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ON DETERMINATION OF THE NATURAL FREQUENCY OF TRANSVERSE 

AND LONGITUDINAL VIBRATIONS OF A CRACKED BEAM. 

PART 1. ANALYTICAL APPROACH 

A. P. Bovsunovskii UDC 539.67; 620.178 

We consider a perfectly elastic cantilever beam with a crack. The influence of the crack depth and 
location on the vibration mode of the beam is simulated by a local change in the cross section. This 
problem is solved by the Rayleigh method. Fairly simple formulas for the determination of the natural 
frequency of the first mode of bending and longitudinal vibrations of a cantilever beam with an open 
and closing crack are derived. 

For a long time, substantial research efforts have been focused on the development of relatively simple and 
reliable nondestructive methods of damage inspection for critical and expensive structural elements in spacecraft 
and aircraft [1-3], nuclear-power-plant equipment [4, 5], turbines [6-8], bridge structures [9-11], food conduits 
[12], building structures [13], offshore-drilling platforms [14-16], etc. One of the earliest works on vibration 
diagnostics dates back to 1944 [17]. This long-standing interest in the problem can be attributed to the ever-pressing 
requirements of safer and longer life of machinery and structures, on the one hand, and to the fact that it has been 
rather difficult to obtain a simple and reliable criterion of damage evaluation. 

The vibration diagnostics is the most promising method because it is inexpensive and simple to use. This 
method is based on a relationship between the fatigue-crack parameters, i.e., depth and location, and certain changes 
in the dynamic characteristics of a structure as a whole and its elements. In the review of works dealing with 
vibration indicators of fatigue damage, Krawczuk and Ostachowicz [18] demonstrated that the majority of those 
works had been dedicated to the study of natural frequencies and modes of vibration of a body with a crack. 

Many researchers simulate a so-called open crack [6, 19-22] and assume the weakened section to have the 
same stiffness in both half-cycles of vibrations. The simulation of a closing crack is a more complex problem because 
in this case the model must include the changes in the stiffness of the weakened section [23, 24]. However, even 
for an open crack the analytical solutions are rather cumbersome and require the use of numerical methods and 
are, therefore, of limited applicability for engineering practice. 

The simulation of a crack involves fracture-mechanics approaches [21, 25, 26] or assumed stress 
distributions in the vicinity of the crack tip [22, 27]. Meanwhile, the linear-vibration theory and the theory of 
elasticity allow one to come up with fairy simple and quite accurate (for engineering applications) expressions for 
the determination of the natural frequencies of bending and longitudinal vibrations for a beam with a single-edge 
open crack as well as with a single- and double-edge closing crack. 

The objective of the present work is to develop an analytical approach that would yield engineering 
expressions for the determination of the natural frequency of the first mode of transverse and longitudinal vibrations 
of a cantilever beam with an open or closing edge crack. 

Transverse Vibrations. Consider an ideal elastic cantilever crack-free beam of length L. We determine its 
natural frequency using the Rayleigh method [28]. For this purpose, the shape of the deflection curve of the beam 
in vibration is to be set a priori. A fairly good approximation to an actual deflection curve shape can be achieved 
by subjecting a horizontally positioned beam to a static force that simulates the beam's own mass. We will simulate 
the mass of the beam by a uniformly distributed load q, and the mass of the end mass of the beam by a concentrated 
force P. 
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Fig. 1. Schematic representation of a cracked cantilever beam. 

From the solution to a differential equation for the beam deflection curve [29] we derive an equation of the 
elastic line of the cantilever beam subjected to a uniformly distributed load and a concentrated force: 

y(x) = yp(x) + yq(X), 

= ~ (3Lx 2 - x3), yp(x) 
2L ~ 

(1) 

(2) 

yq(X) = 3 ~  (6L2x2 - 4Lx3 + x4)' (3) 

pL 3 qL 4 
where y p -  3E1 and yq = 8E1 are the maximum deflections of the beam end (x = L) by the action of the 

concentrated force P and the uniformly distributed load q, respectively; E is the elastic modulus of the material, 
and 1 is the second moment of the cross-sectional area. 

To determine the maximum kinetic energy (K) and maximum potential energy (/7) of a beam carrying an 
end mass, we use the following expressions [28]: 

L 1 ] K = "~ p2 (x)dx + rn(yp + yq)2 , (4) 

17 = 1 f E1 dx, (5) 
. o  t lx ) 

where p is the angular frequency, p is the density of the beam material, m is the mass, and F is the 
cross-sectional area of the beam. 

From Eqs. (4) and (5) we obtain a general expression for the natural frequency of vibrations of a beam 
without a crack: 

1 o ~dx ) (6) 
f t = _ ~  = ~ L . . . . . .  yq)2 

f pFy2(x)dx + m(yp + 
0 

Since the substitution of Eq. (1) into (6) yields a cumbersome expression, in the general case we shall 
determine the natural frequency of the beam vibration numerically. 

Consider now a cracked cantilever beam (Fig. 1). A crack of depth a lies at a distance Lcr from the base. 
We assume that during the half-cycle of vibration when the crack is open, in the volume of the material given by 
0.5~abd (b is the width of the beam) the elastic strain energy is lost. This is similar to what Griffith [30] assumed 
when determining the conditions of fracture of a plate with an elliptical crack in uniform tension. 
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The loss of the elastic strain energy in some volume of the beam is equivalent to the removal of this volume 
of the material. In this case, in the half cycle of the crack opening the beam compliance will increase and the 
deflection curve will change its shape. To simplify the problem, let us represent this removed volume in the form 
of a parallelepiped of size a x 2d x b (Grabowski [31] considered the volume a x a x b). 

Applying the method of initial parameters [29], we obtain the following equation for an elastic line for the 
second segment (Lcr <- x <- L) of the beam in the general case (i.e., including the action of the concentrated force 
and distributed load): 

Ycr(X) = Ypcr(X) + Yqcr(X), (7) 

Ypcr(X) : y.. r 3 , : -  : m -  + 3,;tmX2)] 
2L"* I_ 

( 8 )  

Yq {6L2x 2 4Lx 3 + x 4 8fldx 3 Yqcr(X) = - ~  -- - -  

--  (.[7 - 1) [ -  24dLcr x2 - 622 x2 + 622x  2 - 122mx2(Lcr + d) + 12~tpx2(Lcr- d) 

+ 4~tmX3 42tpX 3 + 4~pZ3 42mX3m_ 2 2 2 2 Z4]  } ,  - - 62,o Zp + 62m Zm - Z 4 + (9) 

where fl = I/Icr = 2h3/[h a + (h - 2a) 3 ], Icr is the moment of inertia of the weakened section of the beam, 
2 m = L - L c r -  d, 2 p = L - L c r + d ,  Z m = x - L c r - d ,  and Z p = x - L c r + d "  It is clear that with f l =  1 
expression (7) is reduced to the form (1). The respective maximum deflections of the end of the cracked 
beam (x = L) caused by the concentrated force and distributed load are given by 

Ypcr=-~ (L3 + 2d([3-1)[3(L - Lcr)2 + d2]} ,  

Yqcr = Yq {3L4 _ 8fldL3 + 8d(fl _ 1)[4L3 - 3LLcr(3L -- Lcr) - 2dL(3Lcr- 4d)] }. 
3L 4 

For the first segment of the beam (x <- Lcr) we use the equation for an elastic line (I). Then, the maximum 
kinetic and potential energies of the cracked beam will be represented by the following respective equations: 

_ Lcr L 
Kcr = p F y2(x)dx + frY2cr(x)d + m(Ypcr + Yqcr) 2 (I0) 

[ Lcr (d2y12 : (d2ycrl 2 ] 
o s <,x+ 

<'` (11) 

Expressions (10) and (11) are valid for the half cycle of vibration when the crack is open. For the half cycle 
of vibration when the crack is closed and the beam works as a continuous one, we can apply expressions (4) and 
(5). To determine the natural frequency of vibrations of a beam with a closing crack, let us use the respective values 
of the maximum energies over the whole cycle of vibration. Then, the general expression for the natural frequency 
of the beam with a closing crack and with a mass at its end will assume the following form: 

,o " (<:'c,l  
E1 i--~x2) dx+ f [dx2 ) dx+ f i--~x2)dx 

1 0 Lcr 
fet = "~ L Lcr L 

F[f y2dx+ f y2dx+ fLc:2rdx] + m[(yp + yq)2+(Ypcr+ Yqcr) 2] 
(12) 
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The above approach, which yielded expression (12), will be referred to as the energy-based one. 
Another approach to the determination of the natural frequency of a cracked beam (we call it the 

frequency-based approach) is based on the evaluation of the period of natural vibrations of a bilinear system as a 
sum of half-periods of vibration of two linear systems [32, 33] and is represented by the formula 

i t_  2.r~/, 
:t+fr' (13) 

where f t is given by formula (6) and fctr by the expression 

( ~ Lcr / 2 \ 2 L 2 1 1/2 / + f (d2ycr] dx J 1 I L o ~dx ) Lcr ("~X 2 ) 
ftr = ~[ r ~ ---- - Z - -  -----~ (14) 

(pFlf y2(x)dx + f ~,.(x)dx[ + m(Ypc~ + yqcr) 2 
L o Z.c~ J 

Expression (13) determines the vibration frequency of a beam with a single-edge closing crack. For a beam 
having two closing cracks at its opposite sides, this expression can be rearranged to give 

t t 
i t  = 2Yd,r 

f/rt -l- ftn " 
(15) 

We find the values of fctr~ and f t  n from expression (14), where all the "cr" subscripts are replaced by the "cr l"  

and "cr2" subscripts, respectively. 

In order to simulate a single-edge open crack, it is sufficient to equate the ftr~ and fctn values in (15). 

Then, the natural frequency of a beam with a single-edge open crack will be given by 

.fo t = ftr. (16) 

Note that in this case the energy- and frequency-based approaches yield the same expression for the frequency. 
When we take into account the deflection caused by the concentrated force only, expressions (6) and (14) 

become much simpler: 

1 ( 420___EIL / 1/2 
2zL 2 !33pFL + 14Ore) ' (17) 

ftcr l (.3 420EIL .)1/2 
2arL 2 3pFL(1 + A) + 140m(1 + B) ' 

(18) 

where 

A = 140 {4d2(~ _ 1)213(L5 _ L5cr) + (3d 2 - 15LLcr)(L 3 - L3cr) + (30L2L2cr_ 9d2LLcr + d4)(L_ Lcr) ] 
33L 7 

+ 0 . 1 d ~  - 1) [3 ( l lL  6 + L6cr) + 15L2L2r(3L2 + L2r) - 3LLcr(26L 4 + 6L4r) + 5d2(3L 4 -  4ii3cr + /c4r)] },  

4. :]  + 4 } 
B = - ~  
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Then, replacing f t  and ftcr in (13) with f t  and ftcr, we arrive at a fairly simple formula for the 
determination of the natural vibration frequency of a cantilever beam with a closing single-edge crack: 

t t 

For a beam with an open crack, expression (19) can be simplified to give 

(19) 

fotp = ftcr. (20) 

Let us discuss another approach to the determination of the natural-frequency variation for a cantilever 
beam with a closing crack. We relate this variation to that of the beam compliance. Denoting the compliance of a 
cracked and crack-free beam by C and Ccr, respectively, we can represent the relationship between them by the 
expression 

t 
Ccr = C(1 + acr). (21) 

When we take into consideration the action of the concentrated force alone, we can readily derive a formula 

for atr from Eqs. (2), (8), and (21): 

' l acr = (L - Lcr + d) 3 (L - Lcr - d) 3 (22) 

Formula (13) can be rearranged to give 

.fct= 2 

fpt 1 -I-(I  -t-atcr) 1/2" 

For the case with an open crack, we can represent expression (23) as follows: 

(23) 

f otc 1 
- ( 2 4 )  fpt (I + atr) I/2" 

Longitudinal Vibrations. Consider two variants of the determination of the natural frequency of the 
first-mode longitudinal vibrations of a cracked cantilever beam. They differ merely in the involved distribution 
functions of displacements along the beam. In these cases, the form and size of the removed volume and all the 
designations are the same as those for the bending vibrations. 

In the first variant (a simpler one), the distribution functions of displacements along the cracked and 
crack-free beams are assumed to be the same as those in the case with the action of a force applied to the beam 
end, P: 

Px 
u(x) - E F '  (25) 

Px [1 2ad ] 
Ucr(X) = "-~ L + L(h - a) " (26) 

According to this assumption, the maximum kinetic and potential energies of a crack-free and cracked beam 
will be given by the following respective formulas: 

K =  p2 p2L2 ( 2ad 12 (pLF + 3m),  Kcr, = p2 p2 6 - ~  L +  h - a ]  (pLF + 3m), 
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p2 L 
H -  2EF ' 

p2 ( 2ad ncr, - ~ [L + h-a)" \ 

The energy- and frequency-based approaches yield the following expressions for the natural frequency of 
longitudinal vibrations of a cantilever beam with a closing crack and with a mass at its end: 

f /  = ~ 2Lad 2a2d 2 
(pFL+ 3m) L 2 +  h "  a + (h_~-~2J)  

:t_ 2zl/ct., 
/t +/lr, ' 

, (27)  

(28) 

where 

:l = 1 ( .  3__eLz )~/z, 
2:rL ~pFL + 3m 

(29) 

2ad (30) 
- 2~L (pFL+3m)  1 + L ( h - a )  

By analogy with the bending vibrations, in the second variant a cracked beam is assumed to consist of two 
segments. The displacement of the first segment (x <__ Lcr) is given by formula (23), while that of the second one 
(Lcr <- x <- L) is given by 

Ucr2(x ) = e(x - 2d) 2Pd 
EF + EFI--, (31) 

where F t = d(h - a) is the area of the weakened section. 

Then, the maximum kinetic energy of a cracked beam (the potential energy remaining as in the first variant) 
is evaluated by 

Kcm= p2 J P_~[L3 a [ 6E2F[ + 6d(L 2 - L2cr) ~ + 12d2(Z - Lcr ) - -  a 21 "/ ( h - a )  + 2--e-~ L + -#-~_ ~ ) . 

Using this expression, we derive the following formulas for the natural frequency of longitudinal vibrations 
of a cantilever beam with a closing crack by the energy- and frequency-based approaches, respectively: 

where 

1 

f l  = ~ 3ad(L 2 - LZcr) 6a2d2(L-- Lcr)] 2 2adL 
F 3 +  h - a  + ~-a) z ]+am + h - a  

2a2d 2 ] 

+ (h - a)EJ 

:~_ 2:t/J~ 
f l  + f l  n ' 

I12 

, (32)  

(33) 
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p ad 1/2 

fcln 1 

= - ~ - [ L F  3+ 6ad(L2-L2r) 12a2d2(L-Lcr)]h_a + (h _ a)2 j + 3 m  (L+-g-i--~-a)2ad] 2 (34) 

A formula for the determination of the relative variation of the longitudinal vibration frequency of a beam 
with a closing crack in terms of its compliance will have the form 

.fc / 2 
f l  1 + (1 + a/cr) 1/2 ' 

(35) 

where 

l 2ad 
a c r -  L(h - a) " (36) 

By analogy with the approach used for transverse vibrations, it is easy to derive formulas for the frequency 
of longitudinal vibrations of a beam with an open crack. 

Conclusions. We have derived several variants of fairly simple formulas for the evaluation of the natural 
frequency of the first-mode bending and longitudinal vibrations of a cracked cantilever beam. However, before using 
these formulas we must establish a relationship between the crack depth a and parameter d. This, as well as the 
experimental verification of the applicability of the present formulas, will be the objective of our next report. 

The approach suggested in this work can also be used for deriving formulas for the frequencies of 
higher-mode vibrations. 
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