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ABSTRACT.  For p € (—o0, 00), let Q;(34) be the space of all complex-valued functions f on the unit

circle d A satisfying
2
sup |1|“”// /@)~ fz('”)' ldzlldw]| < o ,
Icia wi==p

where the supremum is taken over all subarcs I C A with the arclength |I|. In this paper, we consider
some essential properties of Qp(dA). We first show that if p > 1, then Q p(@8) = BMO(dA), the space
of complex-valued functions with bounded mean oscillation on 3. Second, we prove that a function belongs

to Qp(d4) if and only if it is Mibius bounded in the Sobolev space [,%, (84). Finally, a characterization of
Qp(dA) is given via wavelets.

1. Introduction

Throughout this paper, suppose that A, A, and 3 A are the open unit disk, the closed unit disk,
and the unit circle in the finite complex plane C. For p € (—00, 00), let Q ,(3A) be the space of all
Lebesgue measurable functions f : 3A — C with

2 1
1fllg,0m = sup [m p//M!dzlldwl:l <0, (L1)
1caa

2=r
where the supremum is taken over all subarcs I C 3A of the arclength |I|. Note that if p = 2, then

Qp(04A) = BMO(9A), John—Nirenberg’s space of functions having bounded mean oscillation on
dA. A Lebesgue measurable function f : dA — Cisin BMO(3A) [8] if and only if

1
2
Iflsmo@a) = sup [m—‘ / If(z)~f1I2IdZI] <00, (12)
Icoa 1
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312 Jie Xiao
where the supremum ranges over all subarcs I C dA and f; stand for the average of f over I

1
= — dz| .
fi |“/If(z)l z|

Recall that the space Q,(3A), p € (0, 1) was introduced in [5] (there it was written as Q;)
when Essén and Xiao studied the boundary behavior of the holomorphic Q p-space [1], which is the
set of all holomorphic functions f on A obeying

1
Z
I£llg, = sup U [ Irof [1—!¢w(2)|2]pdxdy] <oo, z=x-tiy. (13)
weh A

Here and henceforth,

buw(@) = —— (1.4)

1-1z

is a Mobius transform sending w to 0, and dxdy (z = x + iy) means the two-dimensional Lebesgue
measure on A. Later on, Poisson extension to A, 3-equations, and a Fefferman—Stein type decom-
position of @,(34), p € (0, 1) were established by Nicolau and Xiao in [11]. As a continuation
of [51, Janson discussed the dyadic analog of Q,(3A), p € (0, 1) [7].

The major purpose of the present paper is to investigate some essential properties of Q,(3A).
First, in Section 2 we show that Q , (9 AA) is nondecreasing with p, in particular @ ,(3A) = BM O(3A)
or C when p > 1l or p < —1. Next, in Section 3 we reveal that Q,(3A) is a Mobious bounded
subspace of the Sobolev space on dA. Finally, we give a description of Q ,(3A) in terms of wavelets.

Throughout this paper, the letters C and ¢ denote different positive constants which are not
necessarily the same from line to line. Moreover, A &~ B means that there are two constants C and
¢ independent of both A and B to ensure cA < B < CA. Also, for an r € (0, 00) and a subarc I,
r I represents the subarc with the same center as I and with the length r|I|.

2. Monotonicity

In this section, we focus on the monotonicity of Q,(3A) and discover that the case p € (0, 1]
is of independent interest.

Theorem 1.
Let p € (—00, 00). Then Qp,(34) is nondecreasing with p. In particular,
) If p € (—o0, —1], then Q,(0A) =C.
(i) If —1 < p1 % p2 < 1, then @ (3A) # Qp,(0A) and 01(34) # BMO(3A).
(i) If p € (1, o), then Q,(0A) = BMO(@A).

Proof. Let p; < pa. If f € Q) (3A), then for any subarc I C 9A,

- 1@ — fFw)?
< " m/} T wpen |dz]|dw]
<

P21 £11,, @a) -

namely, f € Qp,(34). So, 8p,(38) C Gp,(0D).
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(i) Let f € Qp(3A), p < —1 with Fourier series

f@~Y and", zedn.

n

If f is not a constant a.e. on dA, then there would exist some a, # 0 (where n # 0). It is clear that
for any z € 34,

" = —— / Fzw) @) |dw] .
2n Jya

Put f,(z2) = f(zw). An application of Minkowski’s inequality to the last equation implies

1
n e
|an| ||Z || 0,08) = by /aa I fw lo,@a) ldwl < I fllg,0n) -

Thus, z” is in Q,(34), p € (—o0, —1]. However, there is a small neighborhood I(1,r) = {z €
dA : |z — 1| < r} such that

|2 —w"| > IZ_;iI, z,wel(l,r),

and

v

2 " —w”
0,6 / |dZ||dw|
“ IIQ!’("A) (2r)” /1(1 nJian lz—wir

Iz — wiP|dz||dw]
4(2r)” ./1(1,r) /1(1,r)

= o0 ,

=

a contradiction. Hence, f must be a constant a.e. on dA.
(ii) Consider the following lacunary Fourier series

o0
f@) = Zanzzn, Z€JA.

n=0

Case 1: p € (-1, 1). This condition leads to:

o0
fe0p@n) &Y 207" g, 2 < 0. 2.1)
n=0
In fact, if p € (1, 0], then f € Q,(34) is equivalent to

2
[ [ OTOE g <o
dA Jan

T le—wPr

Further, an application of Parseval’s formula to this integral gives (2.1). Also, if p € (0, 1), then
both [1, Theorem 6] and [S, Theorem 2.1] imply (2.1).

Case2: p=1.1If f € Qp(34), then

0o > Iflg,en

> C/ |w—1|_1[_[ |f(zw)—f(Z)I2IdZ|]|dw|
an EYN
o0 T -1
> Cg‘anlzﬁ (sin%) (sin2"_1t)2dt
~ ) nlanl . 2.2)
n=0
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In the last estimate we have used a basic fact that for any integer n > 0,

n AN A
/ sin — sin— )} dt ~log(n+1). 2.3)
0 2 2

Case 3: BMO(3A). Itis well known (cf. [12, p. 178]) that

f e BMO@A) & Z lanl? < 00 (2.4)
n=0

The above discussion is enough to illuminate (ii). For instance, if

%) on

z
A@ =) , Z€JA,
= n+1)

then fi € BMO(3A) \ @1(3A) follows from (2.4) and (2.2).
(iii) We take account of the following two cases.

Case 1: p € (1, 2]. At the moment, it follows from the previous argument that Q p(3L) C
BMO(94). On the other hand, if f € BM O(3A), then with the help of the translation invariance
of BMO(0A), we get

— 2 [)—‘2
/ Mldzlldwl =< / [/-‘f ze” f(z)l |dz|] smi dt
IJI Iz—wl 4 Jel<l
p—-2
=< C/ [ |f (@) — fal? Idzl] sin—| dt
itl<|I| LJ31 2
=<

Clf Wamopm 17 -
Thus, f € Q,(84) and consequently Q,(dA) = BMO(3A).

Case 2: p € (2,00). In this case, BMO(3A) C Q,(34) is already known. Now let
f € @,(3A). Then an elementary geometric analysis gives

_ 21 4211d o . -
fl fl 1f@ — fa)Pldzlldw] < Z f / ey @ = TPl
LN 1f@ = Fw)P?
d
< ( ) /f|z wi<2-ky 12— w T —wPr dz|ldw]
o (1 iy
: CZ( D) (35)
k=1
<

clP Zz—" ,

k=1
that is to say, f € BMO(9A) and hence Q,(dA) C BMO(98A). Finally, Qp(3A) = BMO(3A)
yields. O]

Remark 1. The case 1 of (iii) was pointed out in [7] as well. In addition, Q1(3A) contains all
functions f : 9A — C obeying

~1
If(Z)—f(w)ISC(IOg ) . LWEDA.

|z — wl
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This shows that for & € (0, 1), all Lip, functions lie in Q1(dA). But L>(3A) is not a subspace of
@1(94). For example,

@)= ZZ’"zzn, Z€dA,
n=0
belongs to L°(3A) \ 01(3A) (cf. (2.2) as well as (2.3)).

Since BM O(34) is a Banach space (provided we identify functions which differ a.e. by a
constant), we naturally have the following:

Corollary 1.
Let p € (—1,00). Then Q,(dA) is complete with respect to (1.1).

Proof. Let {f,} be a Cauchy sequence in Q,(8A). By Theorem 1, Q,(3A) embeds BMO(3A)
with the inclusion map bounded. Hence, {f,} is a Cauchy sequence in BM O(34A) as well, and
fn = fin BMO@3A) for some f. It follows easily from Fatou’s lemma that for every integer
k>1,

If = fellg,@ay < limsup || fn — fillg,@a)
n—-00
which implies fi — fin Q,(3A). 0

3. Connection with the Sobolev Space

From Sections 1 and 2 it turns out that Q,(3A) is closely related to the Sobolev space on 44.
This section clarifies this deep relation.

For p € (—o0, 00), denote by L%,(B A) the Sobolev space on 34, of all Lebesgue measurable
functions f : 8A — C for which

1
I Z) w 2 2
1 lzz@a) = [f / A f2( )| |dz|ldw|| < oo. 3.1
anJan lz—wlsP

Tt is clear that L2(3A) is a subspace of L?, (84), p > 1. However, a similar way to show Theorem 1
produces that ﬁ%,(aA) = C when p € (—o0, —1] and L%(aA) = L%(dA) when p € (1,2].

By (1.1)and (3.1) it follows that Q , (3 A) is a subspace of Cf, (8A). Moreover, if p € (—oc, 0],
then 0,(34) = E%(aA). Thus, Q¢(3A) has the following Mobius boundedness:

Ifllgoway = If o dullzan, weEA.

This fact draws our attention to the case p € (0, 00). As a matter of fact, we find the following:
Theorem 2.

Let p € (0,00) and let f € L3(3A). Then f € Qp(34) if and only if

Wfllg,@a) = sup I f o ullLza) <00 (3.2
weA

Proof. First of all, with the help of (1.4), we establish an identity:

IFotullyay = [ [ Lot be  uay

[ —v|2=P

[ 'f(”)—f(")'z( -l )pldulldvl
anJon  lu—v|*P 1 — wu| |l —wv|

2
eor [ [ 1@ = JOF by Py 1% lduldvl,  (33)
JdA JOA

Tu—vr
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where
1 —|w?

Pot) = ——+——
wl@) 27 |1 — wul?

is the Poisson kernel.
Next, we verify the sufficiency. Suppose | fll o p(34) < 0O. Arbitrarily pick a subarc I of 3A.
If I # 3A, then we choose a point w € A \ {0} such that w/|w| and 27 (1 — jw|) are the center
and the arclength of I, respectively. If I = 9 A, then we take w = 0. With such a w, as well as the
following inequality:
2
cost >1— EZ_ t € (—o0,00),

we get that foru € 1,

c 1
Pa) 2 7= M T (3.4)

Applying (3.4) to (3.3), we obtain || fllg,0a) < Clifllg,@a) < .

Finally, we return to the necessity. Let f € Q,(3A) with || flig,wa) < oo. To each point
w € 3A \ {0} we associate the subarc I, with center w/|w) and arclength 27 (1 — jw]). Forw =0,
we set I, = dA. Also, set

m"=2"1,, n=0,1,...,N-1,

where N is the smallest integer such that 2V |,,| > 27. Then set IV = dA.
Through the help of the elementary inequality:

2
cost <1~ Py t €~m,n},
we know that for every point u € 3A,
Py(u) < (3.5)

1—lwj’
Furthermore, foru € 3A \ I",
C
P < o
w0 = P 1Tyl

From now on, we may assume that {w| > 1/2, otherwise, the result is obviously true. There-
fore, if u € 1"\ I, we have
C
P < 3.6
w(u) —_ 22n|1w| ( )

With the above notations, we break || f o ¢y, || of (3.3) into two parts.

22
L2(0)

1f o ¢l a) = FOEFIO
PR A — E T - :
./aA <'/w " n=0 ./1n+1\1n> lu — v|?2-p [P () Py ()1 |dulldv]

@emk
N-1
fz)A Iy b nz=0 -/i)A /1"“\1" o

A+B.
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By Theorem 1, (3.5), (3.6), and the identity:

1 1
—/If(z)—aizfdzl=—flf(z)—lezldz|+Ifz—alz, aeC,
i, I/

(LS )

we have

A

1f W) = fF)I?
< C”f“Qp("M*CZ 22"|1 Iz /M\ln / Tu—vir el
2 = 1 2
< C||f||Qp(aA)+CZm /I o |f @) = f)I*|dulldv|
N-1 5 5
< CWloyan +€ L Gt fn f, 1700 = 5 + 1700 = 1 it
o] 1 o0 19
< Clflig,@a +C (Z 7) 1f 13 mo00a + € (Z ;—) I W amowa)
n=1 n=1

< Clflg,wa -

Concerning B, in the same manner as handling A, we can establish

N-l N—1 N—1
(g fiw f;n+1\1n + Z Z [HI\I” /;"*“\1'") {...}

N-1 N—-1 N-1
ity om+ (2 [ [ = [ A [
0,(08) mZ 10\1, Jimtiygm ; mz=;) oy o J prdy gm

=0

= C||anp any + [Z /“\Iw /,m“\,m“LI:z::_l <Z+Z) f,m\zn /1m+1\,m}{...}

1 \m<n m>n

B

IA

o0

2 n
< Clflg,@pa+C€ (Z o +Z 2pn) £ 13mowa)

n=1

< Clfig,oa) -

Combining the estimations of A and B, we finally reach || fllg,a) < 00, which concludes
the proof. O

It is very interesting to know that BM O (3A) is the M&bius bounded subspace of L%(a A),
p > 1 (in particular L2(3A)). This is probably a new discovery of BM O(34). Observing that
L%(a A) and BM O(3A) are Mobius invariant, we obtain the following.
Corollary 2.

Let p € (0, 00). Then Qp(3dA) is a Mébius invariant space in the sense of that || flig,wa) =
NS o dullg,@a) forany f € Qp(dA) andw € A.
Proof. It follows easily from Theorem 2. O

Moreover, we would like to point out that a motive behind Theorem 2 and Corollary 2 is the
corresponding holomorphic case. Note that Q; = BM O A (taking p = 1 in (1.3)) and Q1(3A) #
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BMO(0A). Now suppose that

oo
f@ =) ant", z€A,
=0
is a member of the Hardy space H2. Using Parseval’s formula (cf. (2.2) and (2.3)), we see that
f € £3(34) if and only if

x
E Ianl2 log(n + 1) < 00,

n=0

which, as Essén showed us in a private communication [4], is equivalent to

//A If’(z)lzu(lzl)dxdy <00, z=x+iy,

where

r—1.

log;lz 5
= ~ _ 1
w(r) /0 | log s|ds (1 r ) og T2

This formula has not been solved until now, see [14] and its references. These observations tell us
that f € Q((d4) if and only if

sup f f ) | @) 1 (o@D dxdy < 00, z=x+iy. (3.7)

weA

However, (3.7) is different from (1.3) in the case p = 1. Hence, we have the following:

Remark 2. BM O A does not equal the holomorphic extension of Q1(3A) to A.

4. Representation via Wavelets

This section is devoted to discussing expansion of Q,(dA)-functions in a series of Haar or
wavelet basis.

We start with defining the dyadic @ ,(3A) space. Following [7] and using the map: ¢t — et
we identify dA with the unit interval [0, 1), where subintervals may wrap around 0. Meanwhile,
a subarc of 3 A corresponds to a subinterval of [0, 1). A dyadic interval is an interval of the type:
[m27", (m + 1)27"). Denote by D the set of all dyadic subintervals of 3 A (of course, including 4 A
itself). For each p € (—o0, ), Q‘[l,(a 4), the dyadic counterpart of Q ,(3A), is defined by the set
of all Lebesgue measurable functions f : dA — C with

_ 2 2
17 logas = up [m"’ /I I%S’%Mzndwt] <. @)

Also, BM Od(BA) (defined via replacing the supremum of (1.2) by one taken over all intervals
I € D) stands for the dyadic counterpart of BM O (dA) [6]. As in Theorem 1, it is not hard to figure
out that Q‘Il)(aA) is nondecreasing with p, and that Q‘,’,(&A) = C whenever p € (—o0, —1], as
well as Q4(3A) = BM 0%(34) whenever p € (1, 00). Of course, Q,(3A) & Q4(34). A close
relation between both (for which the case p € (0, 1) is due to Janson) is delivered by the following:

Theorem 3.
Let p € (0, 00). Then Q,(04) = Q4(38) N BMO(3A).
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Proof. If p € (0, 1), then the proof can be found by [7, Theorem 8]. In fact, Janson’s proof is
valid for the case p = 1 as well. Asto p € (1, 0o0), Theorem 3 follows from Theorem 1. U

Janson’s demonstration for the case p € (0, 1) of Theorem 3 is based on the local analysis on
0p(dA). It is more helpful to recall his notations. For each interval I C dA and for each integer
n > 0, denote by D, (I) the set of the 2" subintervals of I with length 27" |I| obtained by n successive
bipartition of I. Further, for a Lebesgue measurable function f : I — C, put

Ripy=327m 3 ! /J £ — fr1?1dal “.2)

n=0 JeDy(I)

With the aid of (4.2), we have the following conclusion which is due to Janson in the case
p€(©O,1).

Lemma 1.
Let p € (0,00) and let f € L2(3A). Then
Q) f e Q’IJ,(BA) if and only if sup;.p Ry, p(I) < 00.
(i) f € Qp(8A) ifand only if sup;ya Ry, p(I) < 00, where the supremum is taken over all subarcs
I of A, In particular, for any subarc I C 84,

_ 2
III"’ffl—fl(zi)—Mldzlldwl <CR; ).
I1JI

— w|2—p

Proof. 1t suffices to verify (ii). If p € (0, 1), then both Lemma 3 and the estimate (13) in (7]
indicate the truth of (ii) right now. Although Janson’s proof is ready for the case p € (0, 1), it applies
to the case p = 1. In addition, if p € (1, 00), then from the convergence:

o0 (o]
Yoo 3 1=y 27 <o (4.3)
n=0

JeD,(I) n=0

it derives that f € BMO(3A) < sup;cya Ry, p(I) < o0o. Since the equivalence: f € Q,(34) &
f € BMO(9A) is known (cf. Theorem 1), the desired assertion yields. ]

Let us now take f € L2(3A) with
f=) cwhe, 4.4)
weD

where {h,},cp is Haar basis on 3 A and
cw = [ f@R@l.
3A

Carleson [2] pointed out that f € BM 04 (3A) if and only if

sup |o|_1 Z |c(a))|2 < 0. 4.5)

oeD wCo

In order to extend this to Q‘[l,(aA), we need to introduce a formula similar to (4.2). More
precisely, forevery I € D and f € L%(3A) with (4.4) let

o0

Sppy= 277" 3" Jo|™' Y le@). (4.6)

n=0 oeD,(I) wCo
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This definition is employed to produce a Q?,(a A)-analog of BMO%(3A).

Theorem 4.
Let p € (0,00) and let f € L?>(dA) with (4.4). Then f € Q‘;)(BA) if and only if

Wflls, = sup S p(I) < 00. @7
IeD

Proof. Because (4.6) and (4.7) rely only upon the dyadic intervals in D, Theorem 4 follows readily
from Lemma 1 (i) and the fact that for any I € D and o € D, (I),

[1f@ - sz~ T e O

wCo

Combining Theorem 3 with Theorem 4, we can obtain a characterization of Q ,(dA) in terms
of BM O(3A) and Haar basis {h,,},cp. Nevertheless, Haar basis does not possess good smoothness.
To further represent BM O (3 A)-functions, Carleson [2] used a modified Haar basis which has some
smoothness (Lip1 actually), but has no the orthonormal property. Here, it is worth mentioning that
Wojtaszczyk [15] chose the orthonormal Franklin system to expand BM O (3 A)-functions. After
that, Strémberg [13] modified the Franklin system (later, Lemarié and Meyer [9] and Daubechies [3]
consulted other approaches) and finally constructed the so-called orthonormal wavelet basis.

In the sequel, we adapt notations in [10, Section 5.6] (or [16, Sections 2.5 and 8.4]). Suppose
(Ui} G=0,1,2,...;k=0,1,2,..., 2/ — 1) is an orthonormal (periodic Meyer) wavelet
basis on d A which satisfies the 1-regular condition. For convenience, write the shorter notation y;
as Y. For every A = (j, k), denote by I(A) the dyadic interval {¢ : 2/t — k € [0, 1)}.

We shall consider functions f € L?(3A) with the form:

f=2 al | (4.8)
A

where

a)=(f,9) = /M f@¥a(2)ldz| .

Like (4.6), foreach I € D and f € L2(3A) with (4.8) let

[e0]

TrpD = 277" 3 17" Y laP. (4.9)

n=0 1eDa(l) wct

Theorem 5.
Let p € (0,00) and let f € L*>(0A) with (4.8). Then f € Q@A) if and only if

ANz, = sup Ty (1) < 0o (4.10)
1€D

Proof. Note that in the case p > 1 [cf. (4.3)], (4.10) holds if and only if (4.11) holds, where

sup [II™H D~ ja)I> < 00 4.11)
1D el

In the meantime, f € BMO(3A) if and only if (4.11) is true (cf. [2] and [10, Section 5.6]). So,
from our Theorem 1 it turns out that Theorem 5 is valid for p > 1. Therefore, it remains to take an
account of the case p € (0, 1].

In what is going on, p is always restricted to be in (0, 1]. However, the proof presented here
is actually suitable for p € (0, 2) and hence also for the BM O(8 A)-case. To begin with, we should
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notice that the support of the wavelet 4, is contained in the interval mI (1), where m > 0 is a constant
independent of any I ().).

Next, we check the necessity. Let f belong to @,(3A). Suppose I € Dandn =0,1,2,....
For J € D,(I), we split

f=Imi+(f = fmd) Xms + (f = fmi) Xooms = i+ 2+ f3,

where g is the characteristic function of the set E C dA. By the geometric construction of the
support of the wavelets, (f3, ¥1) = 0if I(X) C J. On the other hand, the integral of ¥, over dA is
zero. So (f, ) = (f2, ¥1), furthermore,

SR <Y 1 v = Imd ! / , f i@ fw)l*ldzlldw] .
A m m

ey

This gives that for J € D, (1),

7 Y e < siimay [

IMNct mJ

fj f@ —~ fw)Pldzlidw] .

In a completely similar fashion to arguing the inequality (12) of (7], we obtain

2
Tf;,,<1>sc|m1rf’/ / PAQEISUNNIFWE
mli

Tz wPr

which forces (4.10) to come out [owing to f € Q,(34)].

Conversely, let us claim the sufficiency. Suppose that (4.10) holds. For a given interval
I C 34, we define an integer ¢ by 279 < |I| < 279%L, At first, we consider small intervals of
size 27/ < 279 and then large intervals for which 27/ > 279. The wavelets corresponding to the
small intervals are themselves of two kinds — their supports either meet / or do not meet . If a
small interval I (1) is such that mI (1) intersects with [, then I () is certainly included in M I, where
M > 1is a constant depending only on m. We write f = f] + f2 according to the small and large

intervals, then fj splits f11 + f12 and f12 = O on I, whereas f|; involves the small intervals I(})
contained in M I. Thus, for any J € D,(I),

/lfu(z) szl = Y e,

oM
Consequently,
Ry p(I) = Ry, p(I) < CT5 (1) .
By Lemma 1 (ii),

_ 2
/ |f1(z) — fi(w)l idz|ldw| < CII|? . (4.12)
IJI

|z — wi>—r

We turn to the large intervals and their subseries f;. Now, we use the fact that the wavelets are
“flat” and that, moreover, for a given size 2~/ of the large dyadic interval I (1), only M wavelets ¥
(expanding f5) are not identically zero on I (because the support of ¥, is a subset of mI(2)). For
each of the remaining M wavelets ;, we have

.
W@ ~ Yaw)l < C2F z—wl, zwel,
due to the regularity of the wavelets. Thus,

/ (¥ (z) — ¥ (w)|?
1JI

lz — w|>-?

ldz||dw| < €237 (1P*2 .
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Since the corresponding wavelet coefficients |a (1)| are bounded above 27//2, Minkowski’s inequality
deduces

1 1
f; IM)I—Ileldwl < Z[a(k)l ./1./1|%|(ZZ) Y (w)l ldzlldw]

<
2 = wp=> &~ —wp>
= cy Yt
Jj<q
< C|t. (4.13)

Combining (4.12) and (4.13) we obtain

_ 2
[ [ O L ) < e

In other words, f € Q,(84). This completes the proof. O

Let U be a mapping with U(h,) = ¥, (for o = I(X) € D). Then Theorems 4 and 5 tell us
that the mapping U can be extended to an isomorphism between Q,(3A) and Q‘;,(BA).
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