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ABSTRACT. We extend to general finite groups a well-known relation usedJbr checking the orthogonality 

of  a system ~f vectors as well as.fi~r orthogonalizing a nonorthogonal one. This, in turn, is used/or designing 

local orthogonal bases obtained by unitary tran.~fbrmations of a single prototype filter The first part o f  this 

work considered the abelian groups of  unitary transfi~rmations, white here we deal with nonabelian groups. 
As an example, we show how to build such bases where the group of unitary transfiJrmations consists of  

modulations and rotations. Such bases are useJhl for building systems for evaluating image quality. 

1. Introduct ion 

In the first part of this work [ 1], we showed how to design local orthogonal bases on finite 
abelian groups. In this part we make the extension to finite nonabelian groups, and in particular, to 
the group of modulations and rotations. 

To work with such groups, we need to extend the following well-known fact: 

<f(t), f ( t  -- n)) = ~(n) r 

oo 

y ~  IF(co+2rrk)12 = 1, 
n~-----oo 

(1.1) 

where f (t) is a continuous-time function and F (co) is its Fourier transform. Property (1.1) proves its 
usefulness both in testing the orthogonality of f ( t )  with respect to its integer translations as well as 
in producing functions enjoying such a property. Property (1.1) can also be seen as a necessary and 
sufficient condition for the orthogonality of f with respect to the functions obtained by applying to f 
a group of unitary linear transformations, actually translations by integer values. Note that although 
the group in (1.1) is infinite, in this work we study only finite groups. Property (1.1) serves only as 
a guiding light. 

As mentioned earlier, in [1] we extended (1.1) to finite abelian groups. Our aim here is to do 
the same for the nonabelian groups. 

The outline of the paper is as follows: All the preliminaries as well as the abelian case are 
covered in [1]. Section 2 extends those results to nonabelian groups. Section 3 discusses the filter 
design problem while Section 4 gives an example of a design where the group consists of modulations 
and rotations. Appendix A collects the proofs of all of the results in the paper. 
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2. Orthonormal Sets Obtained from Finite Nonabelian Groups 
of Linear Transformations 

Our discussion in [1] on how to build orthonormal sets of vectors obtained by applying finite 
abelian groups of unitary linear transformations is far from being completely general. Indeed, 
the group of rotations and modulations that triggered this work is not abelian; thus, the previous 
theory has to be modified to be able to work with such a group. The main problem that arises with 
noncommutative groups is that the representations are no longer one-dimensional which gives rise 
to some technical difficulties. Note that in this section we work with the vector sets introduced and 
formally described in [1], and denoted by bold capital letters. 

2.1 Fourier Transform as a Tool for Nonabelian Groups 

Consider the definition of the Fourier transform for nonabelian groups as given in Appendix A 
of [ 1 ]. We want to apply the Fourier transform given by (A. 13) in [ 1] to the condition of { U B I U ~ F } 
being an orthonormal system (where B is a vector set), that is, 

{ B ,  U B }  = 8 u l  . (2.1) 

i j  Thus, multiply both sides of (2.1) by no, (U) and sum over U 6 F, yielding 

O(og, i,j) z~ {B, Z Urr~J(U)B} = Z IJr,(U),u . (2.2) 
U ~F  u ~ r  

Define 

b/~ zx dim(zrco) 
= Irl ~ u~rj(u). 

U r  

(2.3) 

that is, 

Irl {B,H ijB} = IJriJ(Z) = ~i-j '  (2.4) 
dim(Zro~ ) 

{ B, L/~ i B } dim(zr~ "~ 
= " ~ [  l O i _  j . (2.5) 

Note the similarity of (2.5) with (4.12) and (4.11) from [1] (in (4.11) and (4.12) indices i and j do 
not appear because for abelian groups each representation is a scalar). 

As in the treatment of abelian groups, (2.5) is our analysis tool; now we want to find the 
corresponding orthonormalization tool. Conceptually, dealing with abelian groups does not differ 
from dealing with nonabelian ones; we thus limit ourselves to stating and proving the algorithm. 

A major role in the proof is played by the following property, a generalization of Property 1 
from [1], which we give here without proof: 

Property 1. 
If matrices bl~ are as in (2.3), then 

N t I J l  ~At2 J2 
- -0 )  1 - -0~ 2 

x .  . x 71iljl 
tJjl --t2~COI--O)2V'O)l , 

( L ~ 2 )  T = L~ j i  . (2.6) 

Note that while zrw j are scalars,/gj are matrices, of the same dimension as U. By using (2.3) in (2.2), 
and remembering that zrco(Z') = I for each o9, one obtains 
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Equation (2.6) tells us that b(.~ are projections; therefore, it makes sense to speak about a basis 
of the space V / associated with H~. A geometric interpretation of (2.6) is given later in this section. 

To obtain a vector set B with N vectors which are orthogonal with respect to the action of I', 
proceed as follows: 

Algorithm 1. 

1. For each w, find an orthonormal basis of  V 1 and extract from it dim(r G)  blocks, [~oJ, 1, Bw,2, 

. . . .  Bo~,dimOro, ), each one consisting of N vectors. Of course, the dimension of  V 1 must 
be greater or equal than dim(rrto)N. (This might seem an unnecessary restriction at this 
point, but is perfectly reasonable, as is demonstrated shortly). 

2. Compute 

dim(no,) 

o~ j = l  

(2.7) 

3. The vector set B is orthonormal with respect to the action of F. 

The proof is similar to that for the abelian groups which is given in Appendix C of [1]. 
In the first step of Algorithm 1 we required that the dimension of V~ be at least dim0r,o)N. 

Let us examine this requirement: 

1. As proven in the following (see Corollary 1), vector spaces V j have the same dimension 
(that is assumed to be at least dim(zr~o)N). 

2. Therefore, the vector space Vw associated with 79~o = ~--~.j H j j ,  being the direct sum of ))J, 

has dimension at least dim(rrto)2N. 

3. Finally, vector space V, being direct sum of the vector spaces Voj, has dimension at least 

E dim(Go)2N = N ~ dim(rrto) 2 . (2.8) 
o~ to  

. A theorem of group theory states that the sum on the right-hand side of (2.8) is equal to the 
cardinality of F (see Corollary 4 in Appending A of [1]), that is, the dimension of V has to 
be at least 

dim(V) >_ IFIN. (2.9) 

. If we apply I" to a vector set B of dimension N, we obtain IFIN vectors. Furthermore, if 
we want these vectors to be orthogonal to one another (which implies linear independence) 
condition (2.9) is obvious. 

The first step of Algorithm 1 requires one to choose a set of vectors belonging to V 1 and 
orthogonal to one another. Since/g~l is the projection associated with V~ one can simply extract 
some linearly independent columns from b/~ l and orthogonalize them. Another way of obtaining 
such a vector set is given later. 

2 . 2  G e o m e t r i c  I n t e r p r e t a t i o n  

In this subsection we give a geometric interpretation of the algorithm we just presented. Such 
an interpretation is instrumental in Section 3 where it is used to produce a parameterization of a basis 
orthogonal with respect to the action of P. 
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More precisely, it is shown that with each U j j  we can associate a vector space V j and that 

matrices U~] act as linear transformations between such spaces. This structure enables us to find a 

basis of V such that each/g~ has a simple form. 

2.2.1 S t r u c t u r e  of V 

We already observed that U~ are orthogonal projections. Now we want to prove that matrix 

b/~ is a linear transformation mapping V j into V/; more precisely, we have the following property, 
whose proof can be found in Appendix A: 

Property 2. 
Lt~b j is an invertible linear transformation between V j and V i ,  that is, V~ = btiw jV  j and 

ker ( H ~ )  N v J  = {0}. 

A corollary easily follows: 

Corollary 1. 
Vector spaces ~)J and V i have the same dimension. 

Note that/g/w j is not invertible if considered as a linear transformation from V in itself, but it 
becomes invertible when thought of as a map from )):~ to V/. 

It is worth observing that there is no linear transformation (in the set of L/~) linking two spaces 
relative to two different representations (that is, having different w). This situation is depicted in 

Figure 1 where each space V~, associated with projection b/jj, is represented by a box labeled by 

the projection itself and the boxes are connected by branches labeled by the name of the matrix Lr 
that maps one space in another. The branches are not shown in order so as to not clog the figure. 

P., ~J  
J 

f 
Vt% 

J 

�9 - ij 
FIGURE 1 Subdivision of the vector space V according to mamces  L/~ in (2.6). Note that not all the branches are shown 
so as to not clog the figure�9 

The sum of all the projections corresponding to the same representation is 

P~o a Z b/jj ' (2.10) 
J 

and is still a projection because bt~ i are orthogonal to one another. The corresponding space is 
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represented in Figure 1 as a line encircling the spaces relative to H j j  and labeled with 790,. The 
collection of all spaces V0, forms the complete vector space V. 

It is interesting to observe that the spaces relative to H j j  in Figure 1 can be interpreted as 
"clans" (represented by projections 790,) in which every member  can go into any other member  of  
the same clan, but not into a member  of a different one. 

We will see later that such a clan structure imposes certain conditions on the spaces belonging 
to the same clan, but not on the spaces from different clans. 

2 .2.2 A Particular Basis 

This geometric interpretation is useful because it allows us to choose a suitable basis for 

such that matrices L/~ have a simple form. (The consequences of  this are exploited in Section 3.) 

Since V is a direct sum of the spaces ~ J  (associated with Lt jj) ,  a basis of  V can be obtained by a 

direct sum of bases of  v J .  The resulting structure of a vector from V is depicted in Figure 2(a) where 

it is displayed as a sequence of blocks, each block being associated with a L/~ j . The blocks relative 
to the same w can be thought of as making a "macro-block" relative to the space V0, (associated with 
790,). The remainder of  the figure will be explained later. 

(a )  

+,h m,  , 

I II !1 I 

(b) 
.. : . . . .  : ...... 

2 

. . . . . . . .  i :  . . . . . . .  i i  . . . . . . . .  ( c )  . . . .  !: . . . . .  : . . . .  

. . . . . .  : . . . . .  i (d)  . . . .  

try:' u~ u~ ~, u: '~ u'Z u" 
, , + m 2  , ~ 1  

..... I ~1 i ~ l  I I - - ]  r - -1  ..... 

...... =.i..ii.I il II I ..... I L iii.iiii=~ - 

! " ii i:~ ifi/:: 

FIGURE 2 Structure of V when a suitable basis is chosen. (a) Block subdivision of a vector from V. (b) The action of 
projection T'o~ on the vector in (a) corresponds to keeping only the blocks corresponding to r (c) The action of U ~  on 

vector in (b) corresponds to keeping only the first block. (d) The action of L/~ corresponds to moving the first block into the 
second one. 

We proceed in the following way: 

�9 First, we find a basis for the space V~. 

�9 Next, such a basis is modified to obtain the bases for each V j .  

�9 Finally, by repeating the previous two steps for each w, we have the basis for ~. 

2.2.3 Finding a Basis for ~ 

Consider the matrix L/11 and choose rank (H 11) of  its linearly independent columns as a 

basis for the associated vector space V~. Then, orthogonalize them (using the Gram-Schmidt  
orthogonalization procedure, for example). Such vectors form an orthonormal basis for V1. 
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With respect to such a basis, the linear transformation L/~ 1, restricted to V~, is represented by 
an identity matrix because each vector of  the basis maps in itself with the action of  t4~ 1. Moreover, 

if the basis of  V is chosen as a direct sum of the bases of  V j ,  matrix L/11, with respect to such a 
basis, is a diagonal matrix having ls  in correspondence to the block relative to V 1 and 0s otherwise; 
therefore, it is a pseudo-identity. 1 

2.2.4 F i n d i n g  a Bas i s  f o r  e a c h  V~ 

To modify the basis for V 1 to obtain bases for V j ,  remember  that L/jl is an invertible transfor- 

mation between V 1 and V j ,  and that vector spaces V 1 and V j have the same dimension. Therefore, 

a basis for V j can be obtained by applying Lr j l  to a basis of  V 1. 

By transforming a vector Lr j l  v, v ~ V~, with/.4 j j  we obtain 

j l  blJJLtJlvo~ co = L/~ v , (2.11) 

because of (2.6). Equation (2.1 1) says that, with this particular choice of  a basis, U j j  is a pseudo- 
identity as well. 

We see that by using these bases, 79~, being the direct sum of bl j j ,  is still represented as a 
diagonal matrix with ls in the blocks corresponding to co and 0s otherwise (that is, 79o~ is a pseudo- 
identity as well). 

A pictorial representation of the effect both of  79,0 and b/jj  is given in Figures 2(b) and 2(c). 

There, the action of 79~o on a vector, depicted as a row of "blocks", is seen as a sieve, passing all L/jj 

and stopping uJ~, for ~ol ~ ~o. The interpretation o f U  j j  is similar, only with a thinner sieve. 

To understand Figure 2(d) depicting the action o f U ~ ,  note that if v e V 1, then vector Lr j l  v 

V j will have, with respect to the basis L/JiB, the same components that v has with respect to the 

basis of/3.  Therefore, the effect of U j l  can be seen as a movement  of  the block corresponding to 

L/~ 1 to the position corresponding to U j j .  In Figure 2(c) this is depicted as a sieve which causes 
block movement  using a bent output channel. 

2.2.5 G e o m e t r i c  I n t e r p r e t a t i o n  o f  O r t h o g o n a l i t y  C o n d i t i o n s  

With such a basis choice we can give an interesting interpretation to (2.5). Let us suppose, for 
simplicity, that the vector set B is actually a single vector b. Then, (2.5) becomes 

b, bl b dim(sr~ & . (2.12) 
( ) - -  ,r, '-J" 

Let us interpret (2.12) in the spirit of Figure 2 with the help of Figure 3. Figure 3 shows that the 

action of  t4~ is to put block b2 into the position of block bl and zero otherwise. When computing 

the scalar product between b and t4~b it is clear that one obtains something that can be loosely 
called "the scalar product between blocks bl and b2." Therefore, (2.12) is a condition between two 
blocks belonging to the same macro-block; note that there is no constraint on the blocks of  different 
macro-blocks. 

These reasonings can be summarized as follows: 

Condition (2.5), for the orthogonality of b with respect to the action of  F, means 
that, with respect to our canonical basis, the blocks of  b belonging to the same 
macro-block have to be of  unit norm and orthogonal to one another. 

1 By pseudo-identity, we denote diagonal matrices having only zeros and ones on the main diagonal. 
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...... I II r ...... r II I ...... 

iiiiiiii iiiiiiiii ..... iiiiiiiii iiiiiiiii iiiiiiill iiiiiiiii .... iiiiiiiii iiiiiiii! .... 

inner product 

I 

b  ; 1 ,iiiii?.: iiiiiiii -- ',iiii./  iiiiii'  iiiii/, iiiii/, : iiiii/. ,iiiiiii 

FIGURE 3 Graphical interpretation of the scalar product (b, L/~ b) as a scalar product between blocks of b. 

The same reasoning can also be carried out more formally by multiplying H~ j in (2.12) by H/i 

on the left and by L4 j j  on the right. It is possible to do so because of (2.6). Then, L/~ can be brought 
on the left side of the scalar product (because it is self-adjoint) and an interpretation analogous to 
Figure 3 can be given. 

Note that for abelian groups there is only one block for each macro-block; because of this, the 
condition of cross-orthogonality between blocks disappears and only the condition on the unitary 
norm remains, as previously seen. 

2.2.6 Parameterization of Vectors Satisfying (2.12) 
The geometric interpretation can be used to express a vector satisfying (2.12) as a function of 

certain free parameters. This can be useful, for example, while designing b using an optimization 
technique (as will be seen in Section 3) because the resulting problem is unconstrained. 

Figure 4 shows how to proceed. Vector b is decomposed into macro-blocks and the blocks of 
each macro-block are organized as the columns of a matrix Ao~k. Orthogonality condition between 
blocks implies that the columns of matrix Ao~k are orthogonal to one another, that is 

AT~Atok = I .  (2.13) 

Note that there are no constraints between matrices with different o9. 
We can summarize these reasonings as follows: 

Each vector b orthogonal with respect to the action of F can be constructed by 
choosing a set of orthogonal matrices A,ok and using their columns as blocks of b. 

The importance of the above is that an orthogonal matrix (even if not square) can be parame- 
terized using Givens' rotations [2]. This procedure yields the desired description of b as a function 
of free parameters (the angles of Givens' rotations). 

Figure 5 shows the reconstruction of b using the Givens rotations Otkn. Figure 5(a) shows 
how each block is associated with a set of rotations ~kn that are used to construct the matrix Atok 
[Figure 5(b)]. The columns of such a matrix are subsequently used in Figure 5(c) as blocks of b. 

2.3 An Algorithm to Choose the Orthonormal Basis 

As explained in Section 2.1, we need, for each w, a set of vectors/~o, 1,/~o.2, �9 . . ,  B~o,dim(~ro,) 
belonging to V 1 and orthogonal to one another. While it is possible to choose such vectors from an 
orthonormal basis of V~, it would be interesting if we could obtain them from the starting vector set 
B. 
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FIGURE 4 Parameterization of a vector b orthogonal with respect to the action of F. First vector b is decomposed in 
blocks, then the blocks are organized as columns of matrices. Since each matrix has to be orthogonal, it can be identified by 
its Givens' rotations. 

Remember that for abelian groups there is a way to modify B to obtain a set orthonormal with 
respect to the action of 1-'. In this section we present an analogous method that works for nonabelian 
groups. 

Observe how vector sets/~o,j are used: They are multiplied by U l j  and summed in (2.7). 
l j -  Each term ML Bo~.j in (2.7) is the projection of B on k J; indeed 

dim(trio) 
-'wIAJJ B = ~tJJ ~ Y ~  HJl nto,j = uJJ~"~Jl oJ to,j" = L~Jl nw,j , (2.14) 

~o j = l  

because of Property 1. If the canonical basis described previously is used, H jl/~w,j is the block of 

corresponding to V j .  If B is not orthogonal with respect to the action of I', it is because its blocks 

are not orthogonal to one another. A remedy is to project B onto V j ,  map the projections into V~, 

orthogonalize the obtained vectors, and map them back into their spaces ))J. This, obviously, yields 
a set of vectors suitable for use in Algorithm 1. Let us summarize these observations in the form of 
an algorithm: 

Algorithm 2. 

1. For each o~ 

1.I For j = 1 . . . . .  dim(zr~o) 

1.1.1 Project B on V j in order to obtain B j. 

1.1.2 ApplyHlJ to Bj  toobtain B!j =U~o Bj  E lj I 

1 1.2 Concatenate vector sets Bj  to obtain a larger vector set B +. Note that the orthogo- 

nality condition can be expressed as {B +, B + } = I. 
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FIGURE 5 Construction of b from the Givens' rotations Ukn. Each set of Givens' rotations gives rise to an orthogonal 
matrix whose columns are used as the blocks of b. 

1.3 In general, matrix A A= {B+, B+ } is not an identity; it is always a positive semi- 
definite matrix. Assume that A is invertible and decompose A with the singular value 
decomposition as A = oT  s2 0,  with S having only nonnegative values on the main 
diagonal. 

1.4 Define 1~ + A= B + 0 r S- i  O. (The definition of the product of a vector set with a matrix 

can be found in Appendix B oft1].) Then, B + satisfies the orthogonality condition; 
indeed, 

= { B + O r S - I O ,  B + O r S - I O }  , 

= ( O T S - I o )  T { B + , B + } O T S - I O ,  

= o T s 2 0  ,o) = ,  (2A5) 

1.5 Disassemble 1~ + in order to obtain blocks Bo,,j. 

Note that in Algorithm 2 the columns of A are orthogonalized using the singular value de- 
composition and not the more common Gram-Schmidt orthogonalization procedure. The use of the 
singular value decomposition gives to Algorithm 2 the following interesting property, whose proof 
can be found in Appendix A: 

Property 3. 
When vectors are chosen as described in Algorithm 2, vector set i~ is the vector set orthogonal 

with respect to the action of F having the minimum distance from B. 

Note that Property 3 can be seen as the generalization of Property 3 from [1], which will be 
exploited in Section 3 to help our filter design. 
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3. Filter Design 

The theory presented in the previous sections describes how to find a set orthonormal with 
respect to a transformation group F. In particular, we are searching for bases with local orthogonal 
structure [3], [4]. 

Local orthogonal bases extend the well-known modulated lapped transforms (also known as 
local trigonometric bases) [5] to a more general setting. In [3], the impulse responses of the filters 
constituting the filter bank are expressed as the columns of the matrix (final basis) 

WICG , (3.1) 

where G is a unitary matrix (starting basis), and W and/C are two matrices (windowing and symmetry 
reduction) which depend on the filter bank structure and whose exact form does not matter for the 

purposes of this work. Because of this, in the following we simply use the matrix s _a_ WE.  In [4] 
the design of matrix VI; is discussed, while G is left undetermined; its design is the goal of this 
section. 

In the introduction we suggested that a filter bank invariant under the action of a given group 
can be useful to analyze an image and to find its local symmetries and regularities. The technique 
in [3] allows us to design a multidimensional filter bank starting from an orthonormal basis. If  such 
a basis is designed to be invariant with respect to a group action, we can obtain a set of filters that 
can be used for this purpose. 

3.1 Problem Statement 

Therefore, we require G to be a matrix whose columns are obtained by applying a transfor- 
mation group F to a single vector g, that is, 

G = [ g Ulg U2g ""  ] ,  (3.2) 

with Un ~ r .  More generally we could ask that the columns of G be obtained with the action of F 
on two or more vectors, for example 

G = [ g! g2 Ulgl Ulg 2 . . .  ] . (3.3) 

For the sake of simplicity, we limit ourselves to having only one vector. Bearing this in mind, the 
filters of the designed filter bank have impulse responses Lg,  LUlg  ,LU2g . . . . .  with Un ~ F. 

3.2 Cost Function 

It is common practice to design filters optimizing some measure of frequential and/or temporal 
error. We could, for example, specify in which region of the time-frequency plane should our filter 
mostly reside. That way we impose a certain time-frequency localization on the filter. Then, we can 
express the power in time and frequency domains, respectively, as 

PT = ~ P [ n ] g 2 [ n ]  = g T C T g  , 
n 

PF = g T ( f o ) p ( o ) ) W ( o ) ) W r ( w ) d w ) g = g T C F g ,  (3.4) 

where g is our filter, p(o)) and p[n] are weighting functions describing the prescribed time-frequency 
region, W(co) is a column vector containing exp(jo)n) and CT and CF are time and frequency costs, 
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respectively. By summing Pr and PF we see that our objective function is a quadratic function of 
each filter g, that is, the cost function has the form (we also add s 

E (tZUg) r Cu•Ug" (3.5) 
UeF 

Note that (3.5) could become a weighted sum by multiplying each term by a real number. Such a 
number can successively be absorbed in the corresponding cost matrix, as we assume in the following. 

Let us modify (3.5) to obtain a simpler expression: 

(tug) TcU ug = g uTc cucug, 
U~F U6F 

where 

= gTCg, (3.6) 

C ~= ~ uTf.rCuf-.U. (3.7) 

UeF 

Equation (3.6) shows that the global cost function (3.5) can be expressed as a quadratic cost of the 
single vector g, yielding a simpler problem. 

3.3 True Cost Function Minimization 

As seen in the previous sections, the vector g is not free since the demand that it be orthogonal 
with respect to the action of group 1" gives to g a particular structure. The parameterization developed 
in Section 2, which allows us to obtain g as a function of certain free parameters that can be interpreted 
as certain Givens' rotations, will be useful. 

We now have a simple problem of unconstrained optimization with a quadratic cost function 
that can be easily solved with numerical methods. 

3.4 A S i m p l e r  Approach 

Often the use of a quadratic cost is motivated more by theoretical convenience than by a real cost 
with a quadratic characteristic. Bearing this in mind, a solution that might not achieve the minimum 
cost, but is close to the optimal solution can be interesting if, for example, it is simpler to compute. 
Indeed, to obtain the vector g from Givens' rotations is theoretically simple, but is computationally 
intensive, and when included in an optimization loop, can give rise to long design times. Although 
filter design is usually made off-line, that is, without severe fast computation requirements, a faster 
design procedure can allow for trying several types of filters. Therefore, a suboptimal, but faster 
solution can be interesting. To this end we can exploit Property 3 stating that, if we choose our 
vector in the particular way described in Section 2, the resulting vector has minimum distance from 
the original one. 

The idea is to minimize function (3.6) with II g II -- l as the only constraint. Such a condition 
is necessary because otherwise we could achieve arbitrarily small values by simply scaling g. This 
problem has a well-known solution: g is the eigenvector of C having the minimum eigenvalue. 

Now, if we apply Algorithm 2 to such a g, we obtain the vector ~ orthogonal with respect to 
the action of F and having a minimum distance from g. Since both vectors are constrained to be of 
unit norm, the minimum distance is equivalent to the minimum angle between the two vectors, that 
is, 

IIg- ll = ( g - g , g - g ) =  Ilgll + 2 - 2 c o s ( o r ) ,  (3.8) 
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where ot = arccos((g, ~)) is the angle between the two vectors. It is worth observing that we can 
always impose cos(u) = (g, ~) > 0 because we can substitute ~ with - ~  without changing the cost 
function. The effect on the filter coefficients is simply a change of sign. To have a vector with the 
minimum distance from the (unconstrained) optimal one is acceptable, but we would like to know if 
it is necessarily the optimum (with the constraint for it to be orthogonal with respect to F). Although 
we are not guaranteed that ~ is the optimum, we can obtain an estimate of  how much ~ is far from 
the optimum. 

To understand what can happen, remember that we assumed C to be symmetric. Because 
of this, it can be diagonalized and by rescaling we can set the minimum eigenvalue equal to 1. 
Therefore, we can assume C to be diagonal with the eigenvalues ordered along the main diagonal as 

I 1 1 /z2 
C = . , (3.9) 

/ L N  

wi th /z  1 = 1 _< 11.2 _< " ' "  --< /s Then, in the unconstrained optimization, we obtain g = 
[1, 0 . . . . .  0] T. Since its normalized ~ version is such that (g, ~) = cos(u) and Ugll = 1, the 
following is true: 

= [cos(c0, sin(o0v] r , (3.10) 

where v is a vector with II v LI = 1. The value that the objective function (3.6) attains on vector (3.10) 
is 

cos2(tz) + sin2(ot)vrCv. (3.11) 

Since Ilvll = 1, the value of the second term in (3.11) lies between sin2(ot)/x2 and sin2(ot)/zN. 
From (3. I 1) it is clear that, if t~ is fixed, the lesser the value of v T C v, the lesser the value of (3.11) 
(since sin2(o0 > 0). Since v is independent from ot we can choose it equal to [0, 1, 0 . . . .  ]T and the 
worst possible value of (3.11) becomes equal to 

cos2(t~) + sin2(ot)/z2 . (3.12) 

We know that t~ is the minimum possible angle between g and ~. We would like to say that (3.12) 
is the minimum cost that a vector having an angle greater or equal to el with g can achieve. Can 
we choose tZl > o~ in order to decrease the value of (3.12)? It is easy to see that it is not possible. 
Although easy to prove formally, a geometric interpretation is clearer. Equation (3.12) is the distance 
from the origin of a point lying on an ellipse centered in the origin and having the axis of  length 1 
and/z2 > 1, respectively. The situation is depicted in Figure 6 where the shadowed zone is the 
forbidden zone. From Figure 6 it is clear that it is not possible to choose a greater oq and obtain a 
lesser value of (3.12). Therefore, the minimum value that the cost function can achieve on the set of 
the vectors orthogonal with respect to the action of P is (3.12). 

Since the value of ot can be estimated by the scalar product (g, ~) and the value of 122 can be 
easily obtained by matrix C,  (3.12) can be used to get a rough idea if we are close to the minimum. 
Note that the estimate (3.12) can be pessimistic although we might have reached the true minimum. 

4. Design of  Filters on Groups of  Modulations and Rotations 

As an example of using the noncommutative groups, we study the case that triggered this 
work, that is, the group of rotations and modulations (translations in frequency). We do this in the 
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FIGURE 6 Geometric interpretation of (3.12). 

following order: determine the frequency translations group 7-, determine the frequency rotation 
group ~ ,  put 7- and ~ together in order to obtain F, find the irreducible representations of 1-' and, 
finally, design the prototype filter and the corresponding orthonormal set obtained by translations 
and rotations. 

4.1 De te rmin ing  the Group of Modulations 

We start by determining the modulation group. Let s(n), n ~ Z 2, be a two-dimensional signal 
and define its Fourier transform as 

S(to) z~ ~exp(_j2zrtoTn)s(n) .  (4.1) 

nEZ 2 

Note that in (4.1) the frequency variable to = [Wl, o92] T has been scaled in such a way that S(to) is peri- 
odic2 onZ 2. TheFouriertransformofthemodulatedversionofs(n),thatis, ofexp(-j2rro~orn)s(n), 
is S(~ + too). Since translations in frequency are easier to handle than modulations in time, we work 
in the frequency domain. As the frequency translation group we use the lattice generated by a rational 
matrix Q 

= x [ x = Qm, m e Z 2 . (4.2) 

Group A (Q) poses a technical problem: the theory developed in the preceding sections works 
for finite groups, but the cardinality of A (Q) is infinite. This cannot be avoided by choosing 
another group because if too ~- 0 belongs to T,  every integer multiple of too belongs to T as 
well, giving rise to an infinite group. However, here we can exploit the periodicity of S(to). If 
the condition A (Q) D Z 2 is imposed, one can choose for 7- the quotient group A ( Q ) / Z  2, that 
is, 7- = {m I m = k (mod Z2), k ~ A (Q)}. It is possible to prove that the cardinality of 7- is 
1/[ det(Q)l < o~. In this example we use Q = diag(l/16, 1/16). 

4.2 Determining the Group of Rotations 

Let us now try to determine the rotation group. As a first attempt, one could define the rotation 
of the signal s(n) as s(Rn), where R is one of Givens' rotation matrices. However, since the signal 

2This convention is not commonly used in signal processing where S(to) is periodic on 2rtZ 2. However, it simplifies 
many later derivations. 
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s(n) is defined on Z 2, matrix R must be an integer matrix for s(Rn) to make sense for every n. 
Therefore, we need an "approximate rotation." Observe that if in a Givens' rotations matrix one 
poses or0 = 2zr/k, then matrix R satisfies the following: 

R = I (4.3) 
R n # I ,  0 < n < k .  

Our definition of approximate rotation is inspired by (4.3) and we search for an integer matrix R 
satisfying it. Note that (4.3) implies that all the eigenvalues of R are kth roots of unity and this agrees 
with the idea that R should represent a rotation. Unlike when R has real elements, it is not trivial to 
find an integer matrix R satisfying (4.3) for a given k. Indeed, the following negative result holds: 
There is no 2 x 2 integer matrix R satisfying (4.3) if k = 5 or k > 6. In the following we use k = 6. 

To find R, observe that the eigenvalues of R must be exp(+jzr /3)  implying that 

(~,_ e-jZr/3)(~,_ e+jZr/3) = ~2 ~, + 1  = ~ 2  Tr(R)L + det(R) .  (4.4)  det(R IZ) 

By calling rij the generic element of R, from (4.4) we obtain 

det(R) = r l l r22-r12r21 = 1 

Tr(R) = r l l + r 2 2  = 1. (4.5) 

One could choose, for example, the matrix 

R _ _ [  0 1 1  
- 1  1 ' 

for which, R 6 = I and Il  k # I for 0 < k < 6. 

(4.6) 

Since we decided to handle modulations in the frequency domain, we need to do the same for 
rotations. The Fourier transform of s(Rn) is S(R-Tw),  and thus in what follows we use Il  instead 
of R - r  since it is necessary to write powers of R -T.  If R is as in (4.6), then 

1 1 ] (4.7) 
Il  = - 1  0 " 

Note that I l6  = I and that the set ~ = {I, R, ]I{ 2 . . . . .  Il5} is a group. 

4.3  D e t e r m i n i n g  the  G r o u p  o f  M o d u l a t i o n s  a n d  R o t a t i o n s  A c t i n g  o n  a P o i n t  

Let us now combine modulations and rotations. We first find a condition so that by applying 
a rotation ~ to A (Q) one must obtain A (Q) again. If A (Q) is not changed by rotation R, it is 
not changed by multiple rotations R k, that is, A (Q) is invariant with respect to the action of ~ .  
This can be written as: for every m ~ Z 2, NQm ~ A (Q) needs to be satisfied, or, in other words, 
A (RQ) _ A (Q), which is equivalent to requiring the existence of an integer matrix N such that 
I lQ = QN, or, equivalently, N = Q - 1 R Q  ~ Z 2x2. This, in turn implies that 

A (NQ) = A (QN) = A (Q) . (4.8) 

Under the above assumptions, the smallest group 1-' containing both our frequency translation group 
7- and the modulation group ~ is the group of affine transformations mapping to into 

d~ = I l a t o + m ,  a ~ Z ,  m ~ 7 " .  (4.9) 

Equation (4.9) can be written in a more convenient form as 
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Therefore, a generic element of group F has the form 

U(m'a) = II~"O m ] . l  

Using (4.11) we give the composition law of [' and the form of the inverse 

F ]~al+a2 ~alm2 + ml 
L 0 1 

u-l(m'a) = I ]~aO m ]-I= [ ] ~ - a l  0 

Let us now summarize certain properties of group F: 

(4.11) 

= U (Ralm2 + ml, al + a2) , (4.12) 

--R-aml I = U ( - N - a m , - - a )  . (4.13) 

Both the translation group 7- and the rotation group 7~ are subgroups of 1" and their generic 
elements (pure translation or pure rotation) can respectively be written as 

I m ] (4.14) pure translation = UT(m) = 0 1 ' 

purerotation = UT~(a)=IRao 0 1 " 1  (4.15) 

The generic element of F given by (4.11) can always be written as 

ml I'l 0 roll 0 (4.16) 

that is, as the product of a pure translation by a pure rotation. Moreover, decomposi- 
tion (4.16) is unique. The utility of decomposition (4.16) is twofold: First, we have the 
possibility of writing every element of I" in a "normalized" form. Moreover, (4.16) simpli- 
fies the study of the action of F. For example, when necessary to verify if a given vector 
space V is invariant with respect to the action of some representation of F, it is sufficient to 
check the invariance of V with respect to pure rotations and pure translations. 
The combination of any element of F and its inverse with a pure translation is still a pure 
translation: 

U -I  (ml, a) UT- (m2) U (ml, a) I l'I II ~a ml I m2 
0 1 0 1 0 

ml] 
1 

(4.17) 

In group theory 7" is called a normal subgroup of I'. In (4.17) the resulting pure translation 
can be interpreted as the original translation rotated by R -a.  Property (4.17) is used when 
searching for the irreducible representations of F. Note that a similar property does not 
hold for pure rotations. 
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Let us summarize what we have achieved thus far: 

�9 We found modulation and rotation groups, 7- = {m I m 6 A ( Q ) / Z  2} and ~ = {I, R, 
~2 . . . . .  ~5}, respectively, with Q = diag(1/16, 1/16) and R from (4.7). Remember  that 
these operate in frequency domain. 

~ We put these groups together in order to get the final group 1-" = {U(m, a)  I U(m, a) = 
UT-(m)UTz(a), UT-(m) from (4.14) and U~(a) from (4.15)}. Note that each element of  
group F operates on a single point in frequency to = [wl, 0)2] T. 

4.4 D e t e r m i n i n g  the  Irreduc ib le  R e p r e s e n t a t i o n s  o f  F 

To apply the theory presented thus far, we need to find the irreducible representations of  F. 
Since I" is a noncommutative group, finding its irreducible representation is not straightforward (see 
Appendix A in the first part of  this work for details of representation theory [1]). The construction 
used to obtain I" from 7" and ~ is well known in group theory and 1-" is called the semi-direct 
product of  7- and ~ .  It is known that one can find every irreducible representation of  1-" by starting 
from the representations of 7- [6]. However, since using such results would require too much group 
machinery, one can follow a more intuitive approach that resembles the general one. Unfortunately, 
even this process is quite involved and we just give the irreducible representations. 

It is possible to show that every irreducible representation of F can be indexed by a vector 
k ~ Z2/A ( Q - l )  and an integer l -- 0 . . . . .  I~I/N - 1, with N the first integer such that 3 

R/Vk = k .  (4.18) 

Depending on k, N could be 1 in which case I = 0 . . . . .  5 (for k = [0, 0]r ) ,  N = 3 with I = 0, 1 
(for example for k = [8, 0] T) and N = 6 with I = 0 (for example for k = [1, 0IT). 

We also need the following representation of 7-, indexed by k ~ ZX/A ( Q - I )  

7rk (UT(m))  =~ exp ( - j 2 ~ k r R m )  

exp ( - - j 2 7 r k r N N - l m  

(4.19) 

The above matrix could be a scalar, a 3 x 3 or a 6 x 6 matrix, depending on k. 
Now we give the form of the generic irreducible representation of 1" relative to k and l, that 

is, 

n'k,l (UT(m))  = Y/'k (UT(m))  , 

~k,I (U~(a)) = exp(-j2rrla/6) T~v , (4.20) 

with k ~ Z2/A ( Q - l )  and 1 = 0 . . . . .  I~[/N - 1, and TN being the circular translation N x N 
matrix 

0 0 0 . . .  0 1 
1 0 0 . . .  0 0 

TN zx 0 1 0 . . .  0 0 (4.21) 

0 0 0 . . .  1 0 

3Note that (4.18) is an equality between classes of Z2/A ( Q - I )  and it holds as soon as RNk = k (mod A (Q-I ) ) ,  
with k any representative of class k. It is possible to show that N always divides [7-~1 = 6. 
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Note that since every element of  1" can be written as a product of an element of  7" with one element 
of  7"r from (4.20) and the fact that rrk.t is a homomorphism (see Appendix A in the first part of  this 
work [1]), one can obtain the value of the irreducible representation zrk,t for the generic element of  
I-' as 

rrk.l (]~a . + In)  = Yrk, l(U(m, a))  = 7rk,l (UT(In)  U ~ ( a ) )  = 

;'rk.t (UT(m))  rrk.t (UT~(a)) = rrk(m) e x p ( - j 2 r r l a / 6 )  TaN . (4.22) 

4 . 5  D e t e r m i n i n g  t h e  G r o u p  o f  M o d u l a t i o n s  a n d  R o t a t i o n s  A c t i n g  o n  a V e c t o r  

To complete the design, we need to put modulations and translations in a matrix form. 4 Note 
that now we find the structure of the new group 1-'* in time domain. 5 To that end, we need to fix the 
filter support, in order to work with a finite-dimensional vector space. Of  course, such a support has 
to be invariant with respect to the action of 7~. An easy way to find a suitable support is to choose a 
"mother" set A and define 

B = A k3 RA U - . -  U RSA.  (4.23) 

Then, we order the points of  B in order to map a function f ( n )  defined on B in a column vector f. 
A particularly useful ordering can be obtained as follows: Consider the set of  orbits resulting from 

the action o f ~  on B. 6 The only orbit with just one element is O0 ~ {[0, 0] r } while every other 
orbit has six elements. Choose any ordering for the other orbits and construct the vector f as 

f ~  
f (O0) 1 f (Ol)  
f (_02) (4.24) 

where f(Oi) denotes the block vector with the values assumed by f on the ith orbit. To order the 
points inside a given orbit Oi,  choose as the first point any Or ~ Oi and order the other points as 
Or, R -  lOr, �9 �9 �9 , R - 5 o r  �9 

Let us show an example of construction of vector f. As the first orbit, choose the only orbit 
with one element O0 = {[0, 0]T}. Therefore, the first element of f is f ( 0 ,  0). To get the second 
orbit, choose another point (for example, [0, I] r )  and take all the vectors of  the form R-k[0 ,  1] r ,  
k = 0 . . . . .  5, that is 

01 = {[O, 1 ] r , [ - - 1 , O ] r , [ - - 1 , - - 1 ] r , [ O , - - 1 ] r , [ 1 , O ] r , [ 1 , 1 ] r }  �9 (4.25) 

4In other words, we construct a matrix that describes the action of a modulation and a rotation on the whole signal/filter, 
as opposed to a single point we considered until now. 

5Note that here we use F*, 7-*, 7~*, 7-*, 7~*, to distinguish the group and its elements operating on the whole vector 
as opposed to a single point. 

6An orbit of a point n is obtained by applying the elements of 7-~ to n. 
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To find the third orbit choose, for example, [0, 2] to obtain f as 

f (0 ,  0) 
f(0,  1) 

f ( - 1 ,  O) 
f ( - 1 ,  -1)  
f(o, -1) 

f = f O , o )  
f (1 ,  1) 
f(0,  2) 

f ( - 2 ,  O) 
f ( - 2 ,  -2)  

(4.26) 

The procedure is iterated until all the points of B are used. 
We now need to find the new group elements consisting of matrices performing modulations 

and rotations of the whole vector f. With ordering as above, these matrices assume a particularly 
simple form. 

�9 Modulations correspond to a point-by-point multiplication of the function f by complex 
exponentials. The resulting matrix is diagonal. 

�9 The effect of rotation R is to circularly rotate points of every orbit. The corresponding 
matrix is block diagonal, with every block a circular translation matrix corresponding to 
one orbit. 

As an example, let us construct the matrices related to rotations and modulations in the specific case 
of f from (4.26). By applying a rotation R to filter f (n)  one obtains a new signal g(n) defined as 

g(n) = f ( R n ) .  (4.27) 

Let g be the vector corresponding to filter g(n). It is possible to write the components of g as a 
function of f as follows: 

g (0, 0) 
g(0, 1) 
g(-1,O) 
g ( -1 ,  -1 )  

g = g(O, -1)  
g(1, 0) 
g(1, 1) 
g (0, 2) 

f(o, o) 
f(1,  1) 
f(O, 1) 
f ( - l , O )  
f ( - l ,  -1 )  
f(O, -1 )  
f(1,  O) 
f (2, 2) 

V~(a) 

f (0, O) 
f(O, 1) 
f ( - l ,  O) 
f ( - 1 ,  -1 )  
f(O, -1)  
f (1 ,  O) 
f (1 ,  1) 
f (0 ,  2) 

(4.28) 

Then,  matrix U~(a) is 

I 
1 

U~(a) = T~ "'. 

In (4.29), empty entries ave understood to be zero. 

(4.29) 

T~ 169x 169 

We now construct the matrix relative to a 
modulation by exp(--j2rrmTn). By modulating f (n )  one obtains a new signal g(n) defined as 

- -  f (n)exp  (--j2zrmTn~. (4.30) g(n) 
\ / 
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The corresponding vector g is 

g = 

g(O, o) 
g(O, 1) 
g(-1,  o) 
g(-1,  -1)  
g(O, -1)  
g(1, o) 
g(1, 1) 
g(O, 2) 

L-  

exp (--j2JrmT[0, 01 T) f(0, 0) 

exp (-j2rrmT`[1,117`) 
exp (--j2rrmT[0, 11 T) 
exp ( - j2nmT`[-1 ,  0l r) 
exp (--j2rrmr[ - 1, -- 11 T) 
exp (--j2rrmT`[0, --1] 7") 
exp ( - - j2nmr  [1, 0]7`) 

f(1, 1) 
f(0, I) 
f(--1, 0) 
f(--1, --1) 
f(0, --1) 
f(1, 0) 

exp (--j2rrmT[2,217`) 

L 
f(2, 2) 

= U~-(m)f. (4.31) 

Then, the matrix U.~(m) is 

U~-(m) = (4.32) 

I 1 exp(--j2zrmT[1, 1] T) ] 
exp (--j2nmT`[O, 117`) 

exp (--j2:rrmT[--1, 0] T) 
" , .  

169x 169 

Therefore, every matrix of F*, being the product of U~z(a) and U~-(m) is in a block-diagonal form, 
that is, F* is of the form 

r* = {U*(m, a) I v*(m, a) = Uq-(m)u~(a), 
u~-(m) from (4.32) and U~(a) from (4.29)} . (4.33) 

Note that these are operating on the whole vector f, not a single point only as in (4.16). Note also 
that we have constructed matrices U*(m, a) = U~(m)U~z(a) which are block-diagonal and are 
thus well suited for finding representations. We do that first for translations and then for rotations. 

Let us first consider U~(m). By comparing the block Mor (m) in (4.32) corresponding to a 
certain orbit Or (excluding O0) with nOr (UT-(m)) given in (4.19) we can see that 

Mot (m) = diag({exp(-j27rmTR-ior),i = 0  . . . . .  5}) 

= diag({exp(--j2rrorT•im),i=O . . . . .  5}) = J rot(m), (4.34) 

since mTR -i Or is a scalar. Moreover, by using (4.34) and the fact that NQ = QN (see the beginning 
l of this section) it is possible to prove that if o r = Or + Q-Ts, s ~ Z a, then Mor = Mo'. In 

other words, representation Mor depends only on the equivalence class of Z2/A (Q-T) to which Or 
belongs. This suggests collection of equivalent orbits by letting them appear next to each other in 
the ordering. In the following we assume such an ordering. 
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As a result, U~-(m) can be further expressed as 

1 

~rOr1,0 (UT(m)) 
". 

V (m) = 
:r% ,o (UT-(m)) 

Wo,g,O (UT(m)) 

[' 1 Irl | JrOr~,O (UTm)) 
= Ir2 | ~Or2,0 (UTm)) ' (4.35) 

where the dimension of Ir~ for each distinct orbit tells us how many times a particular block appears. 
What the above expression means is that the matrix U~- is in a way its own representation. 

For rotations, we can follow the same path, namely 

U~(a) 

1 

rCo,~,l (UTz(a) ) 

1 
Irt | fro,, t (Un(a)) 

]~rOrl ,I (UTz(a)) 
YfOr2, l (U~(a ) )  

/r  2 ~ ~Or 2,1 (U ~(a ) )  
(4.36) 

Therefore, the final element of group 1-'* as well as its representation can be written as 

1 lr I ~ 7/'Or 1,0 (UT(m)) 
Ir2 ~ ~Or2,0 (UT(m))  

Irl | :roq l (UT?.(a)) 

1 

IrE | :n'or2,/(UR(a)) 1 
lr~ | Zroq ,o (U7-(m)) ~ror I ,l (Un(a)) 

Irz | :ror:,O (UT(m)) ZrOr:,l (UTz(a)) 

"'" 1 " 
With the chosen ordering, the form of matrices of 1-'* is so simple that we can compute their Fourier 

transform bl~! l in closed form. Observe that, given the block-diagonal nature of F*, we just need 
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i j  to compute the Fourier t ransform r'~k, I of the block relative to o r. Consider first IOrl = 6. Then 
N = 6 and l = 0. From (2.3) and orthogonality relations one obtains 

r~kJ, o 1 = ~ - ~ 8 ( O r  - -  k ) e i j  (4.37) 

where eij is a 6 x 6 matrix having 1 in row i, column j and zero otherwise. 
On the other hand, if IOrl = l, that is, or = ol = [0,0] r ,  then N = 1 and l = 0 . . . . .  5, 

yielding 

luij 1 
k,l 2 5 6 .6  ~(k)~(/) " (4.38) 

By putting together expressions (4.37) and (4.38) one obtains the general form of L/~! l 

0 

u~! l = 
ij I | r'~k, / (4.39) 

0 

that is, /alk! l is a block diagonal matrix, zero everywhere but on the blocks relative to Or -~- k 

(mod A (Q-T)) .  In (4.39) I is an identity matrix of suitable dimensions. Note, from (4.39), that the 

dimension of )~k,l is equal to the number of orbits relative to the same representation zrk,t. Remember 

that dim(V~,/) > dim(nk,t). This implies that the number of orbits relative to representation Yrk, l 
must be greater or equal than dim(zrkj), that is, the support must be big enough. 

4.6 Finding the Filter 

In this example we used the support of Figure 7(a) that has been determined via (4.23) with A 
suitably chosen in order to have enough orbits. Then, we applied Algorithm 1 in order to obtain the 
filter of Figure 7(b). As a starting filter we used 

h(x,y) ZX exp(-O.O625(x2 +O.Oly2))sin(27rx/14). (4.40) 

The purpose of the Gaussian part is to give a lowpass shape to the filter, while the modulation with 
the sinusoid has been used to make the orthogonalization of h(x, y) easier. Indeed, without the sinu- 
sold, h(x, y) would be nonnegative everywhere and such a function cannot be, even approximately, 
orthogonal to its own rotation. Because of this, although the algorithm finds the orthogonal filter that 
is closest to h(x, y), filter (4.40) could be too far from the set of the filters orthogonal with respect 
to the action of F* and the output of Algorithm 1 would not be meaningful. 

A. Proofs 

Proof of correctness of (2.7). 

I } 
Using (2.7) in the left-hand side of (2.5), one obtains 

171i~1/~ . 7 1 i j l l i 2 1 R  . [ 
----- ~ E /,-,wt w,,q, 'w'~a,2~ , 

i t,tol i2 ,a,'2 

~-" E E {/~Wl,/l l j l i l l " l i j l j i 2 l  , --r.o I -"to --o92 /~o,'2,i2 } " 
il,Wl i2, a,'2 

(A.1) 
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FIGURE 7 (a) Filter support used in the example in the text. (b) Frequency response of the filter designed with our 
technique. The contour levels plotted are at 20, 15 and 12 dB. 

Because of  (2.6), in (A.1) the only terms that remain are for ii = i, i2 = j and o9~ = 092 = o9, 
and (A.1) can be rewritten as 

{ B , U ~ B }  = / f i  . 711i71ij11/1 /"~ v,,, ,-,,o v,,o } .  (A.2) 

Using (2.6) once more, we get 

B , U S B  . I { } = | ~o,,,v,o) ~o,;j = {BoJ,i,Bo),j} = l r~ i - j .  (A.3) 

1 1 -  . =  In (A.3) we used the fact that L/~ Bo,,; /}0)4 since/}~o,j belongs to 124 and U 11 is its projection 
operator. [ ]  

The above holds since U~ l projects/~o,j onto the same space V j and B~o,i are all orthogonal 
to one another. 

ij j P r o o f o f P r o p e r t y 2 ,  Weneedtoprovetwofacts: thatl/~ = U$1r and that ker (L/~)~I)s  = {0}. 

In order to prove the first fact we show that if u �9 P~, then/~2 v �9 1,~ and that if  vl �9 12~, 
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ij then there exists v ~ V j such that vl = H~ v. Indeed, if v ~ 1 j ,  then 
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(A.4) 

of/dg v on because of Property 1. Equation (A.4) says that the projection ij 1 / is equal to U~ v itself, 
ij ij 

that is, Hg v belongs to l / .  To prove that for each vl E 1 / there exists a v ~ 1 j such that vl =/-/g v, 
A~ ji  

it is sufficient to verify that v = t ~  vl works. Indeed 

. Z.~ ii �9 H~H~ivl = to~l = Vl (A.5) 

and the first fact is proved. 

To prove the second fact let us suppose that there exists a v from V j which also belongs to the 

kernel of b/~, that is 

U • V  = 0 .  

By multiplying (A.6) by ~/ji one obtains 

(A.6) 

1.4JiH~ v JJ (A.7) = U ~ v  = 0 .  

However, remember that v ~ V j .  This immediately means that 

v = 0 ,  (A .8)  

that is, the only vector in ker i(L'/~ ) ~ V~ is the zero vector. [ ]  

To prove Property 3 we need the following lemma: 

Lemma 1. 
�9 ij Matrices U~ are unitary transformations between "~J and 1 i .  

Proof .  Let b, bl ~ ~J,  then 

~- b,~Jil.~iwJbl (b,L~JJbl) : bl) ( > 
Note that (A.9) still holds if vectors b and bt are replaced with vector sets. 

P r o o f  of  P r o p e r t y  3. In Algorithm 2 vector set B is projected on spaces 1~ to obtain vector sets 
�9 l j  1 Bjto. Such vector sets are mapped in V~, via L/~, , to obtain Bjto. Note that the original vector set 

can be expressed as 

E L l J l B  1 = ~"~IJJJB .  B (A.10) --to Jto = E l d j l u l j  Bjto Z_..,~,to jto = 
aJ,j oa,j to,j 

because I is direct sum of vector spaces 1 j .  
In the second step of Algorithm 2, for each o9, vector sets B~,to are "clu.';tered" together and 

orthogonalized. By looking at Algorithm 2 and Property 7 from [1] note that BJ,to are orthogonalized 

via the SVD for vector set. Because of Property 8 of [1], the new vector sets B),to are such that the 
following quantity: 

E B ~ , t o -  B),to 2 
i 

(A.11) 



230 

is minimized for each w. The new vector set/} is 

h = ~ f " ~ b / J l k  l 
-'to - - j w  " 

Riccardo Bernardini and Jelena Kova6evid 

(A.12) 
o),j 

The distance between B and/} can be written as 

2 

~'-~ IA j l  B !  - N j l  B !  (A.13) 
J --to j w  - 'w  j w  

Because the terms inside the sum of (A.13) are orthogonal to one another (they belong to vector 

spaces V j ,  orthogonal to one another) one can apply the Pythagorean theorem to obtain 

Z E U j l  (/~)~o -- g Jw)  2. (m.14) 
o) j 

Since each H j l  is unitary (Lemma 1) (A.14) can be rewritten as 

O) j a) j 

In (A. 15) it has been possible to bring }--~ j inside the norm again because of the Pythagorean theorem. 
Since each term in }--~o) is independently minimized, the global sum is minimized too. [ ]  
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