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INTRODUCTION 

In previous papers (lwAo, 1968; IWAO and KUNO, 1971), a comprehensive method 

for analyzing the aggregation patterns in biological populations has been developed 

on the basis of the relation of mean crowding (m) to mean density (m); for a 

given quadrat size, the relation of m on m in a series of populations having common 

properties can widely be fitted by a linear regression, m=o~+Bm. Here, ~ indicates 

whether a single individual or a positive or negative association of individuals is the 

basic component of the distribution, and ~ suggests how such basic components 

distribute themselves over the space. 

It is well known, however, that statistical characteristics of the distribution of 

a given population may often be different when the size of the quadrat used is 
$ 

different. The purpose of the present paper is first to examine some basic m-m 

relationships that are expected when quadrat size changes successively in a single 

population as well as in a series of populations having common properties, and 

secondly to develop a method for detecting the spatial structure of biological popu- 

lations on the basis of these relationships. Similar lines of research have been 

attempted by GREIG-SMITtt (1952) and MORISITA (1959); the former proposed a 

method for detecting the approximate area occupied by a clump 2 (refer to as clump 

area, in distinction from clump size, the number of individuals per clump) by using 

the mean-square-versus-quadrat-size relation in a grid of contiguous quadrats, and 

the latter devised a means of detecting not only clump area but also the spatial 

pattern of individuals within clumps (intra.clump distribution) by use of his I,-index. 

Both the methods, however, do not provide any information on the distribution 

pattern of clumps themselves, which is often more desirable to know by ecologists 

than the clump area. 
* * 

Although the m-m method is intimately related with L, the m-m relation with 

successive changes of quadrat size in a single population (unit-size relation) may 

suggest some additional information such as the distribution pattern of clumps, at 

least in some cases. Moreover, if the distribution maps for several populations of 

1 Contributions from JIBP-PT, No.151. 
2 'Clump' is used as a general term which includes not only aggregate of individuals related 

to innate properties of the species ('colony') but also any concentration of individuals 
in response to environmental heterogeneity. 
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the species under study are available, we can get the m-m relation between popu- 

lations: for each of successive quadrat sizes (series relation) as well. The more 

detailed picture of the spatial structure of the species is thus obtainable by the 

combined use of both the unit-size and the series relations of m on m. 

T H E O R E T I C A L  CONSIDERATIONS 

Random Distributions 

When individuals are distributed purely at random over the whole area (assumed 

infinite), we have a Poisson distribution at any size of the quadrat  unit: 

mu:m, ,  (1 )  

where u stands for the relative size of quadrat, i. e., the ratio of a given quadrat  

size to the quadrat size taken as a standard ( u = l ) .  Namely, the m-on-m regression 

with changing u passes through the origin ( a ' : 0 )  with the slope of unity (/~'-~1) 1, 

as in the series relation for randomly distributed populations. 

If the area is finite, however, the binomial distribution would be expected and 

the relation is being 

m~=m~-l/N~, =uml -u /N ,  (2) 

o r  

m u :  ( 1 - 1 / T )  mu, (2') 

where Nu is the total number  of quadrats of size u contained in the population and 

T:muN~ the total number of individuals. The regression of mu on mu, therefore, 

passes through the origin but its slope would become somewhat smaller than unity 

( B ' = I - 1 / T ) ,  if the total number  of individuals in the population is not large. It  

shouId be noted that in a series of randomly distributed populations over  the finite 

space, the series m-m relation for a fixed quadrat  size has the intercept of -1/N~ 

and the slope of unity, which is different from the unit-size relation in a single 

population. 

Since usually T is not so small in our cases, the following discussion will be 

confined to the infinite population. 

Uniform (Regular) Distributions 

If every quadrat has the same probability being occupied by an individual but 

the capacity of quadrat is limited, we have the positive binomial distribution. The 

relation is shown by 

m =m-m/k ' ,  

where k' is the maximum number  of individuals possible in a quadrat  (IWAO, 1968). 

This pattern may be expected when each individual occupies an exclusive space 

1 Since the  m - o n - m  regress ion  in the  uni t -s ize  re la t ion  is not  necessa r i ly  ident ical  w i th  
t ha t  in the  ser ies  re la t ion,  the  s y m b o l s  a r and  ~ '  is gene ra l ly  used  to descr ibe t he  inter-  

, 
cept  and  the  slope of the  r eg re s s ion  in the  fo rmer  if m u  is l inear ly  re la ted  w i th  mu. 
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due to territorial behaviour or competition for space. Let assume as a standard the 

small-sized quadrat into which just one territory area could contain (i.e., kS=l ) ,  

then mu=0 for the quadrat size equal to, or smaller than, this. With increasing 

the quadrat size, both mu and kq increase at the same rate, and hence mu/k'u remains 

constant and equals m~. This means that the rn~,-mu relation is linear with the 

intercept of -m~ and the slope of unity. In other words (m~+m~)/mu,  instead of 

m~/rnu, equals unity in this case. Thus the relation is expressed by 

m~ = m ~ -  m~/k'~, = m~,-  m~. (3) 

The completely uniform distribution can be considered as a special case where m , =  

1.0. Thus the intercept a '  will change between 0 and - 1  according to the level of 

density, m~. When k'~ is infinitively large, the distribution converges to the Poisson. 

For a fixed quadrat size, the m - m  relation for a set of populations conforming 

the positive binomial distribution with a common k' is also linear but it passes 

through the origin and has the slope of 1 - 1 / k '  (IWAO, 1968). With increase of 

quadrat size, therefore, the slope B of the series relation will increase towards unity. 

The uniform pattern can be defined without any assumption on the capacity of 

quadrat. Biologically this may happen when the negative contagion process through 

repulsive interaction among individuals takes place as observed in egg deposition of 

the azuki bean weevil, Callosobruchus chinensis  (IWAO and KUNO, 1971). In such a 

case, there may be a particular quadrat size corresponding to the basic habitat unit 

characteristic of the species on which repulsive interaction can operate. For larger 

quadrat sizes, therefore, the distribution pattern may often be clumped. Similarly, 

we can imagine various kinds of non-random arrangements of territories over the 

space, resulting in the change of distribution from uniform to aggregated pattern 

with increasing the quadrat size. 

It might be possible to assume the pattern whose unit-size m - m  relation can be 

fitted by a linear regression with a slope lower than unity, but biological process 

generating such a pattern is not easily conceivable. 

Aggregated  Distr ibut ions o f  Independen t  Indiv iduals  

Aggregated patterns arise from various kinds of processes, and in many cases 

the unit-size m - m  relation would not be linear. There are, however, some cases 

where a linear relation holds at least for a certain range of quadrat sizes. 

IWAO and KoNo (1971) have shown that if a certain number of individuals are 

randomly removed from the population having an arbitrary distribution, m and m 

should decrease at the same rate. The reverse process can be considered as adding 

of individuals with the same rule of spatial disposition. It is possible to assume the 

cases where the change of quadrat size is equivalent to the random removal of 

individuals from quadrats of a given size or its reverse process. 

A simple case is the heterogeneous Poisson mixture. Assume that the whole 
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area be divided into patches of different densities, in each of which individuals are 

distributed at random. Then the following relation can be derived for the range of  

quadrat sizes that are sufficiently smaller than the area of a patch (MoRISlTA, 1959; 

PI~LOU, 1968) : 

* ~ jm~j~  m~, (4) mu = mu 2 

where n~ means the proportion of the area of the jth patch to the total area, m~o~ 

the mean density per quadrat of size u in the j th patch, and m ~ = S n ~ m ~ j ~ .  Since 

m~ and m~c~ change at the same rate with changing quadrat size, Zzr~m~c~/m~ 2 

( = m ~ / m ~ )  remains constant and takes a value of greater than unity (i. e., a '=O, i f > l ) .  

The simplest case falling in this category is the random distribution of individuals 

in a part of the whole area. 

When the quadrat size becomes larger than the area of a patch, the above 

relation does not hold, and the regression will be governed by the configuration of 

patches over the space. 

If there are several populations conforming the above relation but differing in 

the level of mean density, the series m - m  relation falls onto the same regression 

line. Generally speaking, however, the unit-size relation and the series relation are 

not necessarily identical with each other in the aggregated patterns. 

Mosaic patterns will be further discussed later (see p. 102). 

Colon ia l  D i s t r i b u t i o n s  

If the basic component of the distribution is not a single individual but a group 

of individuals, we have a colonial distribution. If the colony is so compact that it 

hardly cuts through even by the edges of the quadrats of the smallest size possible, 

the m - m  relation is simply different in the point that the regression has the intercept 

of a positive value corresponding to me, the mean crowding for the frequency 

distribution of the number of individuals per colony. The slope of the regression 

is determined by the distribution pattern of colonies over the space. The relation 

can be shown by 

* * m 
m - - ~  . L  b u  - . . . . .  - m ~ , ,  ( 5 )  

tabu 

where mb~ and mb~ are mean density and mean crowding of the number of basic 

components (colonies) per quadrat of size u (IwAo and KUNO, 1971). Distributions 

composed of single individuals can be regarded as special cases of the above expres- 

sion where too=0. If rnb~,./m~ remains constant over the range of u as in the 

afore-mentioned distributions of single individuals, a linear regression of m~ on m, 

will be expected. 

The equation (5), however, can not be applied if the distribution of colonies is 

more uniform than random. For the positive binomial distribution of colonies, the 

relation is being 
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m~= (me-  ~, -,,,ej +m~ (for k%,>l ) ,  (6) 
t v  b u  

where k'b~ is the maximum number of colonies a quadrat of size u could contain, 

and me the mean number  of individuals per colony. If such colonies that are 

composed of equal number  of individuals are distributed uniformly, m~/k'~,~ equals 

unity and hence eq. (6) becomes m u = - l + m ~ ,  which shows the completely uniform 

distribution. 

Since usually the colony occupies an appreciable area, however, the chance of 

cutting a colony through quadrat  edges would not be negligible, especially when the 

quadrat is small in size. Within the range that the size of quadrat  is considerably 

smaller than the area occupied by colony, the unit-size m - m  relation is determined 

by the spatial ar rangement  of individuals within the colonies as well as the proportion 

of the total area occupied by colonies to the whole area. If the intra-colony distri- 

bution is random, the relation is similar to that given by eq. (4). Some forms of 

aggregated pattern within the colonies (e. g., presence of density gradient from 

centre to periphery in the dispersal range) may also be similar. In these cases, the 

regression would be linear with ~ ' = 0  and /~'~1. If the intra-colony distribution is 

more or less uniform (positive binomial), the regression is also linear but has a 

negative value of a~ ( 0 > d > - l ) .  

On the other hand, when the quadrat size becomes sufficiently large as compared 

with the colony area, the unit-size m - m  relation similar to the distribution of 

compact colonies would be expected, provided that the probability that any quadrat 

lies across the boundary of a colony is negligibly small. 

A simple case is illustrated by the double Poisson distribution known as Neyman 

type A. NEYMAN (1939) first derived this distribution on the assumption that the 

egg masses of an insect are distributed at random and the larvae emerged from 

each egg mass disperse randomly within a definite area F~ (defined by the number  

of quadrat units). In this case, we have 

m~,=m~/F~,+mern~,= ( 1 + ~ )  m~,, (7) 

where me is the number  of surviving larvae from an egg mass. Since /'~ is defined 

by the number  of quadrat  units, m~l-'~ remains constant over the range of quadrat  

sizes that are sufficiently smaller than the absolute range of dispersal of a larval 

colony. Namely, the m~-on-m~ regression passes through the origin with the slope 

of (1 +-- 1 ). When the quadrat size exceeds the absolute range of dispersal, 
mbul'~ 

F~ takes the value of unity and no further  change occurs. I t  is apparent  that  the 

regression for this range has the intercept of mo and the slope of unity. 

In the distributions comprising loose colonies, the value of oz for the series m - m  

relation will increase until the quadrat size exceeds the area of colony but the value 

of ~ remains to be the same, if the distribution of colonies and the intra-colony 

distribution follow random or aggregated pattern having a constant m J m , ,  ratio 
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(Fig. 1, A). If, however, the spatial distribution of individuals within colonies is 

random but the colony distribution follows either positive binomial or complete 

uniform, ~ would equal zero until quadrat size exceeds colony area and then it 

gradually approaches unity as quadrat  size increases (Fig. 1, B). Also, if the intra- 

colony distribution is uniform but the colony distribution is random, the regression 

for quadrat  sizes smaller than colony area would be divided into two parts with 

/~=0 and /~=1, provided that individuals have no territories. If a linear regression 

B ~, C ~ ,  

- 1  k -1  l~_i 
rn ill m 

Fig. 1. Expected changes in the series m-m relationships with changing the 
quadrat size in loose-colony models. 

A: Distribution of colonies and intra-colony distribution of individuals are 
random; B: Distribution of colonies is uniform and intra-colony distribution 
is random; C: Distribution of colonies is random and intra-colony distri- 
bution is uniform. 
The mean colony size is assumed to be constant over the range of mean 
densities. Thin lines connected points indicate the unit-size relations for 
respective populations of differing mean density. Heavy lines show the 
series relations for different quadrat sizes. The regression for the quadrat 
size equivalent to the colony area indicates by symbol a. The heavy broken 
line in figure C shows a linear regression line fitted to the bending pattern 
in the true relation. 

is incorrectly fitted to such a case, its slope B becomes smaller than the slope 

corresponding to the distribution pattern of colonies. (If individuals have territories 

of a fixed size, obviously /~=0 for the quadrat  size equivalent to, or smaller than, 

the terr i tory size.) For the quadrat size larger than colony area, ~ will rightly 

reflect the distribution pattern of colonies (Fig. 1, C). 

Mosaic Patterns 
Although a simple case of mosaic pattern is briefly mentioned earlier (p. 99), the 

more general expression will be given below. 

Let assume that the general area be divided into several subareas differing in 

mean densities and/or  distribution patterns of individuals. The mean crowding for 
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quadrat size u is then shown by 

* ITom~~ (8) m~ = 
m~ 

where r O is the proportion of j th subarea to the whole area, m~c0> and m~c~> the 

mean density and mean corwing per quadrat of size u in the j th subarea, and m~= 

Irom~c~>. If the unit-size m - m  relation in each subarea can be fitted by a linear 

regression: 

m~ is written as 
I t 2 * = I~r~oz'c~>m~_~ + I~ cj~m,, ~> m (9) 

m, mu mu ~- ~' 

provided that quadrat size u is small relative to the size of any subarea. Since m~cj> 

and m~ change at the same rate with changing quadrat size, Izr/J'cj>m~co>/m~ ~ as 

well as Xnjvz'<~)m~c~>/m~ remain constant and so the m~-on-m~, regression is linear. 

If the individuals are randomly distributed in each subarea, the first term of 

eq. (9) equals zero and 3'ca~=l for all j, and hence the equation becomes identical 

with eq. (4). If only two subareas are contained and all the individuals are distributed 

in the first of them, then the slope becomes ~l-#'c~), which means that the slope 
7~1 

becomes steeper in inverse proportion with the relative size of the subarea occupied 

by individuals. 

Since mosaic patterns may usually be related with the spatial heterogeneity of 

habitat conditions, it is difficult to suppose more or less general patterns after the 

quadrat size exceeds the area of respective patches. In anyway, the regression 

would be bending around the quadrat size equivalent to the area of the smallest 

patch. The relation for the random combination of quadrats (see below) may be 

considered as a very simple model where the mosaic is comprising the subareas of 

equal size that are arranged independently and randomly from each other and the 

quadrats never lie across the boundaries between subareas. 

Random Combination o f  Quadrats  

Let the mean density and the variance of the numbers of individuals among the 

quadrats of an arbitrary size be m and a 2 respectively. Then the sum of h quadrats 

randomly chosen from the population contained total N quadrats would be distributed 
N - h  

with the mean hm and the variance - N - l -  haS" Then we have 

* N - h  � 9  m~ = hm + N:--1-(m 

N * * 
= ~ N : _ i - ( m + l - m ) - i  + ~ l - ~ n  ( ~ _ 1 ) ( m +  l - m ) ]  hm. 

If N>)h,  the above equation is reduced to 

m h :  ( m -  m) + hm (for h _> 1), (10) 
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which means that the m-on-m regression for variable h has the intercept of ( m - m )  

and the slope of unity in the infinite population. (The ratio ~nh/hm equals MORISlTA's 

I%,. See MORISlTA, 1971). Strictly speaking, the relation is applied to the repeated 

random sampling of h quadrats from the population. But, since the probability of 

choosing the same quadrat  more than once is very small in the infinite population, 

eq. (10) would be appropriate as the expected relation when there is no spatial 

correlation among small quadrats comprising the larger units. When the distribution 

pattern in the initial quadrat  size is specified, we can get the unit-size m-m relations 

for various forms of  random distributions of the basic components mentioned before: 

( m - m )  equals zero in the Poisson (eq. 1), - m / k '  in the positive binomial (eq. 3, 

including the completely uniform distribution where - m / k ' = - l ) ,  and mc and (mc-- 

m/k'b) respectively in the Poisson and the positive binomial distributions of compact 

colonies (eqs. 5 and 6). If there is a positive or negative correlation between the 

numbers of individuals in the adjacent quadrats, the slope of the regression with 

variable h will be larger or smaller than unity. Thus the relation shown by eq. 

(10) would be useful as a criterion to detect the spatial correlation among quadrats. 

Supposing that there are several populations whose series m-m relation for the 

initial quadrat  size can be shown by 

m=v~+ ~m, 

the relation will be changed to 

m ~ = ~ +  ( +1) hm (11) 

after h quadrats are combined randomly to form a larger quadrat  unit. Namely, a~ 

does not change but r approaches unity if B, a I initially. 

As mentioned before, eq. (10) may be regarded as a simplified model of the 

mosaic pattern when the quadrat  sizes are larger than the size of subarea. Then, 

from eqs. (9) and (10), we can imagine that the unit-size m-m relation over a wide 

range of quadrat  sizes will be more or less similar to that for loose-colony distribution 

if the mosaic is composed of similarly shaped subareas. 

Pattern Indices 

From the above considerations, it may be concluded that if there is some colonial 

or clumpy structure, the m-on-m regression obtained by successive changes of 

quadrat  sizes would have a turning point around the quadrat size approximately 

equal to the clump area (a colony or a patch of the mosaic). In Figs. 2 and 3 the 

unit-size m-m relationships for several basic patterns are shown schematically. 

Is vs. quadrat  size relations described by MORISlTA (1959) can easily be derived 

from these relations (2nd columns of Figs. 2 and 3), because I, is essentially identical 

with m/rn. 

For detecting the approximate area occupied by a clump, MORISITA (1959) used 

the index I~(u~/I~2~, where I ~  is the value of L calculated for the quadrat  of size 



105 

u and L(~)  is tha t  for the  double-s ized quad ra t  2u. In  t e r m s  of m and m, the index 

equiva len t  to th is  can be expressed  by  

mu . maw hmu - , , (12) 1 
~'h = m u  m h u  m t ~  

where  rnau and mn~ indicate  the  mean  and mean  c rowding  for the  qua d ra t  of h t imes  

a s  la rge  as  the  size u ( h = 2  in the  MORISlTA'S or ig ina l  index) .  When  the  va lues  of 

r~ a re  ca lcuia ted  success ive ly  in a sequence of quad ra t  sizes and plot ted  aga ins t  the  

quad ra t  sizes, the  peak of the  curve  m a y  sugges t  tha t  the  c lump a rea  lies somewhere  

be tween  the two cor respond ing  quad ra t  sizes3 The  behav iour  of this  index  can 

eas i ly  be in te rp re ted  by  reference  to Figs.  2 and 3 (3rd columns) .  Fo r  the  use of 

th is  index,  the  quad ra t  size should be increased  success ive ly  wi th  a common  mult iple .  

Since the  ra index does  not  p rov ide  any  knowledge  on the  d i s t r ibu t ion  pa t t e rn  of 

clumps,  the  fol lowing index  m a y  be more  useful  for our  purpose :  

m~-m~-,  (13) 

where  i = 1 , 2 , 3 , . . ,  s tands  for  the  o rde r  of qua d ra t  sizes. F o r  the  smal les t  quad ra t  

size ( i=1 ) ,  o l=ml /ml .  

As obvious,  this  index indica tes  the  ra t io  of the  inc remen t  of m aga ins t  m while  

the  quad ra t  size increases  f rom ( i - 1 ) t h  to ith,  and  hence i t  t akes  a cons tan t  value  

as  fa r  as  the  m~-on-m~ regress ion  r ema ins  to be l inear.  If the  bas ic  componen t  of 

the  d i s t r ibu t ion  is a s ingle individual ,  the  index is ident ica l  wi th  rn,,/m~; i t  is equal  

to or  l a rge r  than  un i ty  in r a n d o m  and a g g r e g a t e d  d i s t r ibu t ions  respect ive ly .  In  

r a n d o m  or  a g g r e g a t e d  d i s t r ibu t ion  of t e r r i t o r i a l  individuals ,  0f t akes  the  value  of 

zero for  the  quad ra t  sizes sma l l e r  than  the t e r r i t o r y  size, and then i t  t akes  the  

value equal  to or  l a rge r  than  un i ty  for the  l a rge r  qua d ra t  sizes. T h e  same  re la t ions  

also hold for  the  d i s t r ibu t ions  compr i s ing  compac t  colonies, except  tha t  0~ is l a rge r  

than  02. In r a n d o m  or  a g g r e g a t e d  d i s t r ibu t ion  of loose colonies, 0~ t akes  a vlaue 

g r ea t e r  than  un i ty  for the  quad ra t  size smal le r  than  the colony area,  and i t  d rops  

to a lower  level when the quad ra t  size exceeds  the  colony a rea  and ma in ta ins  the  

value co r respond ing  to the  d i s t r ibu t ion  pa t t e rn  of colonies (i .e.  o~=mb~/rnb,,). If the  

in t ra -co lony  d i s t r ibu t ion  is uniform,  0, for  the smal l  qua d ra t  sizes wil l  t ake  the  

value of zero as  before  (see Fig. 3, 4th column) .  

As  out l ined  above,  the  0 index m a y  indicate  not  only  the  a p p r o x i m a t e  c lump 

area,  but  also the  in t ra -c lump d i s t r ibu t ion  and the d i s t r ibu t ion  pa t t e rn  of c lumps  as  

well.  I t  is advan tag ious  tha t  for  th is  index there  is no necess i ty  for  keeping  the 

ra t io  be tween  two success ive  quad ra t  sizes being cons tan t  in a sequence.  Also,  it  

1 Literally this index is identical with the ~ index that has been proposed by IwAo and 
KUNO (1971) for distinguishing the three kinds of density relationships in the mortality 
processes. 

2 MORISITA (1959) suggested that the value of this index is to be plotted against the 
larger quadrat size of the two. But it is sometimes better to plot it against the smaller 
quadrat as seen in the examples given in the next chapter. 
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Fig. 2. Schematic representation showing the expected m - m  relationships with 
successive changes of quadrat sizes (unit-size relation) and changes in pattern 
indices for various patterns of distributions comprising individuals and compact 
colonies. 

, 

Dotted line in the m - m  graph indicates the Poisson expectation. 

should be noted that p may serve as an index to detect the spatial correlation bet- 

ween adjacent quadrats: p equals unity if there is no correlation (equivalent to the 

random combination of quadrats), and larger or smaller than unity if positive or 

negative correlation exists. 

The analysis of the unit-size m-m relation in a single population, however, may 

not be sufficient for detecting the pattern characteristic of the species. If the data 



107 

Distribution Intra-colony 
of colonies distribution 

Random Random 

Random Uniform 

Uniform Random 

Uniform Uniform 

m - m  relation m / m  rl,-index p-index 

m ~ ......... 

o .................. i IL �9 

0 . . . . . . . . . . . . . . .  

- I  

0 1 - 1 -  

-1  0 

m u u 

1 

0 

u 

Fig. 3. Schematic representation showing the unit-size m - m  relationships and changes 
in pattern indices for various patterns of distributions comprising loose colonies. 
Arrow indicates the area occupied by a colony. Aggregated distribution of colonies 
is different from random distribution of colonies only in such a way that the slope 
of the regression after quadrat size exceeds the colony area is greater than unity 
(and hence p ' >  1) (See Fig. 2: compact colony models). 

on severa l  popula t ions  a re  avai lable ,  some fu r the r  in format ion  will  be ob ta ined  f rom 

the values  of ~ and /~ in the  ser ies  m - m  re la t ions  for  respec t ive  qua d ra t  sizes. If 

the  bas ic  componen t  of the  d i s t r ibu t ion  is the  s ingle  ind iv idua l  or  the  compac t  

colony, the  value  of a m a y  not  be a l t e red  by  changing  q u a d r a t  size. If, however ,  

the  d i s t r ibu t ion  is compr i s ing  the loose colonies of a fixed mean  size in number ,  the  

wil l  inc rease  i ts  va lue  wi th  increas ing  the qua d ra t  size to the  point  where  the  

q u a d r a t  size exceeds  the  colony a rea  and then i t  will  t ake  a cons tan t  va lue  corres-  

ponding  to rnc a t  the  la rger -s ized  quadra t s .  The  value  of /~ indica tes  the  d i s t r ibu t ion  

pa t t e rn  of bas ic  components ,  ind iv idua l s  or  colonies, for  a g iven qua d ra t  size. If  the  

change  of # value  re la tes  to /~ r a the r  than  a ,  mos t  p robab ly  i t  is due to the  effect 

of env i ronmen ta l  he te rogene i ty .  However ,  such an  in t e rp re t a t ion  would not  be t rue  
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if the p-graph indicates any tendency for uniformity in the pattern, because B would 

change with increasing the quadrat size in the uniform distributions of individuals 

or colonies (see p. 99 and 102). 

In the foregoing discussion, it is assumed that  any quadrat will never across the 

boundary of a clump. In practical cases, however, the condition may rarely be 

satisfied if the clump is not compact enough. Since the effect of cutting the 

clump through the quadrat edges is difficult to consider theoretically, it will be 

examined by using the artificially constructed populations in the next chapter. 

ANALYSIS WITH ARTIFICIAL POPULATIONS 

Random Distribution of  Colonies: Intra.Colony Distribution is Random 

The four populations conforming the double Poisson (Neyman type A) distribution 

are constructed, in all of which the number  of individuals per colony is a Poisson 

variate with m e - 3  but the mean number  of colonies per 1 cm 2 varies from 0.1 to 

0.4. In compact colony model, the individuals belonging to each colony are treated 

as if they congregate at the centre of the colony, whereas in loose colony model 

they are randomly located within the area of I cm 2. An example of the resulting 

distribution in loose colony model is shown in Fig. 4 A. 

As can be seen from Fig. 4 B, the distribution of colonies is well fitted by the 

Poisson series at any quadrat  size. If the colonies are compact and never cut 

through by the quadrat  edges, the m~-on-mu regression for the population with 

changing quadrat size is parallel with the Poisson line (/~'=1) and its intercept 

corresponds to mc (6 '=3) .  If, however, the colonies are loose, the regression is 

curvilinear; its slope is steep while the quadrat size is smaller than the colony area, 

and then gradually approaches unity as the quadrat size increases. The regression 

becomes linear and parallel with the expected line of 6 ' = 3  and /~'=1 for the range 

of quadrat  sizes larger than 4 ~ 8  cm 2. In some trials, the regression is on the expected 

line, but more usually it has a somewhat smaller value of oz'. This may be interpreted 

as follows: The probability that the quadrats lie across the colony boundaries does 

not become nil even when the quadrat  size is considerably large as compared with 

the colony area, but the degree of spatial correlation between adjacent quadrats 

becomes negligible. Then the pattern would become equivalent to the random 

combination of quadrats where the intercept is somewhat smaller than too. 

The approximate colony area is difficult to be detected directly from the unit-size 

m-m relation, but the p value falls sharply when the quadrat  size just exceeds the 

colony area as is expected. The gradual decrease of p values in the smaller quadrat 

sizes would be due to the fact that the actual area occupied by a colony varies from 

0.25 to 1 .0cm 2. At the larger quadrat sizes, its value is stabilized around unity, 

which also well reflects the spatial pattern of the population (Fig. 4, C and D). As 

the mean density of the population increases, however, the change of p value is 
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Fig. 4. Analysis of artificial populations conforming the random distribution of loose 
colonies with random disposition of individuals within colonies. 
A: Distribution map for a medium-density population. Rectangle indicates the 
standard quadrat size ( u = l : l  cm~). Mean density (ml): 0.6/cm *. Crosses in 
the figune indicate the incipient colonies comprising zero individual, 

B: The unit-size m - m  relation for the population shown in A (open circles). 
Solid circles show the relation for the compact colony model of the same popu- 
lation. Cross symbols indicate the distribution of colony centres. 
C and D: The p-index plotted against quadrat size for the above population and 
a high-density population (m1=1.2). Arrow indicates the colony area. 
E and F: The rh index plotted against quadrat size for the same populations�9 

~k 
G: The series m - m  relations for successive puadrat sizes. 

, 
H: The values of a and /~ in the series m - o n - m  regression plotted against quadrat 
size. 
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limited to a smaller range and hence the detection of colony area becomes less easy. 

The same is true for the r~ index, in which the peak of the curve indicating the 

colony area becomes obscure in high density populations (Fig. 4, E and F). 

The series m - m  relations for respective quadrat sizes in the four populations 

are shown in Fig. 4 G, and the ~ and /~ values calculated for them are plotted against 

quadrat sizes in Fig. 4 H. The value of • is approximately equal to unity at any 

quadrat size as is expected. The ~t value rapidly increases at first and seems to be 

stabilized at the quadrat size of 8cm 2, but it tends to be somewhat smaller than 

the expected value of 3. Thus, when the colonies are loose, the distribution pattern 

of colonies may well be detectable, but the mean crowding for colony size (me) may 

be more or less underestimated. 
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Fig. 5. Ana l y s i s  of art if icial  popula t ions  c o n f o r m i n g  the r a n d o m  d i s t r ibu t ion  of loose 
colonies  wi th  u n i f o r m  in t ra -co lony  d i s t r ibu t ion .  
A:  Dis t r ibu t ion  m a p  for a m e d i u m - d e n s i t y  popula t ion  (m~--0.6) .  

, 
B: T h e  uni t -s ize  m - m  re la t ion for the  popula t ion  i l lus t ra ted  in A. 

C: T h e  p index plot ted  a g a i n s t  q u a d r a t  size. 
D: T h e  rn index plot ted aga i n s t  q u a d r a t  size. 

, 
E: T h e  va lues  of a and /~ in the  se r ies  m - o n - m  r eg re s s ion  plot ted  aga ins t  q u a d r a t  
size. 
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Random Distribution of Colonies: Intra-Colony distribution is Uniform 

The loose colony model of the double Poisson series mentioned above is modified 

in such a way that each individual has a territory of 0. 25 cm 2 without altering the 

spatial disposition of colonies. Since the number of individuals per colony varies 

from I to 8, the colony area varies from 0.25 to 2.00 with the mean 0 .75cm 2 

(Fig. 5). 

Again it is apparent that the m,~-on-m~, regression becomes linear at larger 

quadrat sizes and its slope for this part well indicates the random pattern of colony 

disposition, but the intercept o~' obtained by extrapolation gives a considerably 

underestimated value of me. The 0 value rises from 0 at the smallest quadrat size 

to 3 at the next two sizes, then falls sharply, and gradually approaches unity at the 

larger quadrat sizes. The more gradual change of o towards unity in this than in 

the previous model may be related to the wider variation in colony area. The rn 

index seems to be less indicative for the detection of colony area. 
$ 

The series m-m relation for each quadrat size is generally fitted by a linear 

regression, but the slope ~ changes progressively from 0 at the quadrat size 0. 25 to 

unity at the sizes 16 and 24 as is anticipated (see p. 102). It is obvious that in this type 

of model the distribution of individuals approaches the completely uniform pattern 

when the mean density is very high, and hence the regression would be curvilinear if 

such a crowded population is included in the series. 
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Fig. 6. Analysis  of an artificial population conforming the completely 
uniform distribution of loose colonies with random distribution of 
individuals within colonies. 
A: Distribution map. B: The  p index plotted against  quadrat  size. 

C." T h e  unit-size m - m  relation. Arrow with broken line indicates the 
quadra t  size at which every quadrat  contains one colony. 
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Uniform Distribution of Colonies 
An extreme case is the completely uniform distribution of colonies. Fig. 6 

shows such a pattern where the number of individuals per colony is a Poisson 

variate with the mean 3 and the disposition of individuals within colonies is also 

random. The 0 value drops to zero when the quadrat size exceeds the colony area 

and then it becomes unity when every quadrat contains the same number of colonies. 
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Fig. 7. Analysis of artificial populations conforming the non-overlapping 
(positive binomial) distr ibution of loose colonies with  random disposition 
of individuals within colonies. 
A: Distr ibution map for a medium-density population (mz=0.6).  

, 
B: The  unit-size m - m  relations for ldw- and medium-density populations 
(solid and open circles, respectively). 
C and D: The p index plotted against quadrat  size for the low- and 
medium-density populations, reespectively. 
E and F: The  r~ index plotted against  quadra t  size for the two popu- 
lations corresponding to C and D. 

, 
G: The  values of ~r and fl in the series m-m relation plotted against  
quadrat  size. 
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g* 

Since in this case the colony size is the Poisson variable, the rn,,-on-m~ regression 

becomes to be on the Poission line at large quadrat sizes. The range of quadrat 

sizes at which m~ equals zero, of course, depends on the colony density of the 

population. 

A more realistic situation would be that the colonies are distributed nearly at 

random but without overlapping (i. e., the positive binomial distribution of colonies). 

When the double Poisson populations (p. 108) are modified in this way, we get the 

unit-size m-m relation and the 0-graph as illustrated in Fig. 7. Although the rn,,-m~, 

relation is very similar to that of the double Poisson model, the 0-graph tends to 

have a trough after the quadrat size exceeds the colony area. In a series of distri- 

butions of this type, the value of ~ is nearly equal to zero for the range of quadrat 

sizes that are smaller than the colony area and then approaches unity at larger 

quadrat sizes, which resembles the trend in the afore-mentioned model of randomly- 

distributed colonies with uniform intra-colony distribution. Distinction between the 

both kinds of patterns would be possible by the use of o-graph. 

Aggregated Distribution of Colonies as a Mosaic of  Different-Density Subareas 

When the four artificial populations of the double Poisson series (p. 108) are 

22 

16 / 

14 " 

2 .... " ..... , ' v  

2 

0 2 4 6 8 10 )2 14 16 18 
ra 
i••0 5 10 15 20 25 30 

nl 

Fig. 8. The unit-size m - m  relation and the graphs of p and vu against quadrat size 
in two artificial populations comprising aggregatively-distributed colonies. 
Left: Aggregated distribution of colonies with random disposition of individuals 
within colonies (open circles). Solid circles indicate the relation for compact colony 
model. 
Right: Aggregated distribution of colonies with uniform disposition of individuals 

within colonies. Solid line in the m-m graph shows the relation expected for 
compact colony model. Thin and thick arrows indicate the average and maximum 
colony areas, respectively. 
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combined together to form a mosaic pattern, we get the unit-size m - m  relation as 

shown in Fig. 8 (left) for the quadrat  sizes smaller than each subarea. In the compact 

colony model, it is expected f rom eq. (9) that the intercept of the regression does 

not change (i.e., a ' = 3 )  and the slope B' would be somewhere around 1.197, which 

agree well with the observed values ~ '=2 .  998 and ~'=1.198. 

In the loose colony model, the regression is curvilinear and the slope for the 

range of larger quadrat  sizes is approximately parallel with that for the compact 

colony model as is expected (a '=2 .  106, /9'-1. 217). The p-graph is rather  step-wise; 

the first and third drops of p vlaues are due to incidental clumping of individuals 

in the model population. 

The effect of uniform arrangement  of individuals within colonies is examined 

using another population comprising aggregatively-distributed colonies where the 

colony size varies from 1 to 12 with the mean 6 and each individual has a terr i tory 

of 0. 25 cm e. The unit-size m-m relation and p-graph well indicate the distribution 

pattern of this population (Fig. 8, right). The gradual decrease of p value over the 

range of quadrat sizes 1~8  cm ~ is consistent with a wide variation in the colony area 

ranging from O. 25 to 3. O0 cm 2. 

Double-Clumped Distribution: Colonies are Distributed Randomly within Large Clumps 

In the four populations comprising the randomly-distributed colonies (p. 108), the 

distribution of colonies in quadrats of 4 cm 2 is changed to the aggregated pattern 

conforming the negative binomial series with k - 1  (i. e., ~=2) ,  without appreciable 

change of distribution at the quadrat  sizes of smaller than 1 and larger than 16 cm ~. 

This means that  the colonies are distributed randomly within loose clumps and these 

clumps are distributed rather  regularly over the area (Fig. 9). 

In this case, the unit-size m-m relation shows a convex pattern, and the p-graph 

is step-wise, indicating the presence of double clumps as well as rather  regular 

arrangement  of larger clumps. It  is noted that the p value at quadrat  sizes 4 ~ 8  (--2) 

rightly indicates the distribution pattern of individuals to be expected. The rn index 

fails to show the presence of clumps of 4 cm e. 

As to the series relation, the value of /~ changes from 1 at the quadrat  size 

I cm ~ to approximately 2 at 4 cm * but the value of ~ does not change significantly 

as compared with that for the double Poisson model (1.79 vs. 1.97). This type of 

change corresponds to the increase of colony density within large clumps in high- 

density populations. Instead, if we assume the negative binomial with a common 

p, the random distribution of large clumps having a fixed mean size, we may  have 

the regression with B = I  and a larger value of vz. Thus, the attainable value of 

would be governed by larger clumps if colonies are distributed in clumps having a 

fixed mean size. The former (constant vz with change of 19) may be expected when 

the large clumps are due to local differences of habitat conditions, and the latter is 
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Fig. 9. Analysis of artificial populations where loose colonies are distributed 
randomly in large clumps. 
In this model, the distribution pattern changes from the Neyman type A at 
u = l ,  through the negative binomial with a common k (ke=l) at u=4, again 
to the Neyman type A at u=16 and 24. 
A: Distribution map for a medium-density population. 

B: The unit-size m - m  relation. 
C and D: The p and vn indices plotted against quadrat size, respectively. 

, 
E: The series m - m  relations for the quadrat sizes 1 and 4. Thin line 
indicates the expected line for compact colony model. 

more likely when the clumpiness is related to the intrinsic properties of the species 

concerned. 

Regularly.Spaced Double Clumps 
Fig. 10 A shows a regularly-spaced double-clumped pattern. The individuals are 

distributed randomly within small colonies of lcm ~ in area each, but both the small 

colonies within large clumps of 16 cm ~ in area and the large clumps themselves are 

distributed without overlapping. The distribution of large clumps, however, is more 
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Fig. 10. Analysis of an artificial populations comprising the regularly- 
spaced double clumps. 
A: Distribution map. B: The unit-size m - m  relation. 
C: The p index plotted against quadrat size. 

or less aggregative over the space. 
$ 

The regression of m~ On m~ appears to be similar to that for above-mentioned 

example (Fig. 9), but the p-graph shows a somewhat different pattern as seen in 

Fig. 10 B and C. The two scales of clumpings are well reflected by the corresponding 

sharp drops of # values, and the existence of two troughs in the graph indicates the 

regular disposition of small colonies and that of large clumps respectively. The 

upward trend of p values beyond unity at the large quadrat sizes is consistent with 

the non-random dispersion of large clumps. 

Thus, relatively complex pattern of distribution would be detectable by using 

the graph of p value against quadrat size; uniform arrangement of individuals, 

colonies and large clumps results in the saw-toothed pattern, whereas random or 

aggregated distribution of them gives the step-wise pattern. 

As shown above, the conclusions on theoretical basis are generally supported by 

the results obatined in the analysis of artificial populations. It becomes evident, 

however, that in the distribution comprising loose colonies the value of a '  obtained 
~e 

by extrapolation in the unit-size m - m  relation would underestimate the true value 
~e ~e 

of mr to some extent even if the m~-on-m~ regression becomes to be linear at large 

quadrat sizes. Similarly, ~ in the series m - m  relation may be somewhat smaller 

than rn~ even at the quadrat size sufficiently larger than the colony area. The clump 

area seems to be be better detected by p index than by rh index, and the variation 

in clump area would be indicated by successive decrease in p value over the range 
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of two or more quadrat sizes. 

APPLICATION TO BIOLOGICAL POPULATIONS 

Rice Stem Borer Larvae 

The total 9 distribution maps of the second-generation larvae of the rice stem 

borer, Chilo suppressalis, in paddy fields were examined. Eight of them were 

unpublished data kindly supplied by Mr. T. SUGINO of Shizuoka Agricultural Experi- 

ment Station and the remaining one was taken from KOJIMA and OKAMOTO (1957). 

Generally speaking, the unit-size m-m relation is cuvilinear, but it becomes 

approximately linear for the range of quadrat sizes larger than 2 or 4 rice hills. In 

the two examples shown in Fig. 11, the slope of the regression fl' is nearly 1.0 in 

one population (Kochi) and 1.6 in the other (Shizuoka 7C). The values of #' in all 

the other cases fall in intermediates between these two. The value of ez' estimated 

from the linear part of the regression lies somewhere around 10 in most cases. The 

p-graph indicates the existence of clumps (often double clumps) of 4~16 rice hills in 

area. 

The m-m relation for the series of populations is well fitted by a linear regres- 

sion at each of successive quadrat sizes. The values of oz and /~ thus calculated are 
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Fig. 11. Analysis of distribution pattern of the second-generation larvae of the 
rice stem borer, Chilo suppressalis. (Data from SnGINO, unpnblished, and 
KOJ[MA and OK^MOrO, 1957) 

* 

A: The unit-size rn-m relations for two populations, Shizuoka 7C and Kochi. 
(u=l a hill of rice plants) 
B: The p index plotted against quadrat size for the two populations above. 

C: The values of a and ~ in the series m-m relation plotted against quadrat 
size. (Data for 9 populations). 
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plotted against quadrat sizes in Fig. 11 C. It  is remarkable that the value of /~ remains 

to be fairly constant at a level close to unity over the range of quadrat  sizes used. 

The  value of ~, on the other hand, rapidly increases at first and gradually approaches 

an asymptotic  value of about 10 at quadrat size of 16 hills. The pattern is thus 

very similar to the random distibution of loose colonies. 

These results may  suggest that the larval colonies are distributed nearly at 

random or with a weak tendency for aggregation and the colony area would be 

less than 16 hills (possibly 4~8) .  The colony size (strictly, the mean crowding for 

colony size distribution m,) is indicated by tz-10,  but the true value of m~ would 

be considerably larger than this as mentioned earlier (p. 110). These conclusions are 

consistent with the fact that the female moths lay egg masses (av. 40~60 eggs per 

mass) nearly at random over the field (KoNo, 1958; OTAKE, 1961), and that  the 

average distance of larval dispersal from an egg mass is 37. 7 cm with the max imum 

of 106cm, which may correspond to 4~16 rice hills (MIYAMOTO, 1951). 

European Chafer Larvae 

BU~ACE and GYRIsco (1954) described the distribution of the larvae of the 

European chafer, Amphimallon majalis, in 3 pasture plots of 25 by 25 feet each. As 

shown in Fig. 12 (left), the unit-size m-m relation in either plot is well fitted by a 
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Fig. 12. Analysis of distribution pat terns  of two species of insects, the larvae of 
the European chafer, Amphimallon majalis and the eggs of the azuki bean 
weevil, Callosobruchus chinensis. 
Left: Amphimallon (Data from BORRAGS and GVR:SCO, 1954 ; U-=-I : 1 ft*). Open 
and solid circles and triangle indicate the plots A, C and D respectively. 
Right:  Callosobruchus (Data from NAKAraU~A, 1968; U=I  : one bean) 
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linear regression with a small positive value of d .  The slope /~' is nearly equal to 

unity in Plot C but slightly larger in the other two. The p-graph indicates that 

there are clumps of area of ca. 8 sq. ft. in Plot D, the area of the lowest mean 

density, but no such structure in the other two. Inspection of distribution maps 

suggests that  in either plot there is a weak gradient of densitY over the area rather  

than distinctive clumpings of individuals. Thus, it seems likely that the chafer 

larvae distribute themselves with a weak tendency of contagiousness, which may be 

related to local differences in the environmental conditions. 

It  is noted that  in this instance the unit-size relation in a single population and 

the series relations for successive quadrat  sizes can roughly be represented by a 

single linear regression of m on m (cg-0,  /~' :-1.1). 

Azuki Bean Weevil Eggs 

The ovipositing female of the asuki bean weevil, Callosobruchus chinensis, tends 

to avoid the azuki beans on which eggs have already been laid. This results in an 

uniform distribution of eggs per bean under uncrowded condition (IWAo, 1968, IWAO 

and KUNO, 1971). NAKAMURA (1968) observed the oviposition behaviour of three 

females that  were introduced singly into the arena of 64 by 64cm on which 64 

beans were placed equidistantly. Fig. 12 (right) shows the unit-size m-m relation 

for the eggs laid by one female during the 8-hour period (No. 2 of his experiments).  

It  is noted that the distribution is regular at one-bean unit but it becomes to be 

aggregative at larger units, and also that the regression has a turning point at 

4-bean unit. The p-graph shows a peak at 4-bean unit. The pattern resembles the 

colonial distribution with uniform intra-colony disposition. According to NAKAMURA, 

the female tends to lay eggs successively on neighbouring beans, but the peak at 4 

bean unit in the p-graph might suggest that the area covered by one chain of 

ovipositional acts is not large. 

Rhizomatous Sedges 

PHILLIPS (1954) analyzed the spatial pattern of a rhizomatous sedge, Eriophorum 

augustifolium, by using the GREIG-SMITH'S method. In most cases, the grid was 

composed of 256 units of 10 cm squares. She interpreted the results of such analysis 

with reference to the method of spread by rhizomes of this plant. According to her, 

the fundamental pattern in dispersion of shoots is as follows: (1) clumping of 

daughter  rhizomes round a parent stock, which gives rise a pr imary peak in the 

mean-square curve at the quadrat  size 4~16. It sometimes involves a small subsidary 

peak at quadrat  size 1, 2, or 4, and this may be resulted from the presence of 

backward rhizomes that are shorter than the forward rhizomes; (2) a larger clumping 

of shoots consisting of three or four season's growth from a single plant, which 

corresponds a secondary peak at quadrat size 32~128; (3) a heterogeneity of environ- 
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Fig. 13. Analysis of distribution pattern of a rhizomatous sedge, Eriophorum 
angustifolium (Data from PnLLn, S, 1954). 

A: The unit-size m-m relation for two populations. (u=l : 100cm ~) 
B and C: 4 examples of graphs of p index against quadrat size. 

, 

D: The values of a and t3 in the series m-m relation plotted against quadrat 
size (based on 9 populations). 

ment at a still larger scale. The clumpiness due to (2) or (3), however, was 

lacking or undetectable in some communities examined. 

The unit-size m - m  relations, calculated from her data, indicate that small clumps 

between quadrat sizes of 1 and 16 (usually 1, 2, or 4) present in all of the nine sets 

of her data, but the existence of larger clumps are noticeable in only four of them 

(Fig. 13 A, B, C). There is no indication of regular arrangement of individuals 

within clumps, but clumps themselves tend to be regularly spaced in some cases. 

The series m - m  relation for each of successive quadrat sizes is well fitted by a 

linear regression (r 2 0. 96~0. 998). The changes of ~ and ~ with changing quadrat 

size are shown in Fig. 13 D. The value of ~ indicates a tendency for underdispersion 

at small quadrat sizes 1~8 and random pattern at larger quadrat sizes. The value 

of a increases rapidly at first and then tends to be stabilized gradually. These 

changes of ~ and ~ resesmble those of the positive binomial distribution of colonies 

or the randomly distributed colonies within which individuals are distributed rather 

regularly. Since the o-graphs do not suggest regular disposition of individuals within 
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colonies, the pattern observed is more likely to be the regular arrangement  of 

colonies. This inference is consistent with PHILLIP's observation. The small value 

of ~ indicates that each clump would be consisting of several shoots. Thus, the 

pattern detected seems to correspond with the clumping of daughter rhisomes round a 

parent plant (PHILLIP's (1)), and the presence of larger clumps (2) and (3) seems 

not to be fundamental to this species. In relation to this, it should be noted that 

the mean-square graph tends to increase at larger quadrat sizes even when colonies 

are distributed at random without any larger clumpiness (see p. 124). 

In another species of sedge, Carex arenaria, however, there seems to exist a 

triple-clump structure. Fig. 14 A shows the unit-size m-m relation for this species 

in a dune (GREIG-SMITH'S data cited by BARTLETT, 1971). The p-graph shows three 

peaks at quadrat sizes 1, 4, and 16, and clumps of small and intermediate scales tend 

to be distributed regularly. GREIG-SMITH mentioned in his comment  for BARTLETT'S 

paper that the rhizome (of this plant) grows in a straight line and aerial shoots are 

produced at approximately equidistant node along it, and that the number  of shoots 

per node is mostly one but occasionally two. Therefore, the peak at quadrat size 

1 may be due to occasional appearance of two shoots at a single node, and the 

second and third peaks may perhaps be related with the development of rhizome 

system over one or more seasons. Since the regression of mu on m~ becomes to be 

linear with d =  1.5 and BP= 1.0 at quadrat sizes larger than 16 units, it is inferred 

that the clumps of 40 • cm in the average area, within which several shoots tend 

to form regularly-spaced double clumps, are distributed randomly over the grid area 

(2. 4x2.  4 m).  

Three Species of Herbs in a Secondary Grassland 

CAIN and EVANS (1952) studied the distribution patterns of the goldenrod, 

Solidago rigida, the bush clover, Lespedeza capitata, and the blazing star, Liatris 

squarrosa, in an old-field community in Michigan. Likewise the above-mentioned 

sedges, Solidago propagtes itself by creeping rhizomes. It shows a double-clump 

pattern: the individual shoots within small clumps and small clumps within large 

clumps tend to be distributed regularly, and large clumps themselves are distributed 

conatgiously over the field (Fig. 14, B). 

In contrast, Lespedeza and Liatris have no rhizome system and they propagate 

themselves by seeds. They tend to form clumps of varying size due to localized 

dispersal of offspring round parents, though some plants occur singly or in pairs. 

In Liatris, the m~-on-m~ regression becomes approximately linear at quadrat sizes 

of between 2 and 16 m 2 with a large $' value (Fig. 14, D). The p-graph indicates the 

presence of clumps of 1 / 2 ~ 2 m  2 in area and the individuals are distributed rather 

regularly within such clumps. The inspection of distribution map (EVANS, 1952: 

Fig. 2) indicates the existence of clumps larger than 16cm 2 in area, and hence the 
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Fig. 14. Analysis of distribution patterns of 4 species of plants. 

A: Rhizomatous sedge, Carex arenaria (Data from BARTLETT, 1971; u = l : 1 0 0 c m  e) 
B: Goldenrod, Solidago rigida (Data from CAIN and EVANS, 1952 ; U=I  : 1 m 2) 
C: Bush clover, Lespedeza capitata (Ditto) 
D: Blazing star, Liatris squarrosa (Ditto) 



123 

regression would become less steeper if we take larger quadrat sizes. The pattern 

in Lespedeza  is essentially similar to that in Liatris, but it seems to be more variable 

in clump area, which is indicated by the curvilinear m,-m~ relation and the pro- 

gressive decrease of p value over the range of quadrat sizes used (Fig. 14, C). Since 

there are larger clumps as in Liatr is  (EVANS, l. C. : Fig. 1), it is necessary to examine 

the distribution in the larger-sized quadrats in order to detect the pattern more 

satisfactorily. 

DISCUSSION 

It is clear that the m - m  relationship obtained by changing quadrat size in a 

single population (the unit-size relation) provides a useful basis for the analysis of 

spatial structure of biological populations. The linearity of the regression of m~ 

on m~ indicates that the change of quadrat size in this range is equivalent to the 

change of mean density without any alteration in the fundamental pattern of distri- 

bution. If there are clumps or territories, the regression would become curvilinear. 

The approximate area of territory (or exclusive area in some other form) occupied 

by individual may be indicated by the quadrat size corresponding to the intercept 

of the regression on mu-axis, at least in some cases. In the distribution comprising 

loose colonies, the regression would show a linearity after the quadrat size becomes 

sufficiently larger than the colony area:the slope /~' for this part of the regression 

would rightly indicate the distribution pattern of colonies over the space, but the 

extrapolated value of the intercept 6' may be more or less smaller than the expected 

value of me, the mean number of other individuals per individual per colony. The 

spatial disposition of individuals within colonies is suggested by the unit-size m - m  

relation for the quadrat sizes smaller than the colony area. If the dumpiness in 

the distribution is largely due to local heterogeneity of the environment, the clump 

may be much more variable in size than in those stemmed from the intrinsic 

properties of the species concerned, which results in an irregular pattern of the 

m~-mu relation. 

To detect the approximate area of clump or colony as well as the spatial pattern 

of individuals within clumps, it is convenient to use the rh index, which is equivalent 

to MORISITA (1959)'S I~cs~/I~(28~, or the p index proposed here. As far as the cases 

examined here are concerned, the latter seems to be somewhat better for these 

purposes. Other advantages of p over r~ index are: (1) that p indicates the distri- 

bution pattern of clumps themselves; (2) that it serves as an index for spatial 

correlation among neighbouring quadrats; and (3) that, for comparison of p values 

in a sequence of quadrat sizes, it is not necessary to keep the ratio of two successive 

quadrat sizes being constant. Thus the most of the information ontained by the 

unit-size m - m  relation can be summarized by the graph of p values plotted against 

the quadrat size. It is noted, however, that the range of either p or vn values to be 
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t aken  becomes  n a r r o w e r  as  the  dens i ty  of the  popula t ion  increases.  I t  is due to  the  

fact  tha t  mean  c rowding  is concerned only wi th  the  quad ra t s  occupied by  ind iv idua l s  

and hence the  change of m~ per  uni t  change  of rn. is l a rge r  in low-dens i ty  popula t ions  

than  in h igh-dens i ty  ones. Some indica t ion  on the colony size is ob ta inable  t h rough  

the inspect ion of m , - o n - m , ,  regress ion,  though it g ives  an unde re s t ima te  of mo. The  

degree  of unde re s t ima t ion  m a y  depend  of the  compac tness  of c lumps  as  well  as  the  

d i s t r ibu t ion  pa t t e rn  of clumps.  

GREIG-SMITH'S (1952) method  for  de tec t ing  the c lump a rea  is based on the appli-  

cat ion of an analys is  of var iance  to the gr id  sample.  I t  is said tha t  the  mean a rea  

of c lump can be sugges ted  by  peak(s) in the  g raph  re la t ing  the  mean square  to 

quad ra t  size. Since the  mean  square  a l located  to a pa r t i cu la r  quad ra t  size u is 

2*  * equ iva len t  to m ~ ( m ~ - m 2 ~ + i )  excep t  for  the  l a rges t  qua d ra t  size of one-half  of the  

g r id  area,  i t s  value  tends  to increase  wi th  increas ing  the  qua d ra t  size wi thout  any  

apprec iab le  peak, unless  the  c lumps  themse lves  are  d i s t r ibu ted  more  or  less r egu la r ly  

(see Fig.  15). The  point  has a l r eady  been ment ioned  by  GREIG-SMITH himsel f  and  
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Fig. 15. Comparison between the GREIG-SMITH'S analysis of variance and 
the present method for the detection of clumps in the 3 types of distri- 
butions given by GREI6-SMITn (1952). 
Left: Mean square (m.s.) plotted against quadrat size (redrawn from 
GR~m:SMITn'S tables). Right: The p index plotted against quadrat size. 
From upper to bottom: Random distribution of loose colonies (GRmG- 
SMITH'S expt. 3), mosaic of irregularly-shaped patches (his expt. 5), 
and mosaic of similarly-shaped patches (his expt. 6). 
Arrow indicates the mean area of clump shown by GREm-SMITm 
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by THOMPSON (1958). It is, therefore, questionable to use this method for the 

analysis of spatial pattern, though it is still widely used by plant ecologists (e. g., 

GREIG-SMITH, 1964; KERSHAW, 1964; ANDERSON, 1971). GREIG-SMITH'S method 

seems to be effective for detecting the approximate area of clump of the mosaic 

distribution. This is not surprising because this type of distribution is similar in 

nature to non-overlapping distribution of loose colonies. As shown in Fig. 15, 

O values calculated form GREIG-SMITH'S examples indicate even better the clump areas. 

In addition, 0-graph suggests that individuals are distributed rather uniformly within 

clumps in both the mosaic of irregularly-shaped patches and that of similarly-shaped 

patches. This is not contradictory with GREIG-SMITH's description of experimental 

procedure (throwing discs) and results. In the mosaic of irregularly-shaped patches, 

0-graph suggests the presence of two scales of clumpiness. This  may be due to the 

fact that different-density patches form narrow bands, so that the probability of 

cutting each patch through the edges of quadrat is markedly different in different 

direction. 

Thus the m - m  method presented here yields more information than GREIG- 

SMITH'S does. Also, GREIG-SMITH'S method can only be applied to the grid of 

contiguous quadrats, but the present method as well as MORISITA's are, in principle, 

usable not only for grid sample but also for random samples that are taken with 

quadrats of different sizes. 

As mentioned above, a considerable amount of information on the spatial distri- 

bution pattern can be obtained through the inspection of the unit-size m - r n  relation- 

ship in a single population. It is sometimes possible to infer the general pattern 

characteristic of the species concerned after examining the unit-size relation for one 

or few populations. But such an inference involves a considerable danger. 

On the other hand, we have developed the method for analyzing the spatial 

pat terns based on the m - m  relationship for a series of population at a given quadrat 

size. The knowledge obtained by its application is only valid for the quadrat size 

used, however. The changes in the series m - r n  relation with changing quadrat size 

are also considered here for some basic distribution patterns. 

Since the information obtained f rom the unit-size relation and that f rom the 

series relation are complementary, a much fuller understanding of the species mode 

of spatial distribution would be obtainable if we examine both the unit-size relations 

for several populations and the series relations for successive quadrat sizes among 

them. The combined use of these relationships may suggest, for instance, that the 

presence of loose clumps detected by the unit-size relation is either due to colonial 

nature intrinsic to the species or due to clumpiness related with the heterogeneous 

conditions of the habitat, and that /~ > 1 in the series relation is related either with 

increase in colony size or that in colony density at high-density populations. 

Finally, it may be worthwhile to mention briefly the application to the sampling 
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design. G~,RARD and BERTHET (1971) gave the equation for relative precision in 

sampling the clumped populations, where the quadrat size as well as the number of 

quadrats to be taken are incorporated as variables. Their  equation is based on the 

assumption that the distribution follows the negative binomial series and its parameter  

k is invariant over the range of quadrat sizes to be taken. Since it is a rather 

special case that k (corresponds to m~/m.)  remains constant for different quadrat 

sizes and for different populations, their equation is limited in its applicability. 

As has been shown in a previous paper (IWAO and KUNO, 1968), the relative 

precision, defined as D - s t a n d a r d  error /mean,  in the simple random sampling is 

shown by: 

1 + B ~ - I ) ,  (14) a u + l  
D.=-  --n~- (- m.  

where u denotes the quadrat size used, n~ the number  of quadrats sampled, and ~ ,  

and /~ are the intercept and the slope of the regression in the series m - m  relation 

for quadrat size u. If we put u = l  for the quadrat size taken as a standard, m , =  

urn1 and, if sampling is made for the same total area, n, ,=nl/u.  Then the above 

equation can be written as, 

v / u  + ~ - 1 ) .  (15) 
a , , + l  

D ~ =  ~;~ ( urn1 

Then we have 

D~ / o/,,+1+ (/~,,-1)uml (16) D, = V  a ~ + l + ( B l - 1 ) m ~  ' 

which gives a criterion for the comparison of relative precision when the same total 

area is sampled by two different quadrat sizes: the size u is better if D,,/D~<I. 

The equation given by G~.RARD and BERTHET is a special case of eq. (15), in which 

eel=0 and /~ does not change with u and equals l + l / k .  

The number  of quadrats to be sampled for attaining a fixed level of precision 

D~ can easily be derived from eq. (14): 

1 eel+ 1 n,, = ~ ( - ~  + ~ -  1). (17) 

If we denote the cost for taking one quadrat of size u as C~, the relative cost for a 

given D in the sampling with two different quadrat sizes 1 and u can be shown by 

C~n~ C,~ ~ + 1 +  ( ~ - l ) u m ~  
C~n~ - C, u { ~ , + l +  (B~- l ) rnd  " (18) 

The size u is better  if C,,n, , /Clm<l.  

SUMMARY 

A method for the analysis of spatial pattern using quadrats of different sizes is 

developed on the basis of the relationship of mean crowding (m) to mean density 

(m). The m-on-m regression obtained by successive changes in quadrat size in a 

single population (unit-size relation) shows a characteristic pattern according to the 
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type of dis tr ibut ion.  By aid of the p- index proposed here, we can dis t inguish  the 

random, aggregated and uni form dis t r ibut ions  of the basic components  ( individual  

or group of individuals) .  The  p serves as an index of spatial correlat ion between 

ne ighbour ing  quadrats ,  and it also provides informat ion  on the approximate  area 

occupied by c lump (colony), d is t r ibut ion  pa t te rn  of individuals  wi thin  clumps, and 

possibly the d is t r ibut ion  pa t te rn  of c lumps themselves.  

Even in a specified type of dis t r ibut ion,  the unit-size m - m  relat ion is not  neces- 

sari ly identical with the m - m  relat ion for a series of populations at a par t icular  

quadra t  size (series relat ion).  The  changes in the series m - m  relat ionship with 

successive changes of quadrat  sizes are also considered for some basic pa t te rns  of 

distr ibutions.  The  combined use of [he unit-size and the series m-rn relat ions for 

a set of populat ions of the species under  s tudy may provide a sat isfactory picture of 

the spatial pa t te rn  characterist ic  of the species. 

Applicat ion of the method is i l lustrated by us ing d is t r ibut ion  data of several 

species of an imals  and plants.  The  advantage  of the present  method over other 

methods are discussed, and the formulae for de te rmin ing  the op t imum quadrat  un i t  

in sampling surveys  are given. 
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