk(x y) - k ( x ) l d x  < C, 

[x[>__21yl 

It follows from [8, p. 35] that 

y # O .  

IITefllp ~ Cpllf l lp,  1 < p < ~ .  

Also l i m ~ 0  TEf = T f  exists in L p norm if f E LP(R),  1 < p < oo. Hence, [ITfllp < 
Cpllf l lp,  1 < p < c~. 

The proof shows that Cp = O(p)  as p ~ o0. 
We shall now study the corresponding maximal operator. 

Claim.  

Set 

T ' f  (x) = sup ITef  (x)l �9 
e>0 

Then T* is o fweak type (1, 1) and strong type (p , p), 1 < p < oo, with constant C p = O ( 1 /  ( p - 1 )  ) 
as p --+ 1, and Cp = O ( p )  as p ~ oo. It follows that lime~o Te f (x ) exists almost everywhere if  
f 6 LP(IR), I < p < ~ .  

P r o o f  of  Claim.  Choose ~o E C~(R)  such that supp ~o C ( -1 ,  1), f ~o dx -- 1 and ~0 > 0. Set 

~o,(x) = 1 ~o(x/~) ,  ~ > O .  

First assume Ix l 5_ 2e. We have 

f 
k ~Oe(X) = ] k(y)~oe(x - y ) d y  

[yl<3e 

= f k(y)(~,(x - y) - -  

lYl<3e 

~oE(x)) dy  

and 

1 ( x ) _ l  (x  y )  [Yl 
k O e ( X - y ) - t p E ( x ) l =  etP ~ etP e -  _<C e-- T .  

It follows that 

f ,y, [k �9 ~Oe(X)l < C 7--7, - -  dy  = C - .  
8 

lYl_<3e 

1 for Ixl < 2e. Hence, Ik * ~0e(X) - ke(x)l < C ~ 
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Then 

Now, assume Ix l > 26. We have 

I 

~o~(x) - ke(x)l = [ k (x  - y)~o~(y)dy - k(x)] Ik 

I y <E 

= f ( k ( x  - y )  - k ( x ) )  go~(y) dy 
% 

Y -  

< C ~-~ lyl~o.(y) dy < C x-- ~ . 

lyl<~ 

Set 

It follows that 

and hence 

1, Ixl _< 1 
~p(x) = x__~_l ' Ix[ > 1 

1 ( x ) { 1  I x , < e  
~ ( x )  = - ~ ~ '  - = 1 E 2 t~ 

~ = x - r ,  I x l > e  

Ik * ~oe(x) - ke(x)l < COte(x) 

I(k * ~oe - ke) * f l  < C~0E * I f l  < C M f ,  

where M f  denotes the Hardy-Littlewood maximal function of  f .  Thus, 

ITEII < C M I  + I(k * ~0e) * f l  

i f l  < p < c x ~ a n d f E L  p . w e h a v e  

(ks * ~oE) * f = ~oe �9 (ks * f )  

and letting 8 ~ 0 we obtain 

It follows that 

(k * ~oE) * f = ~o~ * (T  f ) .  

T*f <_ c M I  + c M ( T f ) .  

Hence 

liT*Ill  < Cpllfl lp,  1 < p < cx~ p - -  

where Cp = O ( p )  as p ~ cx~. 
A weak (1, 1) estimate for T* follows as in [8, p. 43-45]. Interpolation then gives 

= , p ---~ 1 . 

The claim is proved. [ ]  

Assume co is a bounded interval, f 6 L~(o9), f = 0 outside o9 and I l f l l~  < 1. We have 

t T* f P dx  < Cp I f l e d x  , p > 2 ,  

(2.1) 
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and invoking the formula 

we are able to prove that 

-~ xn 
e x = 

0 

f eaT*fdx < CIo91, 
to 

if a > 0 is small enough. It follows that 

]{x E a~; T * f ( x )  > )~}1 < Ce-aZlogl' X > O, 

and for a general function f ~ L~(og) we obtain 

I{x E o9; T * f ( x )  > 3.}1 < Ce-aX/llfll~logl, ~. > O. 

To prove Theorem 1 we can now use Hunt's proof in [4] with modifications according to [7, 
p. 69-75]. The proof in [7] is carried out in dimension s > 2, but it is easily modified to work also 
in dimension s = 1. For instance, on [7, p. 73], a kernel H is defined by the formula 

n ( t )  = CoJs+l/2(Itl)Itl - s - l / 2 ,  t ~ R s \ {0}, 

where Js+l/2 denotes a Bessel function. In our case s = I we simply take H as the Fejtr  kernel on 
the line. 

We shall now use Theorem 1 to prove Corollary 1. 

P r o o f  o f  C o r o l l a r y  1. We set ks(x) = ~_,~ rj(s)~oj(x), where N is a positive integer and tpj is 
defined as in the introduction. Also set 

A s f ( x )  = / k s ( x -  t ) e - in (x ) t f ( t )d t ,  x ~ T, s ~ [0, 1] . 

T 

The kernels ks satisfy the conditions (1.1) through (1.5) uniformly in s and N and it follows from 
the proof of  Theorem 1 that 

1/~ 

< Cp I f ( x ) l P d x  , l < p < o o ,  

where Cp is independent of  s and N. We have 

N 
A s f ( X )  = E r j ( s )  f t)e - i n ( x ) t f ( t ) d t  

o T 
N 

= E rj (s)Cj f ( x ) ,  
o 

and invoking a well-known inequality for the Rademacher functions we obtain 

I( 0 )' ll ICj f [  2 < Cpllf l lp,  1 < p < oo.  

P 
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Letting N ~ oo we obtain Corollary 1. [ ]  

Let K denote a subset of the non-negative integers. Then the kernel 

k(x) = ~ ~oj(x) 
jEK 

satisfies the conditions in Theorem 1. We remark that the corresponding operator S appears in the 
proof of Lemma 3 in Prestini [5]. 

The following corollaries deal with maximal operators obtained by considering sharp cut-offs 
and smooth cut-offs, respectively. 

Corol lary 2. 
Let k satisfy the conditions in Theorem 1. Set 

S ' f  (x) = sup 
E>0 

f k(x - t ) e - i ~ t f ( t ) d t  , 

t~T;Ix-tl>E} 

x E T ,  f E L I ( T ) .  

Then S* is bounded on L P (T) for 1 < p < oo. 

Proof .  It follows from (2.1) that 

S * f  < C M f  + C M ( S f )  

and the boundedness of S* is a consequence of this estimate. 

Corol lary 3. 
Set 

[ ]  

"Sf(x)= sup IfT (~rJ(s)qgJ(X--t)) e-i~tf(t)dt x E T ,  f E L I ( ~ ) .  

Then "S is a bounded operator on L P (qF) for  1 < p < oo. 

Proofi  Set k(x)  = y~.~o r j (s)~oj (x) and 

Ik(x), Ixl > e 

kAx) = | 0 ,  Ixl _< e 
fore  > 0 .  

Fix jo and set e = 2 -j~ Then k6(x) = ~-~.Jo ~ rj(s)~oj(x) for Ixl > 10e and 

I kE (x) - ~ r j (s)~oj (x) 
0 

1 
_ C -  f o r l x l ~ 1 0 e .  

e 

It follows that 

"Sf < C M f  + C S * f  

and an application of Corollary 2 gives the boundedness of S. [ ]  
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Proof of Theorem 2. From the conditions on f2 and ~ in Theorem 2 it follows that 

Ik(x)l ~ Clxl -~ , 
[O~k(x)l <_ Clxl -~-1 for led = 1 ,  

Io kr <_ Clxl - s - 2  for Io~1 = 2 ,  

Io kr ~_ Clx1-2s - l  for loll = s + 1 .  

Using these estimates we can then prove Theorem 2 in the same way as Theorem 1. We omit 
the details. [ ]  

T h e o r e m  3. 
Let k satisfy the conditions in Theorem I or Theorem 2. For 1 < p < oo and f ~ LP(~  s) set 

i 

S f ( x )  = sup I f k ( x - t ) e  -i~'t f ( t ) d t  , x E R s . 

Then S is a bounded operator on L p(RS) for 1 < p < oo. 

P r o o f .  The proof is simple since k has compact support. We give the proof for s = 1 and remark 
that the proof for s > 2 can be obtained in the same way. 

We first observe that if f q LP(]~) and f has support in an interval of  length 1, then it follows 

1/p 

(2.2) 

from Theorem 1 that 

if 1 < p < oo. For a general f E LP(R) write f = )-]~oo fJ,  where f j  has support in the interval 
[j,  j + 1 ]. It is clear that 

S f  < ~ S f j  and 
--00 

O0 

ISfl p < Cp Z IsfJl p 
--OO 

and the boundedness of  S follows if we invoke (2.2). [ ]  

3. Weighted and Vector-Valued Inequalities 

In this section let the operator S be defined as in Theorem 3. We shall use weight functions 
w which belong to the Muckenhoupt classes Ap. For the definition of Ap, see Garcfa-Cuerva and 
Rubio de Francia [3, p. 396]. 

Theorem 4. 
Assume 1 < p < oo and that w E Ap. Then 

f lSflPwdx <_Cp,w f lflPwdx. 
R.~. Rs 
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Proof .  A proof can be obtained by use of the proof of [6, Theorem 2.1 on p. 32]. 

T h e o r e m  5. 

A s s u m e  l < p < oo a n d  l < q < ~ .  Then  

s q) lqll  c qllt  Jqll 

[] 

where  the n o r m s  are  taken  in L p ( R s ) .  

Proof. The inequality follows from Theorem 6.4 on p. 519-520 in [3]. [ ]  

The estimate of Theorem 5, in the case q = 2, 1 < p < 2, is used in the proof of Lemma 3 
in [5]. 
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