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Abstract--The paper describes a method, based on a genetic algorithm, to remove 
sinusoidal powerline interference in electrocardiograms. There is a report on the use of the 
genetic algorithm to remove powerline interference for two different types of interference, 
powerline interference with frequency drift, and interference with frequency drift as well as 
third- harmonic distortion. The studies are conducted on electrocardiograms with simulated 
interference and also on actual noisy electrocardiogram records. The results obtained 
using the genetic algorithm in these cases of interference are presented. 

Keywords--Electrocardiogram, Powerline interference, Genetic algorithm 

Med. Biol. Eng. Comput., 1998, 36, 191-196 

1 Introduction 

THE ELIMINATION of powerline interference from electrocar- 
diograms (ECGs) has been the focus of research for some 
time. Although proper grounding and electrical shielding are 
important in analogue recordings to reduce powerline inter- 
ference, computers have facilitated the use of digital methods 
to eliminate powerline interference in ECGs. The elimination 
of sinusoidal powerline interference corrupting an ECG signal 
is typically accomplished with a fixed-notch filter tuned to the 
interference frequency. A very narrow notch is useful to filter 
out the interference with negligible signal distortion. In the 
case of frequency-drifted powerful sinusoidal interference in 
ECGs, the centre of the notch filter may not coincide exactly 
with the interference. Such a fixed-notch frequency filter will 
be totally ineffective unless it is designed to be wide enough to 
cover the range of the frequency drift. Unfortunately, such a 
wide notch will result in distortion of the ECG signal. 

Digital filtering of ECGs, while suppressing powerline 
interference, affects some of the frequency components of 
the signal (VAN ALSTE and SCHILDER, 1985). Some methods 
have been developed involving subtraction of the interference 
from the interference-corrupted signal, which seems to offer 
better preservation of the signal shape (FURNU and TOMPKINS, 
1983; LEVKOV et al., 1984; AHLSTROM and TOMPKINS, 1985). 

The Levkov method involves the determination of the 
inierference amplitudes in a linear segment of the ECG 
signal and subtraction of these amplitudes from the corrupted 
signal. This requires a sampling rate that is an odd multiple of 
the interference frequency. If the sampling rate is an even 
multiple of the interference frequency, a modified approach is 
necessary (CHRISTOV and DOTSINSKY, 1988). 

Digital adaptive filters are better than fixed-notch filters in 
the elimination of noise (FE1NTUCH, 1976; DENTINO et al., 
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1978; KUMARAVEL et al., 1995; HAMILTON, 1996). Adaptive 
second-order FIR notch filters operate with a sufficiently wide 
bandwidth to track and reduce the noise frequency, but in the 
process they also attenuate the frequency components of the 
ECG signal lying in this band (FARDJALLAH and BARN, 1990). 

In Widrow's LMS adaptive noise cancellation, the primary 
input is taken from the ECG amplifier, and the 50 Hz power- 
line interference is taken from a wall outlet (WIDROW et al., 
1975). The adaptive filter contains two variable weights, one 
applied to the direct version of the reference input, and the 
other applied to a version of it shifted in phase by 90 ~ The two 
weighted versions of the reference are summed up to form the 
filter's output, which is then subtracted from the primary 
input. In this method, two variable weights are required to 
cancel the single pure sinusoid. The common-mode signal, 
usually taken from the right-leg reference electrode, is truly 
correlated with the noise in the ECG recording and, hence, it is 
taken as reference input for the LMS adaptive filter (THAKUR 
and ZHU, 1991). 

The aim of this paper is to demonstrate the application of 
genetic algorithms in powerline interference cancellation from 
ECGs. This method does not require any external reference 
signal, unlike that using LMS adaptive filters. 

2 Genetic algorithms 

Genetic algorithms (GAs) are optimisation and search 
procedures inspired by genetics and the process of natural 
selection, in which the fitter individuals of a population tend to 
survive and reproduce for longer than others (SRINIVAS and 
PATNAIK, 1994; VOL[ et al., 1995). 

In the literature, Holland's genetic algorithm is called the 
simple genetic algorithm (SGA) (HOLLAND, 1975). The SGA 
begins by randomly creating its initial population of binary 
strings. Each binary string is the encoded version of a solution 
to the optimisation problem solved using crossover and muta- 
tion genetic operators. The algorithm generates the subsequent 
strings from the strings of the current population. The gen- 
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erational cycle is repeated until a termination criterion, such as 
the number of  generations, is fulfilled. 

The structure of  a genetic algorithm is as follows: 

Simple genetic algorithm ( ) 

Initialise population; 
Evaluate population; 
while termination criterion is not reached 
{ 

select solutions for next population; 
perform crossover and mutation; 
evaluate the population; 

/ 
} 

3 Method 

Sinusoidal powerline interference noise in ECGs is removed 
by subtracting the 'genetised' sine wave, which is generated 
by the genetic algorithm, from the corrupted ECG, as shown in 
Fig. t. 

The method of  powerline interference cancellation from 
ECGs involves two successive operations, namely training and 
subtraction. First, during training, the sine wave generated by 
the genetics simulator is optimised using samples of  the 
primary signal. Secondly, the 'genetised' sine wave is sub- 
tracted from the primary signal to obtain a filtered ECG. 

3.1 Genetic design for frequency-drifted sinusoidal wave 
removal 

The genetic simulator generates a single sine wave with 
three unknown parameters, frequency, amplitude and phase. 
These parameters have to undergo genetic optimisation using 
a fitness function so that the mean square error is a minimum. 
As the genetic algorithm is an optimisation procedure based 
on maximisation, the fitness function is taken as the reciprocal 
of  the mean square value of  the error. 

The initial population consists of 50 randomised binary 
strings. The binary codes of  the three parameters (frequency, 
amplitude and phase of the sine wave), each of  16 bits, are 
concatenated to obtain a binary string. We have used the 
fitness function, 

1 
f =  N - 1  

1 ~ (a n _ bn) 2 
N n=0 

where f is the fitness value of the /th string of  the current 
population, a ,  and b, are the samples of  the signals (a) and (b), 
as shown in Fig. 1, and N is the number of  samples used for 
training. The fitness of  each one of the strings in the current 
pripulation is evaluated using the fitness function. 

In the selection or reproduction phase, the current popula- 
tion is used to produce the next generation of strings, which, 
on average, have a higher fitness value. In the SGA, a fitter 
string receives a higher number of  offspring and thus has a 
higher chance of  surviving in the subsequent generations. 

input pdman/signal (a)+( - ~  l, output 
(ECG with powerline interference) 

Y 'O'm-- 
genetic sine wave 

Method of powerline interference removal Fig. 1 
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The roulette wheel selection scheme is used to implement 
proportionate selection. Each string is allocated a sector (slot) 
of  a roulette wheel, with the angle subtended by the sector at 
the centre of  the wheel equating 27r( f / f ) ,  whe re f i s  the total 
fitness value of  the current population. A string is allocated an 
offspring i fa  randomly generated value in the range 0-2~ falls 
in the sector corresponding to the string. The algorithm selects 
strings in this fashion until it has generated the entire popula- 
tion of the next generation. 

After selection, pairs of  strings are picked up at random 
from the population, and the algorithm invokes crossover only 
if a randomly generated value in the range 0-1 is less than the 
selected crossover probability of  0.9. A crossover point, 
representing the order number of  a string bit, is selected 
randomly, and the positions of  the two parts of  strings 
beyond this crossover point are swapped to form two new 
strings. After crossover, the strings are subjected to mutation. 
Mutation of a bit involves flipping a 0 to 1, or vice versa, in a 
string, using a probability known as mutation probability, 
which is similar to the probability that controls the crossover. 
We have used a mutation probability of  0.1 in this case. 

These processes of  selection, crossover and mutation are 
repeated until the fitness function reaches an acceptable value, 
or the pre-defined number of  generational cycles are com- 
pleted. After this optimisation procedure, the 'genetised' 
parameters (frequency, amplitude and phase of the sine 
wave) are used to generate the sinusoidal signal, and it is 
subtracted from the primary signal to obtain noise-free ECGs. 

3.2 Genetic design for removal of  frequency-drifted 
sinusoidal wave with third-harmonic distortion 

Even though the chance of  distorted sine wave interference 
due to its harmonic generation is very rare, we have consid- 
ered the third harmonic of  powerline interference with its 
fundamental frequency. In this case, five parameters, namely 
frequency, amplitude and phase of the fundamental frequency, 
and amplitude and phase of  the third harmonic are genetised 
according to the procedure explained in the preceding Section. 
The initial population consists of  50 randomised binary 
strings, and each string has the concatenation of binary 
codes of  these five parameters of  16 bits each. 

4 Results 

In our studies, we have used ECG waveforms with a 
sampling rate of  600 samples per second. Three types of  
input datum are considered for various studies. They are: 
actual pure ECG with simulated sine wave interference 
using data translation software; actual noisy ECG with sinlu- 
lated sine wave interference; and actual noisy ECG with 
powerline frequency interference. The ECG is acquired 
using a data translation DT2821 data acquisition board with 
universal bio-amplifier. 

Fig. 2 shows the performance of  the genetic algorithm for a 
pure ECG with simulated 50 Hz sine wave interference. The 
time and spectral differences between the original and the 
filtered ECGs confirm that this method does not affect the 
skeletal and spectral components of  ECGs. The genetic 
method using the three parameters described in Section 3.1 
requires only 164 ms convergence time on a PC/AT 486, 
66 MHz processor and less than 54 ms on a PC/Pentium, 
133 MHz processor, for interference frequency detection with 
single decimal point precision. The simulated interference 
frequency is selected from the range 48.5-51.5 Hz, in steps 
of  0.5 Hz, and added to the ECG, and the performance of the 
genetic-algorithm based cancellation method is studied. The 
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(a) and fo) Original ECG and its spectrum; (c) and (d) ECG with simulated 50 Hz sine wave, and its spectrum; (e) and ( f)  ECG after 
filtering using GA and its spectrum; (g) and (h) time and spectral differences between original and filtered ECGs 

signal-to-noise ratio (SNR) improvement obtained at the 
output using the GA based cancellation method, compared 
with that of  an adaptive filter and a - 1 2 0  dB, 50 Hz FIR 
notch filter, is given in Table 1. The results show that the SNR 
improvement is much better than with the other two methods. 

Fig. 3 shows the input and output waveforms of  the GA 
based cancellation method for an acquired noisy ECG with 
muscular activity and with a 50 Hz simulated sine wave 
added. Table 2 shows the performance of the GA based 
cancellation method compared with that of adaptive and FIR 
filters. 

Table 1 SNR improvement for different interference frequencies 

Frequency of GA based Adaptive filter FIR filter with 
interference, cancellation, with # =  0.1, - 120 dB at 50 Hz, 
Hz dB dB dB 

48.5 97.4 40.2 17,5 
49.0 94.2 40.6 24.3 
49,5 97.2 40.8 26.1 
50.0 97.1 40.5 26.4 
50.5 . 97.0 40.7 26.1 
51.0 97.0 41.2 24.0 
51.5 84.5 40.6 17.6 

Fig. 4 shows the performance of  the GA based cancellation 
method for an actuual ECG acquired with powerline inter- 
ference noise. 

Table 3 compares the SNR improvement and root mean 
square (RMS) error at the output of  the GA based cancellation 
method with that of  adaptive and FIR filters. 

For different levels of  interference in ECGs, the conver- 
gence time for maximum SNR improvement and SNR 
improvement for a fixed number of  generational cycles 
(allowed time for convergence) are given in Table 4 for the 
three-parameter detection in GA based cancellation as 
described in Section 3.1. 

In the case of  third-harmonic detection, in addition to the 
fundamental frequency powerline interference, a simulated 
sine wave with third harmonic on pure ECG waveform is 
used and studied. The genetic design described in Section 3.2 
is used. The performance of  this method compared with that of  
adaptive and FIR filters is given in Table 5. 

As the GA based cancellation method basically consists in 
detecting the powerline interference in the primary signal and 
then subtracting the 'genetised' sine wave from the primary 
signal, the RMS error at the output of  this method, when the 
input is free from powerline interference, is always zero (no 
subtraction is done). The performance of  this method with 
adaptive and FIR filters is given in Table 6, where the input is 
pure ECG free ofpowerline interference. It shows that the GA 
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(a) and (b) Acquired (lead 12) ECG with muscular noise, and its spectrum," (c) and (d) ECG with 50 Hz simulated sine wave, and its 
spectrum," (e) and (f) ECG after filtering using GA and its spectrum; (g) and (h) time and spectral differences between original and 
filtered ECGs 

Table 2 SNR improvement and RMS error for noisy ECG with 
simulated sine wave interference 

GA based Adaptive filter FIR filter with 
cancellation with #=0.1 - 120 dB at 50 Hz 

SNR improvement 
at output, dB 35.0 32.0 26.7 
RMS error at 
output, mV 0.0014 0.0020 0.0037 

based cancellation method does not introduce any error, 
whereas the other two methods do introduce error at the 
output. 

5 Discuss ion  and conc lus ions  

The GA based cancellation method is found to be very 
much superior to adaptive filters and FIR filters in terms of  
RMS error at the output and also preservation of  the ECG 
spectrum, when the powerline frequency interference is a pure 
sinusoidal wave. 

Examinations of  Tables 1-3 and 5 show that the perfor- 
mance of  this method is still better than adaptive-filter and 
FIR-filter methods, even if the sinusoidal powerline interfer- 

ence drifts in frequency, and with or without third-harmonic 
distortion. Even though the convergence time required for the 
removal of  fixed-frequency powerline interference is less than 
54 ms on a PC/Pentium 133 MHz processor, the detection of  
frequency with precision of  third decimal place (in millihertz) 
resolution requires a convergence time of  2-3 s. We observed, 
from the studies, that the number of  samples required to detect 
the interference frequency to a resolution ofmilliHerz is about 
1000 times greater than the number of  samples used for 
integer frequency detection. In the case of  the input shown 
in Fig. 4, the frequency detected by the genetic algorithm 
method is 50.092 Hz. Examination of  Table 4 shows that the 
time of  convergence of  solutions does not give a mathematical 
relationship, because the genetic algorithm method uses prob- 
abilistic rules. This does not mean that the rules perform a 
completely random search; they are devised to lead quickly to 
areas of  the search space where improvement is likely. 

It is observed that, if optimum convergence is obtained 
within the completion of  the predefined number of  genera- 
tional cycles, the RMS error at the output of  the GA based 
cancellation method is as low as 0.000004 mV, which is far 
better than for an LMS adaptive filter. In real-time processing, 
the algorithm can be invoked as and when powerline inter- 
ference is sensed on the iso-electric potential line. The time 
taken for sensing powerline frequency interference is much 
less, and hence, it will not affect the real-time processing. 
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Fig. 4 (a) and (b) Acquired (lead a VR) ECG, and its spectrum; (c) and (d) acquired ECG with sine wave interference and its spectrum; (e) and 
(f)ECG filtered using GA and its spectrum," (g) and (h) time and spectral differences between original and filtered ECGs 

Table 3 SNR improvement and RMS error for actual ECG acquired 
with sine wave interference 

GA based Adaptive filter FIR filter with 
cancellation with/~=0.1 - 120 dB at 50 Hz 

SNR improvement 
at output, dB 33.8 28.7 29.5 
RMS error at 
output, mV 0.0096 0.00172 0.00157 

Hence, the training of the sine wave parameters for optimisa- 
tion using the genetic algorithm has to be done as and when 
required, but not continuously. It is observed that, even if the 
optimum solution (global convergence) is not obtained within 
the predefined number of generational cycles (100 cycles are 
used in this study), the solution obtained on completion of the 
predefined number of generational cycles still gives a better 
RMS error at the output compared with that of an LMS 
adaptive filter. 

Table 4 Convergence time and SNR improvement for various levels of  
inteference at input 

Convergence time in SNR improvement 
Level of interference PC/Pentium, 133 MHz at output for 30 
compared with processor for SNR generational cycles 
ECG signal peak, improvement of 99.96 dB, (or 0.3 s), 
% s dB 

10 0.65 39.0 
20 0.36 54.4 
40 1.0 37.0 
50 0.4 43.0 

100 0.6 34.5 
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Table 5 Comparison of results for input of  ECG with sine wave 
interference and its third-harmonic distortion 

GA based Adaptive filter FIR filter with 
cancellation with/1=0.1 - 120 dB at 50 Hz 

SNR improvement 
at output, dB 32.4 12.2 14.9 

RMS error at 
output, mV 0.0094 0.096 0.0720 

Table 6 Comparison of  results for input of  ECG without powerline 
interference 

GA based Adaptive filter FIR filter with 
cancellation with # = 0.1 - 120 dB at 50 Hz 

RMS error at 
output, mV 0 0.0019 0.654 

We conclude that the GA based cancellation method is 
adaptive to powerline interference in ECGs and gives very 
good SNR improvement compared with that of an LMS 
adaptive filter, at the expense of convergence time. This 
genetic-algorithm based powerline cancellation method is 
very suitable for a parallel-processing system. 

Acknowledgment--The authors would like to thank Dr V. Ramachan- 
dran and Mr Shanmuganathan of the School of Computer Science & 
Engineering, Anna University, for their helpful discussions. 

FURNO, G. S. and TOMPKINS, W. J. (1983): 'A learning filter for 
removing noise interference', IEEE Trans., BME-30, pp. 234-235. 

HAMILTON, P. S. (1996): 'A comparison of adaptive and non- 
adaptive filters for reduction of powerline interference in the 
ECG', IEEE Trans., BME-43, (1), pp. 105-109. 

HOLLAND, J. H. (1975): 'Adaptation in natural and artificial systems' 
(University of Michigan Press, Ann Arbor, Michigan). 

KUMARAVEL, N., SENTHIL, A., SRIDHAR, K. S. and NITHIYANANDAM, 
N. (1995): 'Integrating the ECG powerline interference removal 
methods with rule-based system'. Proc. 32nd Int. ISA Biomedical 
Sciences Instrumentation Symposium and 32nd Annual Rocky 
Mountains Bio-engineering Symposium, Colorado, USA, pp. 
115-120. 

LEVKOV, C., MICHOV, G., IVANOV, R. and DASKALOV, T. K. (1984): 
'Subtraction of 50 Hz interference from the electrocardiogram', 
Med. Biol. Eng. Comput., 22, pp. 371- 373. 

POLl, R., CAGNONI, S. and VALLI, G. (1995): 'Genetic design of 
optimum linear and non-linear QRS detectors', IEEE Trans., 
BME-42, (11), pp. 1137-1141. 

SRINIVAS, M. and PATNAIK, L. M. (1994): 'Genetic algorithm: a 
survey', Computers, pp. 17-26. 

THAKOR, N. V. and ZHU, Y.-S. (1991): 'Applications of adaptive 
filtering to ECG analysis: noise cancellation and arrhythmia 
detection', 1EEL Trans., BME-38, (8), pp. 785-794. 

VAN ALSTE, J. A. and SCHILDER, T. S. (1985): 'Removal of baseline 
wander and powerline interference from the ECG by an efficient 
FIR filter with a reduced number of taps', IEEE Trans., BME-32, 
(12), pp. 1052-1060. 

WIDROW, B., GLOVER, Jr., McCOOL, J. M., KAUNITZ, J., WILLIAMS, 
C. S., HEARN, R. H., ZEIDLER, J. R., DONG, E. Jr. and GOODLIN, R. 
C. (1975): 'Adaptive noise cancelling: principles and applications', 
Proc. oflEEE, 63, (12), pp. 1692-1716. 

References 

AHLSTROM, M. L. and TOMPKINS, W. J. (1985): 'Digital filters for 
real-time ECG signal processing using microprocessors', IEEE 
Trans., BME-32, (9), pp. 708-713. 

CHRISTOV, I. I. and DOTSINSKY, I. A. (1988): 'New approach to the 
digital elimination of 50 Hz interference from the Electrocardio- 
gram', Med. Biol. Eng. Comput., 26, pp. 431-434. 

DENTINO, M., MCCOOL, J. and WIDROW, B. (1978): 'Adaptive 
filtering in the frequency domain', Proc. IEEE, 66, (13), pp. 
1658-1659. 

FEINTUCH, P. L. (1976): 'An adaptive recursive LMS filter', Proc. 
IEEE, pp. 1622-1624. 

FERDJALLAH, M. and BARR, R. E. (1990): 'Frequency domain digital 
filtering techniques for the removal of powerline noise with 
application to the electrocardiogram', Comput. & Biomed. Res., 
23, pp. 473--489. 

Authors' biographies 

N. Kumaravel was born in NagercoiI, India in 1952. He received 
his MD in Electronics and Communication Engineering from The 
University of Madras in 1977. He has just submitted his PhD thesis in 
biosignal processing. He has been working as a Lecturer in the 
College of Engineering, Anna University, India since 1978. His 
research interests include biosignal processing and medical image 
processing. 

Dr. Nithiyanandam was born in Aruppukottai, India in 1943. He 
graduated from the College of Engineering, Guindy in 1965 with a 
degree in Electronics and Communication Engineering. He took his 
MD in 1972 in Computer Science and his PhD in 1978 in 3D Image 
Processing. Throughout his career he has been on the Faculty for the 
College of Engineering, Anna University, India. His areas of interest 
include signal processing and computer communication. 

196 Medical & Biological Engineering & Computing March 1998 


