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ABSTRACT. For p ~ ( - ~ ,  0o), let Qp(~A) be the space of all complex-valued functions f on the unit 
circle i) A satisfying 

f l f l  ' f ( z ) - f ( w ) ' 2  sup III-P ~ w - - - - ~  Idzlldwl < ~ ,  
ICOA 

where the supremum is taken over all subarcs I C OA with the arclength ]I]. In this paper, we cot~ider 
some essential properties of Qp (1) A). We first show that if p > 1, then Qp (it A) = BM 0 (0 A), the space 
of complex-valued functions with bounded mean oscillation on ilA. Second, we prove that a function belongs 
to Q p ( O A ) if and only if it is M6bius bounded in the Sobolev space L2p ( il A ). Finally, a characterization of 
Qp (0A) is given via wavelets. 

1. I n t r o d u c t i o n  

Throughout this paper, suppose that A,/~,  and 0A are the open unit disk, the closed unit disk, 
and the unit circle in the finite complex plane C. For p ~ ( - c ~ ,  cx~), let Qp(3A)  be the space of all 
Lebesgue measurable functions f �9 aA ~ C with 

1 

ilfllQp(az~) = sup [[ i i_P f f l  l f ( z ) _  f ( w ) 1 2  ' , "]7 ~ - w ~ ' - 7  taz l laWl j  <cx~, (1.1) 
ICOA 

where the supremum is taken over all subarcs I C OA of the arclength III. Note that if p = 2, then 
Q p (O A)  = B M 0 (0 A) ,  John-Nirenberg's  space of functions having bounded mean oscillation on 
0A. A Lebesgue measurable function f : 0A ~ C is in B M O ( O A )  [8] if and only if 

1 

[ j, IlfllsMO(aZx) = sup III -1 I f (z)  - f l l  2 Idzl < o o ,  
icoA 

(1.2) 
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where the supremum ranges over all subarcs I C 0/x and f l  stand for the average of f over I 

1/, 
f l  = -~t f (z) ldzl .  

Recall that the space Qp(0A),  p 6 (0, 1) was introduced in [5] (there it was written as Q~,) 
when Ess6n and Xiao studied the boundary behavior of  the holomorphic Qp-space [1], which is the 
set of  all holomorphic functions f on A obeying 

1 

[ff [ ] IlfllQp = sup I f ' (z) l  2 1 - k b w ( z ) l  2 Pdxdy <o0, z = x + i y .  
wEA A 

(1.3) 

Here and henceforth, 

W - - Z  
~w(z) - - -  (1.4) 

1 - ~ z  

is a M6bius transform sending w to 0, and dxdy (z = x + iy) means the two-dimensional Lebesgue 
measure on A. Later on, Poisson extension to A, D-equations, and a Fefferman-Stein type decom- 
position of Qp(OA), p E (0, t) were established by Nicolau and Xiao in [I 1]. As a continuation 
of [5], Janson discussed the dyadic analog of Qp(OA), p E (0, 1) [7]. 

The major purpose of the present paper is to investigate some essential properties of Q p (0 A). 
First, in Section 2 we show that Qp (0 A) is nondecreasing with p, in particular Qp (0 A) = B M  O (0/x) 
or C when p > 1 or p < - 1 .  Next, in Section 3 we reveal that Qp(Oa) is a M6bious bounded 
subspace of the Sobolev space on 0/x. Finally, we give a description of Qp(3A) in terms of wavelets. 

Throughout this paper, the letters C and c denote different positive constants which are not 
necessarily the same from line to line. Moreover, A ~ B means that there are two constants C and 
c independent of  both A and B to ensure cA < B < CA. Also, for an r ~ (0, cx~) and a subarc I ,  
rI represents the subarc with the same center as I and with the length rlII. 

2. Monotonicity 

In this section, we focus on the monotonicity of Qp(O/x) and discover that the case p ~ (0, I] 
is of  independent interest. 

Theorem 1. 
Let p E (-oo, c~). Then Qp(OA) is nondecreasing with p. ln particular, 

(i) Ifp E (-oo, -1 ] ,  then Qp(~A) = C. 
(ii) I f - -1  < Pl ~ P2 -< 1, then Qpl(OA) 7~ QpE(OA) and QI(OA) # BMO(OA). 
(iii) I fp ~ (1, oc), then Qp(OA) = BMO(OA). 

P r o o f .  Let Pl < P2. I f  f c Qpl (0A), then for any subarc I C 0A, 

/ S /  I f (z )  -- f ( w ) l  2 

,IiP~-P, Ss ~ ' i (z)-f  (w)'2 _ i z ~ - 7 v ~ -  7 Idzlldwl 
< IS lP~ l l f l l~  
- -  P l  ( ~ J A )  ' 

namely, f e Qp2(DA). So, QpI(OA) C Qm(OA). 
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(i) Let f E Qp(Olx), p < - 1  with Fourier series 

f ( z )  "~ ~_anZ n, Z E 3ZX. 

If f is not a constant a.e. on 3A, then there would exist some an # 0 (where n # 0). It is clear that 
for any z 6 O A, 

1 f f ( zw)  (to) n Idwl. anzn = 2---~ zx 

Put fw(z) = f ( zw) .  An application of Minkowski's inequality to the last equation implies 

1 ~ Ilfwl[ap('Ozx)Idwl < t l f l l o p o a ) .  ]an[ Ilznlla,(0~_< ~ ~ 

Thus, z n is in Qp(OA), p ~ (-o~,  -1 ] .  However, there is a small neighborhood I(1,  r)  = {z 
0/X : l z -  11 < r} suchthat  

[z" - w"t  ___ Iz - w l  2 ' z , w ~ I ( 1 , r ) ,  

and 

]]zn 2 1 f f /  lzn - wnl2 > . . . .  ,--~_71dzlldwl 
IlQpOa~ - (2r)p O,r) (l,r) l Z - - w l -  

1 f f Iz-wl"ldzllawl 
> 4(2r)P (1,r) (1,r) 
~--- (X) , 

a contradiction. Hence, f must be a constant a.e. on 0 A. 
(ii) Consider the following lacunary Fourier series 

oo 

f (z)  = E a n z 2 " '  Z e • . 
n = 0  

Case  1: p ~ ( - 1 ,  1). This condition leads to: 
oo 

f E Qp(O/X)  ~, ,~ Z 2  ( 1 - p ) n  l an [  2 < o ~ .  (2.1) 
n-----0 

In fact, i f p  E ( - 1 ,  0], then f E Qp(OA) is equivalent to 

~ ~ l f ( z ) - f ( w ) 1 2 l d z l l d w , < c ~  
a IX IZ --  Wl 2 - p  

Further, an application of Parseval's formula to this integral gives (2.1). Also, if p 6 (0, 1), then 
both [1, Theorem 6] and [5, Theorem 2.1] imply (2.1). 

Case  2: p = 1. If f ~ Qp(0A),  then 

OQ > Ilfll~pOzx) 

>__ c f A l w - l l - ' [ f A l f ( z w ) - f ( z ) l Z l d z l ] l d w l  

//( ; > c E l a n l  2 sin sin2 n - i t  dt 
n = l  

oo 

E n lanl 2 �9 

n--0  

(2.2) 
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In the last estimate we have used a basic fact that for any integer n > 0, 

sin sin d t  ~ log(n + 1) .  (2.3) 

Case  3: BMO(OA). It is well known (cf. [12, p. 178]) that 

oo 

f E BMO(O~) .~ ~ E lan[2 < cx~. (2.4) 
n = 0  

The above discussion is enough to illuminate (ii). For instance, if 

oo z2n  

f l ( z ) = E ( n + l ) ,  Z 6 0 A ,  
n = 0  

then f l  6 BMO(OA) \ QI(OA) follows from (2.4) and (2.2). 
(iii) We take account of the following two cases. 

Case  1: p ~ (1, 2]. At the moment, it follows from the previous argument that Qp(OA) C 
BMO(OA). On the other hand, if f ~ BMO(OA), then with the help of the translation invariance 
of BMO(8~), we get 

fftlf(z)-f(w)lZ 2 - -~---'w--~ Idzlldwl <_ c fltl<lll [ f l f (zeit) - f (z) Idzl] s i n2  p 2dt 

< Cftl<lll[f311f(z)-f31121dzl ] sin2P-2dt 

<_ CIIflI2MO~Z~III p . 

Thus, f ~ Qp(OA) and consequently Qp(OA) = BMO(OA). 

Case  2: p 6 (2, cx~). In this case, BMO(OA) C Qp(OA) is already known. Now let 
f ~ Qp(OA). Then an elementary geometric analysis gives 

f f If(z)- f(w)'2ldzlldw, <- ~ f f  2_klll<lz_wl<2,_kll, I f (z) -  f(w)121dzlldw' 
k = l  

< C E  I f (z)-  f(w)lZldzlldwl 
k = l  I z - - w l < Z l - k l l  I IZ - -  11)12-p 

{li,'~2-p ( I I I  "~P 
< C E ~2k] 2k 

k=l \ 

_ < CIII2E2 -k 
k=l 

that is to say, f E BMO(OA) and hence Qp(SA) C BMO(OA). Finally, Qp(SA) = BMO(OA) 
yields. [ ]  

R e m a r k  1. The case 1 of (iii) was pointed out in [7] as well. In addition, QI (0A)  contains all 
functions f : 0 A --+ C obeying 

( I f (z )  - f (w) l  < C log IZ - wl , z, w 6 OA . 
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This shows that for t~ 6 (0, 1), all Lipa functions lie in Qi (0a) .  But L~176 is not a subspace of 
QI (0A). For example, 

f2(z) = E 2-nz2"' Z E oa ,  
n = 0  

belongs to L~(bA)  \ Ql(aA) (cf. (2.2) as well as (2.3)). 

Since BMO(OA) is a Banach space (provided we identify functions which differ a.e. by a 
constant), we naturally have the following: 

Corollary 1. 
Let p ~ ( - 1 ,  c~). Then Qp(Oa) is complete with respect to (1.1). 

Proof .  Let {fn} be a Cauchy sequence in Qp(Oa). By Theorem 1, Qp(OA) embeds BMO(OA) 
with the inclusion map bounded. Hence, {fn} is a Cauchy sequence in BMO(OA) as well, and 
fn ~ f in BMO(aA) for some f .  It follows easily from Fatou's lemma that for every integer 
k_> l ,  

IIf - AIIQp(azx) < limsup IIA - fkllQp(a~) , 
n---* oo 

which implies fk ---> f in Qp(~A). [] 

3. Connection with the Sobolev Space 

From Sections 1 and 2 it turns out that Qp(OA) is closely related to the Sobolev space on 0A. 
This section clarifies this deep relation. 

For p E ( - ~ ,  oo), denote by s  the Sobolev space on oa ,  of all Lebesgue measurable 
functions f �9 0 a --+ C for which 

1 

[L L }= Ilfllz:~(oA) = If(z)  - / ( w ) l  2 Idzlldwl < oo.  (3.1) 
A A IZ -- Wl 2-p 

It is clear that L2(aA) is a subspace of E2 (0A), p > 1. However, a similar way to show Theorem l 

produces that E 2 ( a a )  = C when p 6 ( - ~ ,  -1 ]  and s  = LE(0A) when p 6 (1,2]. 

By (1.1) and (3.1) it follows that Qp (8 A) is a subspace of Eep (8 A). Moreover, if p 6 ( - c~ ,  0], 

then Qp(Oa) = s Thus, Qo(0A) has the following M6bius boundedness: 

Ilfl[Qo(or,) = [If o 4)wllzzg(a,x), w ~ a .  

This fact draws our attention to the case p 6 (0, c~). As a matter of fact, we find the following: 

Theorem 2. 
Let p ~ (0, c~) and let f 6 E2(0a) .  Then f 6 Qp(0A) if and only if 

Illfllloe(aA ) = sup Ilf o ~btollZ:~(aA) < oo.  (3.2) 
w E A  

Proof .  First of all, with the help of (1.4), we establish an identity: 

2 L L l f ~ 1 7 6  
IIf~ = A A lu--vl 2-p 

- - L A L A  If(u)-f(v)12-~--v~--p [,/il l - i w i 2  P 
- - w u l H ' - ~ v l )  Idulldvl 

(2rr)PLzxfA If(u)-f(v)12lu -- vl 2-p [ew(u)Pw(v)]q Iduldol , (3.3) 



316 Jie Xiao 

where 
1 - I w l  2 

ew(u)  = 
2rr I1 - tbul 2 

is the Poisson kernel. 
Next, we verify the sufficiency. Suppose III f III a p(OA) <~ OO. Arbitrarily pick a subarc I of  0A. 

If  I # 0ZX, then we choose a point w 6 ZX \ {0} such that w / I w l  and 2re(1 - Iwl) are the center 
and the arclength of I ,  respectively. If  I = 3A, then we take w = 0. With such a w, as well as the 
following inequality: 

t 2 
cos t  > 1 2 '  t ~ ( - c x ~ , c ~ ) ,  

we get that for u 6 I ,  

c 1 
Pw(u) > ~ ~ ~ (3.4) 

1-[wL III 

Applying (3.4) to (3.3), we obtain II f II Qp ('o a) ~ C III f III Qp (3 A) < O~. 
Finally, we return to the necessity. Let f ~ Qp(Olk) with IlflLap(a*,) < oo. To each point 

w 6 0A \ {0} we associate the subarc Iw with center w / I w l  and arclength 2zr(1 - Iwl). For w = 0, 
we set Iw = 3Z~. Also, set 

I n = 2 n l w ,  n = 0 , 1  . . . . .  N - l ,  

where N is the smallest integer such that 2 N l l w l  > 2Jr. Then set I N = 3A.  

Through the help of  the elementary inequality: 

2t 2 
cost_< 1 rc 2,  t 6 [ - J r ,  zr] ,  

we know that for every point u 6 3A, 

C 
Pw(u) < ~ (3.5) 

1 - I w l  

Furthermore, for u c 3A  \ I n, 
C 

Pw(u) < 22nlwl Ilwl 

From now on, we may assume that Iw[ > 1/2, otherwise, the result is obviously true. There- 
fore, if u ~ I n+l \ I" ,  we have 

C 
Pw(u) < 22 n tlwl " (3.6) 

With the above notations, we break II f 2 O 4ho lls of (3.3) into two parts. 

IIf 2 

(2~)q 
/k w = n+l\ln -(~--S---1)- ~ [Pw(u)Pw(v)]~ Idulldvl 

N-1 

-- f, ,...,+ z LI,,.,.-., 
A w n = O  A 

= A W B  . 
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By Theorem 1, (3.5), (3.6), and the identity: 

'f, II---/ If(z) - al2ldz[ -- I-~ If(z) - f !  [dz[ + [fI - a[ 2 , 

we have 

N - !  

A = (f]~,fl, ,-4rn~=ofl.+~k,.fl. ,){.. .  } 

N--1 

1 I < Cllfll2Qp(,Ozx) + C 2 (22n iltol)p n+l\in 
n = l  

N--1 

f, <_ Cllfll2Qp(,o/,) + C ~_, (22n ll~l)2 n+l \  In 
n = l  

a ~ C ,  

f I f ( u ) -  f(v)l  2 
. l u - o l  2-p Idulldv[ 

f/w If(u)  - f(v)12ldulldv[ 

B, in the same manner as handling A, we can establish 

B = + Z ,+1\1, ,,+t\t,, {'" "} 
\ n = 0  w n+l \  In n = 0  = 

N - 1  N - 1  N - I  \ 

f, czf ,  f < CIIfI[QPOA) + ~\1., ,,+~\l,- + ) {'" "} 
n = l  m = 0  n+l\In m+l\lm 

= CIIfllQpOZx) + I\lu, re+l\ Im -Jr- E -[- n+l\in m+lXlm {'" "} 
??1"<1"1 

2 n 1 
_< Cl l f l lopozx)+C ~ +  ~ IIflI2MOOA) 

n = l  

_< Cllfl l~A~a).  

Combining the estimations of A and B, we finally reach Illflll 0pO,,) < oe, which concludes 
the proof. [ ]  

It is very interesting to know that BMO(O/x) is the M6bius bounded subspace of s 
p > 1 (in particular L2(0ZX)). This is probably a new discovery of BMO(OA).  Observing that 
L 2 (0 zX) and B M O (0 ZX) are M6bius invariant, we obtain the following. 

Corollary 2. 
Let p E (0, ~ ) .  Then Q p ( O /x ) is a Mffbius invariant space in the sense of that llt f lH Qp('Jz~ ) = 

[llf o qSwlllQpOA)for any f E Qp(Ozx) and w E A. 

Proof .  It follows easily from Theorem 2. []  

Moreover, we would like to point out that a motive behind Theorem 2 and Corollary 2 is the 
corresponding holomorphic case. Note that Q1 = B M O A  (taking p = 1 in (1.3)) and Ql(azX) 7~ 

Concerning 

-< CllflL~:o~) 

N - I  

1 f. 2 CIIfll~p(azx) + C ~ (22n tlwl)2 ,+i\i~ -- + I f (~  -- 
n = l  uJ 

-< CIIfll~pOzx) + C ~'~ Ilfll~MOOZX) + C ~ Ilfll2sMO(,O/,) 
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BMO(OA). Now suppose that 

O(3 

f (Z) = ~ anZ n, Z �9 7X , 
n = 0  

is a member of the Hardy space H 2. Using Parseval's formula (cf. (2.2) and (2.3)), we see that 
f �9 E~(0A) if and only if 

~_~ lanl21og(n + 1) < e~ , 
n = 0  

which, as Ess~n showed us in a private communication [4], is equivalent to 

where 

f f  I f ' ( z ) 1 2 t z ( I z l ) d x d y  < oo, z = x  + i y ,  
A 

f'O<r  ( ) , 
Iz(r)= ] logs lds~ 1 - r  2 l O g l _ r  2' r - +  1. 

dO 

This formula has not been solved until now, see [14] and its references. These observations tell us 
that f �9 Q l ( 0 a )  if and only if 

sup ff I f (Z)l  2/Z (]c~w(z)l)dxdy < c~, Z = x + i y .  (3.7) 
w e a  a 

However, (3.7) is different from (1.3) in the case p = 1. Hence, we have the following: 

R e m a r k  2. B M O A  does not equal the holomorphic extension of Q1 (0a)  to A. 

4. Representation via Wavelets 

This section is devoted to discussing expansion of Qp(OA)-functions in a series of Haar or 
wavelet basis. 

We start with defining the dyadic Qp (0a)  space. Following [7] and using the map: t --+ e 27t i t ,  

we identify aA with the unit interval [0, 1), where subintervals may wrap around 0. Meanwhile, 
a subarc of 0A corresponds to a subinterval of [0, 1). A dyadic interval is an interval of the type: 
[m2 -n, (m + l)2-n). Denote by 79 the set of all dyadic subintervals of 0 a (of course, including 0 A 
itself). For each p E ( - ~ ,  cx~), Qap(aA), the dyadic counterpart of Qp(0A), is defined by the set 
of all Lebesgue measurable functions f : 0 a  --+ C with 

1 su I, ]= lcZ~ ~z-_-w~S-~- Idzlldwl < ~ .  (4.1) 

Also, BMOd(OA) (defined via replacing the supremum of (1.2) by one taken over all intervals 
I e 79) stands for the dyadic counterpart of BMO (0a)  [6]. As in Theorem 1, it is not hard to figure 
out that Qap(0a) is nondecreasing with p, and that Q~(OA) = C whenever p e ( - ~ ,  -1] ,  as 

well as Qap(0A) = BMOd(aA) whenever p e (1, c~). Of course, ap(OA) C Qap(0A). A close 
relation between both (for which the case p e (0, 1) is due to Janson) is delivered by the following: 

Theorem 3. 
Let p �9 (0, ~ ) .  Then Qp(OA) = Qap(0A) fq B M O(OA). 
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P r o o f .  If p 6 (0, 1), then the proof can be found by [7, Theorem 8]. In fact, Janson's proof is 
valid for the case p = 1 as well. As to p ~ (1, oo), Theorem 3 follows from Theorem 1. [ ]  

Janson's demonstration for the case p 6 (0, 1) of Theorem 3 is based on the local analysis on 
Qp(OA). It is more helpful to recall his notations. For each interval I C 0/x and for each integer 
n > 0, denote by Dn (I) the set of the 2 n subintervals of I with length 2 -n III obtained by n successive 
bipartition of I.  Further, for a Lebesgue measurable function f : I ~ C, put 

Or3 

E 2  -pn ~_, I J[ - l  f~ I f ( z ) -  fJI  2 ldz l .  (4.2) Rf, p(l) 
n = 0  JEZ)n(1) 

With the aid of (4.2), we have the following conclusion which is due to Janson in the case 
p c  (0, 1). 

L e m m a  1. 
Let p E (0, oo) and let f E LE(OA). Then 

(i) f E Qd(o/x) if andonly/fsuplED Rf, p(I) < oo. 
(ii) f E Q p ( O /x ) if and only /f sup l Ca A R f, p ( I ) < oo, where the supremum is taken overall subarcs 
I ofOA. Inparticular, forany subarc I C a/x, 

I i I - P f t f t  I f ( z ) - f ( w ) 1 2  ~-_--w-~z7 Idzlldwl <_ CRf, p(I) . 

P r o o f .  It suffices to verify (ii). If p ~ (0, 1), then both Lemma 3 and the estimate (13) in [7] 
indicate the truth of (ii) right now. Although Janson's proof is ready for the case p ~ (0, 1), it applies 
to the case p = 1. In addition, if p ~ (1, oo), then from the convergence: 

oo oo 

2 -pn ~ 1 = E 2 - ( v - l ) n  < cx~ (4.3) 

n = 0  JE'Dn(I ) n = 0  

it derives that f ~ BMO(OA) r sup/co A Rf, p(I) < oo. Since the equivalence: f ~ Qr(O/x) r 
f c BMO(OA) is known (cf. Theorem 1), the desired assertion yields. [ ]  

Let us now take f ~ L2(0A) with 

f = E c(to)hoj, (4.4) 
w e d  

where {hco}~oED is Haar basis on 0/x and 

c(o~) = f f (z)ho~(z)ldzl . 
Ja A 

Carleson [2] pointed out that f ~ BMOd(OA) if and only if 

sup la1-1 ~[]  Ic(og)l 2 < oo .  (4.5) 
o-E~) ~oCO" 

In order to extend this to Qap(0A), we need to introduce a formula similar to (4.2). More 

precisely, for every I ~ 7) and f e L2(0A) with (4.4) let 

oo 

Sf, p(I) = E 2  -pn E I~rl-1 ~ Ic(~ (4.6) 
n=O cr ET)n (I) o~CCr 
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This definition is employed to produce a Qd (0 A)-analog of B M 0 d (0 A). 

Theorem 4. 
Let p E (0, oo) and let f E L2(0Z~) with (4.4). Then f e Qd(0A) if and only if 

IIIfllls~ = sup Sf, p ( I )  < o O .  (4.7) 
Ic7)  

Proof .  Because (4.6) and (4.7) rely only upon the dyadic intervals in 79, Theorem 4 follows readily 
from Lemma 1 (i) and the fact that for any I E 79 and tr ~ 79n (I) ,  

f If(z)  - f~l 2 Idzl ~" E Ic(~ �9 [ ]  
o)(ff 

Combining Theorem 3 with Theorem 4, we can obtain a characterization of Qp(0A) in terms 
of B M  0 (0 A) and Haar basis {h~o }o2e:D. Nevertheless, Haar basis does not possess good smoothness. 
To further represent BMO(OA)-functions, Carleson [2] used a modified Haar basis which has some 
smoothness (Lipl  actually), but has no the orthonormal property. Here, it is worth mentioning that 
Wojtaszczyk [15] chose the orthonormal Franklin system to expand BMO(OA)-functions. After 
that, Strtmberg [13] modified the Franklin system (later, Lemari6 and Meyer [9] and Daubechies [3] 
consulted other approaches) and finally constructed the so-called orthonormal wavelet basis. 

In the sequel, we adapt notations in [10, Section 5.6] (or [16, Sections 2.5 and 8.4]). Suppose 
{I} U {gs.j,/~} (j = 0, 1, 2 . . . .  ; k = 0, 1, 2 . . . . .  2J - 1) is an orthonormal (periodic Meyer) wavelet 
basis on 0/X which satisfies the 1-regular condition. For convenience, write the shorter notation apj,~ 
as gtx. For every L = (j,  k), denote by I()0 the dyadic interval {t : 2Jr - k E [0, 1)}. 

We shall consider functions f E L2(0A) with the form: 

f -- E a ( X ) ~ x  (4.8) 

where 

a()Q = (f ,  apx) = ~ f (z)~x(z) ldz[  . 
A 

Like (4.6), for each I E 79 and f ~ L2(0A) with (4.8) let 

r/,p(I) = ~2-r~ ~ iJi -~ ~ la(3.)l 2. 
n=0 JET)n(I ) I(L)CJ 

Theorem 5. 
Let p E (0, oc) and let f E L2(O&) with (4.8). Then f E Qp(OA) if and only if 

Illflllrp = sup Tf, p(I)  < oo. 
1E79 

Proof .  

(4.9) 

(4.10) 

Note that in the case p > 1 [cf. (4.3)], (4.10) holds if and only if (4.11) holds, where 

sup Ill -1 ~ la()012 < oo.  (4.11) 
1~79 I(,~)CI 

In the meantime, f E BMO(OA) if and only if (4.11) is true (cf. [2] and [10, Section 5.6]). So, 
from our Theorem 1 it turns out that Theorem 5 is valid for p > 1. Therefore, it remains to take an 
account of the case p ~ (0, I]. 

In what is going on, p is always restricted to be in (0, 1]. However, the proof presented here 
is actually suitable for p ~ (0, 2) and hence also for the BMO(OA)-case. To begin with, we should 
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notice that the support of the wavelet aPx is contained in the interval m I (~.), where rn > 0 is a constant 
independent of any I (L). 

Next, we check the necessity. Let f belong to Qp(0A). Suppose I ~ 79 and n = 0, I, 2 . . . . .  
For J e 79n (I), we split 

f = fmJ  -}- ( f  - f m J )  XmJ + ( f  -- fro J)  XOA\mJ = f l  q- f2 + f3 , 

where XE is the characteristic function of the set E C 0A. By the geometric construction of the 
support of the wavelets, (f3, ~Px) = 0 if IO.) C J.  On the other hand, the integral of ~x over 0A is 
zero. So ( f ,  aPx) = (f2, gtx), furthermore, 

E [(f '  ~px)'2 < E I(f2, ~PD' 2 =  [ m j l - l f  fm I f ( z ) -  f(w)12ldzl]dwl. 
I(~.)CJ ~ tJ J 

This gives that for J ~ Dn (1), 

IJ[-I E 'a(L)12 < ( ' J [ [ m J [ ) - I  fmJ fmJ I f ( z ) -  f ( w ) J 2 J d z J l d w [ .  
I(3.)CJ 

In a completely similar fashion to arguing the inequality (12) of [7], we obtain 

Tf p(l) < Clmll-P fm fm If(z)-  f(w)12ldzlldwl 
" - J I I z -  w l  2 -p  ' 

which forces (4.10) to come out [owing to f E Qp(0~)] .  
Conversely, let us claim the sufficiency. Suppose that (4.10) holds. For a given interval 

I C 0A, we define an integer q by 2 -q < III < 2 -q+I- At first, we consider small intervals of 
size 2-J  < 2-q and then large intervals for which 2 - j  > 2 -q. The wavelets corresponding to the 
small intervals are themselves of two kinds - -  their supports either meet I or do not meet I .  If  a 
small interval I ()0 is such that mI (•) intersects with I ,  then I 0-) is certainly included in MI, where 
M > 1 is a constant depending only on m. We write f = f l  + f2 according to the small and large 
intervals, then f l  splits f l l  + fl2 and f12 = 0 on I ,  whereas f t l  involves the small intervals I(X) 
contained in MI. Thus, for any J E 79~(I), 

f j  I f~(z)  - ( f l , ) j I  z Idzl <_ C ~ _ ,  [a(~.)[ 2 . 
I(X)cMJ 

Consequently, 

By Lemma 1 (ii), 

R~.~,v(I) = Ryn,p(X) <_ C T y . p ( Z ) .  

f f t  If l(z)  - f l (w)l  2 -~'__'~=-~ Idzlldwl ~ f i l l  p �9 (4.12) 

We turn to the large intervals and their subseries f2. Now, we use the fact that the wavelets are 
"fiat" and that, moreover, for a given size 2 - j  of the large dyadic interval 1 0-), only M wavelets ~x 
(expanding f2) are not identically zero on I (because the support of ~Px is a subset of mlO0). For 
each of the remaining M wavelets gtz, we have 

3j 
I g t x ( z ) - ~ P ) , ( w ) l < C 2 r l Z - W [ ,  Z , W ~ I ,  

due to the regularity of the wavelets. Thus, 

f f ' g r x ( z ) - ~ ) , ( w ) '  2 ~22-wi--5"S-~_p Idzlldwl < C23JlIIP+Z. 
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Since the corresponding wavelet coefficients la (~.) I are bounded above 2 - j /2 ,  Minkowski's inequality 
deduces 

1 ! 

I ,J, 1' IJ, J, 1' If2(z) - f2(to)l 2 Idzlldtol _ ~ la(•)l I~x(z) - aPx(w)l 2 
Iz - wl 2-p . ~ - - w ' - ~  Idzlldwl 

J<q 

< C~'-~2Jl l l l+~ 
j<q  

< C l l l ~ .  (4.13) 

Combining (4.12) and (4.13) we obtain 

f z f  I f ( z ) - -  f (w)l  2 ~--S'-to--~--G Idzlldtol ~ CIII p . 

In other words, f ~ Qp(aA) .  This completes the proof. [ ]  

Let U be a mapping with U(h~) = ~x (for o9 = 1(~.) e 79). Then Theorems 4 and 5 tell us 
that the mapping U can be extended to an isomorphism between Qp(aA) and Qdu(aA). 
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