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ABSTRACT. In this paper, we are concerned with biorthogonal Wilson bases having B-splines as well as 

powers t~f sinc functions as window tunctions. We prove properties ot" B-splines and exponential Euler splines 

and use these properties to estimate the Riesz bounds t~]'the Wilson bases. 

1. Introduction 

Gabor frames {g(x-an)e 2rrihmx :m, n E Z} (a, b E R+)have found wide applications in dig- 
ital signal processing, in particular in time-frequency localization of signals (cf. [ 13]). However, by 
the Balian-Low theorem, Riesz bases of the above form have necessarily bad localization properties 
in time or frequency. See [11, p. 108] and the references therein. Therefore, Wilson [19] introduced 
orthonormal bases that avoid the Balian-Low phenomenon by considering functions having two 
peaks in frequency domain. Wilsons's suggestion was simplified to a constructive approach in [12]. 

More general constructions are the orthonormal local trigonometric bases proposed in [9] 
and [15]. Here the concept of folding operators plays a significant role (cf. [1]). In contrast to 
Wilson bases, local Fourier bases require the basic assumption that only immediate neighboring 
windows are allowed to overlap. According to [7], we call this assumption the two-overlapping 
condition. On the other hand, local trigonometric bases can also be constructed using a nonuniform 
partition of the real axis. 

Based on an extension of the folding concept, biorthogonal local Fourier bases were examined 
in [7, 3]. The consideration of biorthogonal Wilson bases was addressed in [8, 6] and, for special 
Gaussian windows, in [10]. 

In this paper, we are concerned with biorthogonal Wilson bases. In Section 2, we provide a 
simple approach to basic material concerning biorthogonal Wilson bases which differs from [8, 6] 
and from the approach to orthonormal Wilson bases in [12]. The approach is based on the connection 
of the folding concept with the Zak transform and was suggested by Bittner [4]. 

Based on the results in Section 2, we show that certain Wilson systems with cardinal B-splines 
and their Fourier transforms as window functions form Riesz bases and estimate their Riesz bounds. 
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For this, we have to prove properties of cardinal B-splines and exponential Euler splines which may 
also be interesting in other contexts. 

2. Biorthogonal Wilson Bases 

Based on the orthonormal bases {Ck : k ~ N0} and {Sk : k ~ N} of L2([0, 1/2]) given by 

co(x) := V ~ ,  ck(x) := 2cos(2zrkx) , Sk(X) := 2sin(2zrkx) (k ~ N) , 

we follow [14] and introduce the functions 

{ ~/2g(x -- j /2 )  
2 g(x -- j /2 )  cos(2rrkx) 

2 g(x - j /2 )  sin(2Jrkx) 

k = 0 ,  j E Z e v e n ,  
k ~ N , j  E Z e v e n ,  

k E N ,  j E Z o d d ,  

(2.1) 

where g ~ L2(~) denotes a window function. We are interested in properties of Wilson systems 

(2.2) 

Clearly, a similar approach is possible with respect to intervals other than [0, 1/2] and with 
respect to the other orthonormal bases of L2([0, 1/2]) usually involved in the construction of local 
Fourier bases. See [1]. 

If supp g ___ [ - 1 / 4 ,  3/4], then the functions ~ satisfy a two-overlapping condition and we 
consider a special case of local Fourier bases. 

To define a folding operator for arbitrary g ~ L2(R) similar to the folding operator known 
from local Fourier bases (cf. [7, 3]), we apply the Zak transform. 

The Zak transform Z : L2(~) ~ L2(T 2) := L2([0, 1] 2) is the unitary linear operator, which 
maps the orthonormal basis {Ejk(X) := eZnijxl[O,1](x -- k) : j ,  k E Z} of L2(]~) to the orthonormal 
basis {ejk(S, t) := e2nijse 2rrikt : j ,  k E •} of L2(T2), i.e., 

Z ( E j k )  =e.ik (j, k E Z )  

(cf. [14, p. 406]). Here 11 denotes the characteristic function of the interval I .  For f 6 L2(R), the 
Zak transform is given by 

Zf ( s ,  t) = ~ f ( s  + k)e 2nikt a.e. on T 2 . (2.3) 

kcZ 

Furthermore, we have 

Z f ( s  -1- 1, t) = e-2nitZf(s ,  t) , Z f ( s ,  t -t- 1) = Zf ( s ,  t) a.e. on T 2 . (2.4) 

Let the Fourier transform f ~ L2(R) of a function f 6 L2(R) be defined by 

f ( v )  := f f ( x ) e  -2nix~ dx 

R 

a.e.  

The Zak transforms of f 6 L2(•) and j~ 6 L2(R) are related by 
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(cf. [2]). Let Ij := [j/2, (j + 1)/2]. By (2.3) and (2.4), it is easy to check that 

and that 

Ck(S)e nijt S e [0, 1/2),  
Z (lt2jc/) (s,t) = 0 s ~ [ - 1 / 2 , 0 ) ,  

Z (ll2j+lSk) (S, t) = [ 0 s E [0, 1/2),  
Sk(S)e 2ni(j+l)t s ~ [ -1 /2 ,  0) [ 

Z k  k/~2j+ 1"~,] (S, t) 

This can be rewritten as 

z~/~ (s, t) 
2j 

ZT~k (-s ,  t) 

Zl~t2j+l (--s, t) 

where 

, - T  
and Mg = Mg.  

= Ck(S)e2nijtZg(s, t) , 

= --Sk(S)e2ni(j+l)t(--Zg(s + 1/2, t ) ) .  

M*g(s,t) ( z(112Fi)(s' t)  ) 
Z (ll2jCk) (--s, t) 

* (Z(l l : j+lSk)(s ' t )  ) 
Mg(S, t) Z (ll2)+lSk) (--S, t) 

((s, t) ~ [0, 1/2] x T) ,(2.7) 

for some positive constants C and e. Then, by (2.3), 

Ig(x)l ~ C(1 + Ixl) -1-~ 

Let g 6 L2(R) satisfy the decay property 

a.e. (2.8) 

I(Zg)(s, t)l _ ~ Ig(s + k)l <_ Z ( 1  + Is + kl) -1-~ < oo a.e. on T 2 
kcZ k~Z 

and consequently Zg ~ L ~ ( T  2) and Zg Z f  ~ L2(T 2) for all f 6 L2(R). Together with (2.6) 
and (2.7), this motivates the following definition of the adjointfolding operator T~ : L2(IR) 
L2(R) 

Z {Tgf)  ( - s ,  t) = Mg(s, t) Z f ( - s ,  t) a.e. on [0, 1/2] x T .  

Clearly, the corresponding folding operator Tg : L2(~) --+ L2(•) is given by 

Z (Tgf) (-s,  t) Z f ( - s ,  t) a.e. on [0, 1/2] • T .  

In particular, we see by (2.6) and (2.7) that 

Z~ 2j = ZVg (llzjCk) , Z ,  2j+, = ZTg (l/2j+,sk) . (2.9) 

In the "two--overlapping" setting, the folding operator Tg coincides with the usual folding operator 
for local Fourier bases on the equally partitioned real axis [7, 3]. 

173 

((s, t) 6 [0, 1/2] • qI') (2.6) 

Mg(s, t )= ( Zg(s,t) Zg(-s , t )  ) 
-Zg(s  + 1/2, t) Zg(-s  + 1/2, t) 
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In Section 3, we examine window functions g ~ L2(~)  which are symmetric with respect to 
1/4, i.e., 

g(x) = g (1 /2  - x) a.e. (2.10) 

For these window functions, we have 

Zg(s, t) = ~ g(s + k)e 2~rikt = ~ g (1 /2  - s - k)e -2Jri(-k)t = Zg(1/2 - s, t) a.e. on T 2 

k~Z k~Z 

so that Mg has the simpler form 

M g ( s , t ) = (  Zg(s , t )  Z g ( - s , t )  ) (2.11) 
- Z g ( - s , t )  Zg(s , t )  " 

With the above folding concept at hand, we consider (2.2). 
Remember  that a set of functions {Uk ~ L2(]~) : k ~ Z} is called a Riesz basis of L2(]~), if  

L2(R) is the closure of  all finite linear combinations of  the functions uk (k 6 Z) there exist constants 
0 < A < B < o o s o t h a t  

2L2(R ) ( ) A II{ck}llff2 _< )-~CkUk <_ B II{ck}ll2z {Ck}k~Z E 12 . 

keZ 
The best possible constants A and B are the Riesz bounds. 

Further, {uk ~ L2(~)  : k 6 Z} is an orthonormal basis if and only if A = B = 1. Riesz 
bases are precisely those that are images, under invertible bounded linear operators on L2(R), of 
orthonormal bases. Every function f E L2(R) can be reconstructed a.e. from the values ( f ,  Uk)L2(~) 
(k S Z), by 

f = y~  (f, uk) ik ,  
k~Z 

where {ilk : k E Z} denotes the dual basis of {uk : k E Z}. The convergence of the above sum is 
determined by the quotient B-a  B/A-I = ~ which should be small (cf. [11, p. 62]). 

For our Wilson systems/3g, we can establish the following: 

Theorem 1. 
Let g ~ L2(R) with property (2.8). Then, for 13g given by (2.1) and (2.2), the following 

statements are equivalent: 

i) The Wilson system 13g is a Riesz basis with Riesz bounds A, B. 

ii) The matrix Mg (s, t) is nonsingular a.e. on [0, 1/2] x qi" and there exist constants 0 < A < 
B < oo so that 

A <  t) -1 , tlMg(s,t) < B  a.e. on[O, 1~2] x T ,  (2.12) 

where A, B are the best possible constants fulfilling these inequalities, i.e., 
A = essinf(s.t)~[o,1/2]• t) -111~ -2 and B = esssup(s,t)~Eo,1/21• t)ll~. Here II �9 112 
denotes the spectral norm. 

For a proof see [5]. 
I f  g 6 L2(•) satisfies the symmetry property (2.10), then we have by (2.1 1) that 

M,g(S, t )Mg(s , t )= ( Dg(s,t) O )  
0 Dg (s, t) ' 
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where 
Dg(s, t) :=  IZg(s, t)l 2 + IZg( - s ,  t)l 2 �9 

Hence, (2.12) can be rewritten as 

A < D g ( s , t ) <  B a.e. on [0 ,1 /2]  x qF. (2.13) 

Note that conditions on the window function g 6 L2(~)  so that the (dual) Wilson set associated with 
the Gabor frame {g(x - an)e 2rrihmx : m, n ~ Z} (a, b 6 ~ + )  again forms a frame were established 
in [6]. If  these conditions are fulfilled, the authors can directly relate the frame bounds of the Wilson 
system to the frame bounds of  the associated Gabor system. It turns out that in the case of  critical 
sampling considered in our paper, the conditions on g ~ L2(•) are always fulfilled if g satisfies 
the symmetry property (2. I0). Consequently, in this case, we can apply well-known results on the 
bounds of  Gabor frames which confirm (2.13) from another point of view. 

Finally, one can also follow [12] to obtain (2.13). 

3. B-Spl ines  and their Fourier Transforms as Window 
Functions  

The cardinal B-splines Nm of  order m are defined by 

NI :=~1 (1[0,1) + 1(0,11) , Nm+l :=  Nm * NI (m ~ N) 

where �9 denotes the convolution in L2(•). The centered cardinal B-splines Mm of  order m are 
given by 

Mm(X) : =  Nm(x + m / 2 ) .  (3.1) 

Note that supp(Nm) = [0, m] and that Nm is symmetric with respect to m/2,  i.e., Nm(m/2 - x) = 
Nm(m/2 + x). The Fourier transform of Mm is given by 

/ ~m( l J )  = (sinc(v)) m , (3.2) 

where 
1 v = 0 ,  

sinc(v) :=  sin(nv) otherwise.  

Moreover, B-splines fulfill the two-scale relation 

k=0 

We begin with the consideration of the two-overlapping case, i.e., we set g(x) :=  Mm(a(x - 
1/4)) (a > m). To determine the Riesz bounds of the corresponding Wilson bases, we have to apply 
the following lemma which seems to be clear at first glance. 

L e m m a  1, 
For m > 2, the cardinal B-splines have the following properties: 

i) N~n is monotone increasing on [0, m+l ] - -  j 

ii) N~m(X) _< N~n (-~ - x) for  all x 6 [0, ~.].m 
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Proof.  We prove the assertion by induction on m, where we mainly apply that the derivatives of 
cardinal B-splines fulfill (cf. [18]) 

X 

N~+I(x) = Nm(x )  - Nm(x  - 1) = f dt .  

x--1 

(3.4) 

For the "hat function" N2, the assertion is obvious. 
Assume now that i) and ii) hold for k < m. First, we show , that Nm+ l is monotone increasing 

on [0, - ~ ] .  By induction hypothesis i), we have for t ~ [0, m~A] that 

N[n(t) - N[n(t - 1) > 0.  

Let t 6 [._~A, m+_.___22] so that t - 1 6 [m~3, m~2] and -~ - t 6 [m~2, m-I 4 ]" Then we obtain by 
assumption i) that 

Nfm(t) . . . .  N~n(t 1 ) > N r ~ ( t ) N m ( 2  ' )  

and further, since by induction hypothesis ii) for t ~ [-~, -~] 

- t  < t ) ,  

that 
N~n(t) - N~n(t - l) _> O. 

Thus, we get for 0 < x < y < - ~  that 

x y 

f N ~ ( t ) -  N ~ ( t -  1 ) d t  < f dt, 
0 0 

N ~ ( x )  - N , . ( x  - 1) <_ N m ( y )  - N m ( y  - 1), 

which yields assertion i) by (3.4). 
Next, we prove ii). We distinguish between the cases x ~ [0, �89 x ~ [�89 - ~ ]  and x 

[m41 m+l 
' 4 ]" 
Let x ~ [0, �89 Then we obtain by (3.4) and since N~n (t) = -Nrm (m - t) that 

Ntm+l ( m + l  ) f f f x = N ~ ( t )  dt = N ~ ( t )  dt  + N ~ ( t )  dt 
2 

~-�89 

= [ N~(t) dt 

.~-�89 

and further by assumption ii) and i) that 

x+�89 

N;n+l 2 x > N~n(t) dt  > N~n(t) dt = Ntm+l(X). 

-x+�89 0 
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Let x ~ [1,  .~_!] .  By  (3.4) and ii), we  obtain for x 6 [1,  

~ - x  

and similarly for x 6 ( ~  - - - -  

Ntm+ 1 (m 2 + 1 

- - �89 that 

~+�89 

N ' m + l ( m + l ) f  f x = N~n(t) dt > N~(t) dt 
~f_!_~ x-�89 

lm41. ] 2' that 

x+�89 - ~ - x  

- - - x )  = f N'm(t) dt + f N" (t) dt 
~r!-x x+�89 

x+�89 ~r!-x 

>_ f N'(t) dt+ f N'(t) dt= 
~rt-x  x-�89 x-�89 

N o w  assumption i) implies that 

, ( m + l  
Nm+l 2 

~+�89 
f N~n(t) d t .  

Finally, letx ~ [m~-l, m~-I 1. By (3.4) we obtain 

N,~+t(m+l  ) ' 
2 x - N ~ n + l ( x  ) = 

By induction hypothesis  i), we  have 

m+l m-3 -'-4"- 

f N'~(t) dt >_ f N'~(t) dt, 
x x-I 

while  assumptions ii) and i) yield 

- ~ - - X  m- 1 -T- 

f f 
m+l 
--T- X--�89 

f NL( t ) , l t - - fN' ( t )d t  
e~ri_ x x-1 

= f N;.(t) d t -  f N;,(t) dt 
x x-1 

nJ+l - ~  --X -7-- 

= f N'm(t) dt + f N',.(t) dt 
X m+l -'T- 

m-3 - ~  --X 

/ 
x--I m-3 

f N'm(t) dt. 
m--3 

7i 

x+�89 
- -  - x) >__ f N" (t) dt >__ / N" (t) dt = N'+,(x) . 

x-�89 x-I 
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Thus, we get assertion ii) for x �9 [ m~ 1, m~l ]. This completes the proof. [ ]  

Theorem 2. 
Let g(x)  : =  Mm(a(x  - 1/4)) (m > 2). Then Bg is not a Riesz basis fo r  a > 2m, while it 

constitutes a Riesz basis fo r  m < a < 2m with Riesz bounds Am = 2 M2m ( a /4 )  and Bm = M2m (0). 

P r o o f .  Since supp(g) _ [ - 1 / 4 ,  3/4] and Mm(X) = M m ( - X ) ,  we obtain by (2.3) for a > m that 

Dg(s, t) = Dg(s) = MZ(as)  + M2m(a(1/2 - s)) (s �9 [0, 1/21) .  

We show that the function Dg(s) attains its minimum on [0, 1/4] at s = 1/4 and its maximum at 
s ---- 0. To this end we calculate the derivative 

D'g(s) = 2a ( Mm(as)M'm(aS) - Mm(a(1 /2  - s))M~n(a(1/2 - s)) ) . 

By Lemma 1, we have Mm(aS) < M'm(a(1/2 - s)) < 0 for s �9 [0, 1/41. 
Since further Mm(as) > Mm(a(1 /2  - s)) > 0 for s ~ [0, 1/4], we conclude that Dg(s) < 0 

for s �9 [0, 1/4]. Consequently, we obtain by Theorem 1 for m < a < 2m that Am = 2 M 2 ( a / 4 )  > 0 
and Bm = 2M2(0)  < ~ .  F o r a  > 2m, we see that Mm(a/4)  = 0 so that 13g is not a Riesz basis. 
[] 

To see how C m : =  Bin~Am increases with m when a = m, we consider the following table: 

m I 2 6 10 22 26 30 34 38 

Cm+j/Cm I 1.778 2.2580 2.2623 2.2640 2.2641 2.2641 2.2642 2.2642 

Indeed the above computations can be confirmed by using the saddle point method for the asymptotic 
estimation o f M ,  n(mb) when m --+ ~ :  Let b �9 [0, �89 By (3.2), we have 

A 
/ *  

Mm(mb) = lim [ (sinc(t))rn e2nimbt dt 
A ---* oo J 

- A  

and since the integrand is entire, by Cauchy 's  theorem 

m ( Z l h z + L n ( ~  . , 1 l im [ e mr(z) dz 
1 f " eiz ~-iz 

Mm(mb) = --  lim I e , ~ ~z H j  az = -- 
7l" A--+oo J 7l" A---~oo J 

FA FA 

w h e r e  1-" A is an integration path from - A  to A which has to be specified. Now 

( 1 )  
f ' ( z )  = i coth(iz) - ~z + 2b 

so that z0 : =  iw is a saddle point of  R e f ( z ) ,  where w = Wb �9 IR is the unique solution of  

1 
coth w - - -  = 2 b .  t3.~) 

O3 

Then 
e w -- e -w ) 1 1 

f (ZO) = - 2 b w  + In 2-w ' f "  (zo) -- (sinh w) 2 w 2 " 

As integration path passing through the saddle point we can choose the broken line through the points 
- A , - e + i w ,  e + i w ,  A (e :=m-2 /5 )  wh i chapprox ima te s thepa th lm f  =Oof s t eepes tde scen t  
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near the saddle point. Now we obtain by the well-known procedure of the saddle point method 
(cf. [17, p. 486]) that 

1 

Mm(mb) ~ ~-~m~e_2bwm(Sin~to)m ( ;  1 )-:~ 
2 (sinh w) 2 for m ~ cx~. 

For b = 0, we see by (3.5) that w0 = 0 and for b = �88 that w�88 = 1.796755. Thus, 

M2+l (0) M2m(m/4) ..~ (s inh w�88 .,�88 \ - 2  
Cm+i/Cm = M2 0 2 \ w i  e - - Z - )  ~ 2.264327 

m( ) mm+l(m/4) 

which is an excellent agreement with the above computations. 
As preparation for the next result we start with the definition of exponential Euler splines. The 

exponential Euler splines qbm (m ~ N) (on the unit circle) are defined by [18] 

qbm(S , t) = Z Mm(s -- k)e 27rikt (s ~ lt~, t ~ (--1/2, 1/2]) . (3.6) 
kcZ 

The following theorem summarizes results about exponential Euler splines stated in [20]. 

Theorem 3. 
The exponential Euler splines qbm (m > 2) satisfy: 

i) Lets,  t ~ [0, 1/2] be fixed. Then IqSm(S, t)[ < Iq~m_l(s, t)l. 
ii) Lets  ~ [0, 1] be fixed. Then Vpm(S, t)l decreases fo r t  c [0, 1/2]. 

Furthermore, (s, t) = (1/2, 1/2) is the unique rootofqbm on [0, 1] x [0, 1/2]. 

iii) Let t c [0, 1/2] be fixed. Then 14~n(s, t)l decreases for s ~ [0, 1/2] 
and increases for s ~ [1/2, 1]. 

iv) B-splines form a partition of unity, i.e., (bin (s, O) = 1 for s ~ [0, 1]. 

v) The function 

Um(s ) :~-- ~m(S, 1/2) = Z (-1)lC Mm(s k) 

k~Z 

decreases on [0, 1], where Um(O) > O, and satisfies the additional properties: 

U r n ( l - - s )  = - -U ,~ ( s )  , 

U ' ( - s  + l /2)  = U/n(s + l / 2 ) = - 2 U , n - l ( s )  (m > 2) ,  

U~(s) = - 4  Um_2(s) (m > 3) .  

Now we can formulate our next result. 

Theorem 4. 
Let g(x) := Mm(x - 1/4) (m > 2). Then Bg constitutes a Riesz basis with upper Riesz bound 

B = 2 and lower Riesz bound A = Am. The latter bound can be estimated by 

Um2(0)/2 < Am < m i n l u 2 ( 0 ) ,  U2_1(0)/2} , 

i.e., for even m by 

( 2 )  2rn ~k(-lz2-m'~21 -- 21-m ] ( 2 )  2m 2 (1 - 2-m) 2 < Am < 4 
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and for odd m by 

2 (1--  2-rn-l)  2 ( 2 )  2(re+l) ~4 ( { _ 2 1 - m ' ~  2 (2)2(m+1) 
<__ Am <_ y 22_m ] 

P r o o f .  By (2.3), (3.6), and since M m is even, we obtain 

Dg(s , t )=14,m(1/4-s , t ) t2+l~,n(1/4+s, t ) l  2 ((s,t) 6[O, 1 /2] •  

By Theorem 3 ii), the above function attains its minimum at t = 1/2 and its maximum at t = 0. 
Thus, we conclude by Theorem 1 that we have to look for A m  = min{Dg(s, 1/2) : s E [0, 1/4]} 
and Bm= max{Dg(s,  0) : s 6 [0, 1/4]}. By Theorem 3 iv), we see immediately that Bm= B = 2. 
Following Theorem 3 v), we rewrite Am in the form 

= min { < ( s ) +  <(1/2-s):se [0, 1/4]} . Am 

By straightforward computation we obtain that A2 = 1/2 and A3 = 1/4. In the following, let 
m > 3. We define the linear function 

hm(s) :--- -2Urn(0)  s + Um(O ) 

passing through the points (0, Urn(O)) and (1/2, Urn(l/2)) = (1/2, 0). Since we have by The- 
orem 3 v) that U~(s) < 0 for s 6 [0, I /2] ,  the function Um is concave on [0, 1/2]. Thus, 
hm(s) < Urn(s) for s ~ [0, 1/2]. On the other hand, we see by Theorem 3 v) that 

hm-l(S)  = -2  Um-l(O)s + Um-l(0) = Ufn(ll2)s + Um-l(0) 

so that Urn(s) < hm-l(s)for s e [0, 1/2]. 
Now it is easy to check that min{h2m(S) + h2m(l/2 - s) : s ~ [0, 1/4]} = U2(0) /2 .  Conse- 

quently, 

By [16], we have that 

Um2(0)/2 < Am < minlUm2(0),Um2_l(0)/2} �9 

2 2m (2 2m -- 1) 
U2m (0) = I B2m I 

(2m)! 

and further, since the Bernoulli numbers Bzm can be estimated by 

that 

2(2m)! 2(2m)! 22m 
(2zr)2 m < IB2ml < (2:rr)2m 22 m _ 2 ' 

2(2 2'n - I )  2 ( 2  2'n - 1) 2 2m 

7t.2 m < U2m(0) < 7r2m 22m - - 2  " 

By Theorem 3 i), it follows Uzm+2(0) < U 2 m + l ( 0 )  _< U2m(0) so that 

2 (2  2 m + 2 -  1) 2 ( 2  2 m -  1) 2 2'n 

7rZm+2 < UZm+l(0) < 7r2m 22rn - - 2  

Together with (3.7) this yields the desired estimates for A m . [ ]  

Note that for m ~ oo, 

1 
Cm+l/Cm "~ (Am/Am+2) ~ "~ (7r/2) 2 ~ 2.467401.  

(3.7) 
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Finally, we consider Wilson bases with powers of sinc-functions as window functions. Again, 
we prepare our result by proving some properties of B-splines. 

Lemma 2.  

Let m > 2 and 

Then, for odd m E N, 

and for even m E N, 

Vm(x) := E(--1)kMm(x -- 2k).  
k~Z 

Vm (1/2) = 2 (m-3)/2 Um (0) 

Vm(O) = 2(m-2)/2Um(O) , 
2(m-4)/2Um(O) <_ Vm(1/2) <_ 2(m-2)/2Um(O) . 

Proof. Due to the two-scale relation (3.3) we obtain 

( ~ - ~ ( k  / m ) )  Urn(O) = E ( - 1 ) J  2 l-m Mm (2 j  + ~ - k . 
j ~Z k=0 

Let m 6 N be odd. Then (3.8) can be rewritten as 

(m+l)/2 ) 
U m ( O ) = 2 1 _ m E ( ~ )  ( 1 -t-I E( -1)JMm 2 j + ~ - - I  . 

l=(--m+ l)/2 j~Z 

Since Mm is even and 
(_m_~_! m ) ( m ) m-I + 2 r + l  ---2- - 2r 

we obtain by splitting the above sum into even and odd I ~ N that 

L(m+l)/4] ( _ ~ )  ( l ) 
U2m(O) ----- 22-m E m E(-1)JMm 2j + ~ -- 21 

+ 21 l=[(-m+3)/4J jEZ 

( 1 )  [(m+l)/4J~ (--1) l (  m ) 
----- 22-m gm 

l=[(-m+3)/4J ~ + 21 ' 

where [xJ denotes the integer part of x, i.e., [xJ < x < Ix] + 1. The last sum So has the form 

(mk~__10)/2 (m)2k -- 2 (m~/4 (  m ) k = O  4 k + 2  m = l  mod 8 or m = 5  mod 8,  

(3.8) 

S 0 

m - 2 4 k + 3  m = 3  mod 8 or m = 7  mod 8.  
2k + 1 k=0 

Using the formulas in [21, p. 17], we obtain that So = 2 (m-l)/2 and consequently Urn(0) = 
2(3-m)/2Vm(1/2). 

For the rest of the proof let m e N be even. Then (3.8) can be rewritten as 

m/2 
Um(O) = 21-m E ( m ) E(_I)JMm(2j  _I)  . 

l=-m/2 ~ -4- I jcZ 
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Since Mm is even, we have for I = 2r + 1 that 

E ( - 1 ) J M m ( 2 j  - 2r - 1) = (--1) r E ( - 1 ) k M m ( 2 k  - 1) = 0 
jEZ kEZ 

so that 
L~./ 

Um(0)-----2 l-m Z ( - 1 ) ~ M m ( 2 k )  E ( - 1 ) Z (  m ) 
keZ I=-L-~j ~ + 2l " 

The last sum Se has the form 

I Ira~2 / \ m/4 / \ I 
/ 2 k )  - 2  ~ ( 4 k )  

Se = 

i(m-2)[2 m 2 (m-2)/4 m I 
k~__0 (2k+l ) -  k=~0 (4k+ 1) 

m -- 0 mod 4 ,  

m = 2 mod 4 .  

Using [21, p. 17] again, we see that Se = 2 m/2. Hence Urn(O) = 2(2-m)/2Vm(O). 

To prove the last assertion we consider Vm(x). Obviously, V2(x) = M2(x) = 1 - x for 
x ~ [0, 1]. Assume that Vm-2(x) > 0 for x E (0, 1) and m > 4. By (3.4) and (3.1), it follows 
Vt~(x) = -2Vm-2(x) < 0 so that Vm is concave on (0, 1). Since further Vm(O) = 2(m-2)/2Um(O) > 
0 and Vm(1) = 0, we obtain Vm(x) > 0 for x E (0, 1). Now concavity of  Vm yields 

1 1 
Vm(1/2) > -~ (Vm(O) + Vm(1)) = =Vm(0).  

z 

Using that M~n (x) = - M '  m ( - x ) ,  we get V m' (0) = 0. Hence, Vm has a local maximum at x = 0 and 
Vm(1/2) < Vm(O). This completes the proof. [ ]  

Theorem 5. 
Let g(x) :=  (sinc(x - 1/4)) m (m > 2). Then 13g is a Riesz basis andthe Riesz bounds A = Am 

and B = Bm can be estimated by 

O < A m  

l+Um2(O) _< Bm 

{ 2~/.~. 2m_2 { l_21-m ~ 2 
2 m-I  U2(0) m odd 4 \ - - h - ]  \1_--15r~ ] m odd ,  < 

-- -- {2~1~,~2m { 1_2_ m -~2 < 2 m U2(O) m even 4 I , - ' ~ ]  ~1-2-2~-~] m even,  

< 1 + 2 Urn(0) + U 2 ( 0 ) .  

P r o o f .  By (2.5) and since g = (Mme27ri'/4), we obtain for ((s, t) 6 [0, 1/2] x T) that 

Dg(s, t) = Z ( M m e 2 J r i ' / 4 ) ( t , - s ) 2 +  Z ( M m e 2 J r i ' / 4 ) ( t , s )  2 

= EMm(t+k)e2~rik(1/4-s) + E M m ( t +  
k~Z 

By Theorem 1 and Theorem 3 iii), we have to look for the minimum of Dg in [0, 1/4] • {1/2} 
and for the maximum in [0, 1/4] • {0}. Concerning the minimum we obtain by 2(lal 2 + Ibl 2) = 
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la + bl 2 + la - bl 2 that 

1 ~--]Mm ) e 2 r : i k ( s - l / 4 ) 2 k e  Z ) 2 Og(S, ~) = (~--~.k --~- ~-'~Mm (~--Ir e 2yrik(s+l/4) 
keZ 

= 2 k~zMm(~+k) e2nikscos(~)2-F2 k~zMm(~+k) e2nikssin(~) 2 

= 4 e2"ikScos(- ) 2 . 

For m _< 10 it is easy to check by straightforward computation that Dg(s, 1/2) has its minimum at 
s = 0. However, for arbitrary m ~ N, we were not able to prove this result. Therefore, Dg(0, 1/2) 
can only serve as upper bound of the minimum. Applying Lemma 2, we obtain 

( ~) Z (~ ) 21 = 2m-lU2(O) m~ 
Dg O, = 4 (--1)kMrn + 2k < 2 m U2(O) m even.  

k~Z 
By Theorem 3 ii), we see that Dg(s, 1/2) > 0. Concerning the maximum we examine 

2 2 

Dg(s, O) = E Mrn(k)e2niks + E Mrn(k)e2nik(l/2-s) 
kcZ k~Z 

= Mm(O) + 2 Mm(k) cos(2nks) + Mm(O) 
k = l  

A lower bound for the maximum of D~, (s, 0) is given by 

D~, (0, O) = 1 + Urn (0) 2 �9 

Regarding that Urn (0) > 0, an upper bound for the maximum of Dg(s, 0) can be obtained by 
a 2 + b 2 _< (a + b) 2, (ab _> 0), namely 

2 

Dg (s, 0) < 2Mm(O) + 4 Mrn(2k) cos(2n2ks) 
k = l  

<_ 4 Mm(2k) = (1 + Urn(0)) 2 , 
k~Z 

where the last equation follows by Theorem 3 iv) and definition of Urn. This completes the proof. 
[] 

2 
+ 2 Z ( -1 ) kMm(k )  cos(2nks 

k = l  

Note that for m ~ c~, under the assumption that Dg(s, 1) attains its minimum at s = 0, 

Cm+~/C,n ~ (Am~Am+2) 1/2 ~ " - ~  .~. 1.233700. 
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