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ABSTRACT. We present an a•g•rithm which• based •n certain pr•perties •f analytic dependence• c•nstructs 
boundary perturbation expansions of arbitrary order for eigenfunctions of  elliptic PDEs. The resulting Taylor 

series can be evaluated far outside their radii of  convergence - -  by means of  appropriate methods of analytic 
continuation in the domain of complex perturbation parameters. A difficulty associated with calculation of  the 
Taylor coefficients becomes apparent as one considers the issues raised by multiplicity: domain perturbations 

may remove existing multiple eigenvalues and criteria must therefore be provided to obtain Taylor series 
expansions for all branches stemming from a given multiple point. The derivation of  our algorithm depends 
on certain properties of  joint analyticity (with respect to spatial variables and perturbations) which had not 

been established before this work. While our proofs, constructions and numerical examples are given for 
eigenvalue problems for the Laplacian operator in the plane, other elliptic operators can be treated similarly. 

1. Introduct ion 

The properties of eigenvalue problems under perturbations have been the subject of compre- 
hensive studies [24, 34], and the area continues to carry great importance to this day [ 1, 36, 37]. 
A substantial portion of these investigations relate to properties of s m o o t h n e s s  a n d  ana ly t i c i t y  of 
eigenvalues and eigenfunctions with respect to perturbations - -  properties these which may yield 
estimates of deviations in eigenelements caused by numerical errors, design imperfections, or other 
departures from simple configurations of a system. However, explicit constructions of high-order 
b o u n d a r y  p e r t u r b a t i o n  expansions for eigenelements have not been attempted before this work. In 
fact, consideration of low-order expansions has led some authors [29] to conjecture that boundary 
perturbative methods would only be applicable, as numerical methods, within the very restricted 
ranges where first or second order theories can be used. 

In this article we address this problem in an important example: evaluation of eigenfrequen- 
cies of the Laplacian operator under variations of the domain of definition from an exactly solvable 
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geometry. In particular, we present explicit algorithms for iterative calculation of all Taylor coef- 
ficients, and we show how information about the perturbed eigenelements can be extracted from 
these series, even far outside their radii of convergence. Our treatment of this problem thus allows 
for high-order evaluation of eigenvalues, and it is applicable to general situations - -  including the 
notoriously difficult cases involving change in multiplicity (compare [39, p. 1627]). The derivation 
of our algorithm depends on certain properties of joint analyticity (with respect to spatial variables 
and perturbations) which we establish in Section 2 below. While our proofs, constructions, and 
numerical examples are given for eigenvalue problems for the Laplacian in the plane, other elliptic 
operators can be treated similarly. 

As we said, our constructions depend on certain regularity properties of elliptic operators. The 
area of elliptic regularity has seen substantial advances over the last 50 years, including results on 
the properties of spatial analyticity of solutions to elliptic equations, see [ 14, 30]. In particular, it has 
been shown that solutions to Dirichlet problems for analytic equations can be analytically continued 
beyond the boundary of their domains of definition provided the Dirichlet data and boundary surfaces 
are themselves analytic. A complementary contribution to the subject was provided by Calder6n [8] 
and Coifman et al. [I0, 11] who studied the (singular) surface potentials associated with Laplace's 
equation in a two-dimensional Lipschitz domain (see also [12] for higher dimensional analogues). In 
particular, it follows from that work that the values of the solution at points away from the boundary 
of its domain of definition depend analytically on the given boundary perturbations. 

In [5] we considered the question of joint analytic dependence on boundary perturbations and 
spatial variables. (As is well known, joint analyticity does not follow from separate real analyticity 
properties; consider, for instance, the function f ( x ,  y) = xy exp [ -1 / (x2  + y2)]). Our interest 
in such results was motivated by the need to establish the validity of certain recursive formulae 
we derived for the explicit evaluation of boundary perturbation series. Our theorems, which were 
established in the context of problems of wave propagation, are not unrelated to the early work of 
Hadamard and others on boundary-perturbation expansions of Green's functions [20, 3, 13, 15, 16]. 
The work of these authors, however, does not provide any information on the analyticity with respect 
to boundary perturbations at boundary points. Thus, the joint boundary analyticity properties we 
established in [5] strengthen earlier results and, in particular, establish the validity of numerical 
methods based on the recursive formulae mentioned above. 

By exploiting these recursions and the underlying analytic structure we developed a class 
of highly accurate numerical algorithms for the solution of scattering problems (see [6, 7] and 
the references therein). These methods have been applied to advantage in a number of problems in 
optics [6], and, due to their remarkable accuracy, have recently permitted to resolve certain important 
long-standing issues in oceanic scattering [35]. 

Our general approach to the question of analytic dependence is based on holomorphic formu- 
lations of line, surface, and volume integral equations. In [5] we were thus able to establish that, for 
analytic (one-dimensional) boundaries of two-dimensional domains, the (unique) solutions to vari- 
ous elliptic problems are jointly holomorphic in the spatial and parameter variables, and that they 
can be jointly and uniformly continued beyond the bounding curves. The generalization given in [4] 
to two-dimensional surfaces in three-dimensional space is not direct, as it requires corresponding 
jointly analytic extensions of surface potentials. A theorem to this effect in the present context of 
eigenvalue problems constitutes the main result of Section 2. In this case, additional difficulties in 
the treatment of the associated potentials arise from the fact that the domains of integration have non- 
empty boundaries. Indeed, to avoid the collapse of the complex domain of analyticity of potentials 
as the boundary of the domain of integration is approached (a behavior which is well documented, 
for instance, in [3 I, p. 170], [3, 13]) we were led to introduce a concept of tangential analyticity (see 
equation (2.17) below). 

The results of [5] (and subsequent numerical codes) rely heavily on the uniqueness of solu- 
tion to the corresponding problems which, as we said, allows for the inversion of the differential 
operators within suitable spaces of holomorphic functions. Thus, the present theory for eigenvalue 
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problems under boundary variations deviates substantially from our previous ones. In addition, 
the non-uniqueness of solution and the possibility of multiple eigenvalues translate into substantial 
algorithmic challenges that were not present in our scattering applications, and which certainly do 
not arise in connection with low-order approximations. As mentioned above, the central difficulty 
relates to the continuation of multiple eigenvalues of the unperturbed configuration. These eigen- 
values may evolve, under shape deformation, as separated, distinct eigenvalues, and this "split" may 
only become apparent at high orders in their Taylor expansion. Our resolution of this and other 
algorithmic issues is discussed in Section 3 where the numerical procedure is presented in detail. 
Numerical results, showing different instances of eigenvalue splitting, finally follow in Section 4. 

Our present motivation to generalize the analytic perturbative methods to eigenvalue problems 
arises, again, from optics: the dependence of cavity eigenvalues and the associated "Q-factors" on 
boundary perturbations is of primary importance in the design of microscopic lasing cavities (see, 
e.g., [9, 19, 23, 28, 29, 33, 38]). In fact, the general observation that small to moderate shape changes 
can have dramatic effects on the properties of conservative and leaky cavities (see, e.g., [ 18] for a 
recent experiment) has generated considerable interest in the development of perturbation methods 
that might shed light on this process [9, 22, 25, 26]. Work to date, however, has only resulted in 
low- (first and second) order theories and, thus, it is restricted to very small perturbations. These 
results have prompted the suggestion mentioned above [29] that perturbative methods would only be 
applicable within this limited range. As we shall show here, however, appropriate uses of analytic 
function theory can substantially enlarge the domain of applicability of these methods, much as in 
the scattering calculations of [6, 7]. 

Naturally, the theoretical and practical relevance of eigenvalue problems goes beyond these 
optics applications. For generality, it is not appropriate to discuss particular configurations here; 
applications and engineering generalizations of these methods will be discussed elsewhere. Here we 
focus on the basic theoretical and numerical issues associated with analytic boundary-perturbation 
theory as it applies to eigenvalue problems. 

2. Analyticity of Eigenfunctions 

As mentioned in the introduction, the validity of our analytic perturbation methods hinges on 
a certain property of analyticity of solutions of differential equations; in the present instance we deal 
with the corresponding analytic properties of eigenvalues and eigenfunctions associated with the 
eigenvalue problem 

Au + Lu = 0 in f2~ (2.1)  
u = 0 on 0f2s. 

Here the domain f2~, 8 ~ R, is defined as 

Q~ = {(r, 0) : r < 1 + 8f(0)} (2.2) 

for some 2zr-periodic function f (0) ;  the analyticity of the eigenvalues ~ = ~.(8) as functions 8 is a 
well-known classical result [24, 34]: 

Theorem I (see [34, Sections I1.2 and I1.6] or [24, Section VII.6]). 
Let f (O) E C2([0, 2rr]) be a 2Jr-periodic function and let 1801 < 1/M, M = max If(0)l. 

Assume that for 8 = 80 there exist m linearly independent solutions of  (2.1) with L = )~o, that 
is, ~o is an eigenvalue of the Laplacian in f2, o with multiplicity m. Then, there exist functions 
~.1 (8), ~.2(8), . . . ,  ~.m (8) with Zj (80) = )~0 such that 

(i) ~.j (8) is an eigenvalue for the domain f28 and 

(ii) for some vo > O, )~j(8) is holomorphic for 18 -801 < v0. 
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Regarding the corresponding eigenfunctions, classical results do not provide us with the regu- 
larity necessary to justify successive differentiation of the equations in (2.1) with respect to 8 which, 
as we shall see in Section 3, constitute the basis of our numerical algorithm. Indeed, the required 
high order differentiations of the boundary condition 

u(1 +Sf (0 ) , 0 ;  8) = 0 

require that u be defined and differentiable to high order in a uniform neighborhood of the domains 
f2~. Our main result in this connection is the following. 

Theorem 2. 
Let f (O) be an analytic 2re-periodic function and let the domains f28 and the eigenvalues 

X j(8) be defined as in Theorem I. Then, the corresponding eigenfunctions can be chosen to de- 
pend holomorphically in (2, 8). More precisely, for each j,  there exist solutions (u j(2; 8), )U(8)) 
of (2.1) with the property that the functions uj are analytic in a (complex) neighborhood of  
f280 x [80 - e0, 80 + E0], 0 < ~0 _< v0. 

Our strategy for proving Theorem 2 relies partially on the possibility of choosing a conformal 
change of variables that transforms the domains ~2~ onto the unit disk. This conformal transformation, 
however, must be judiciously chosen so as to guarantee that it is also jointly analytic in the spatial 
variables and 8. Indeed, we have the following. 

L e m m a  1 (Analytic dependence of a Riemann mapping). 
Let [2~ be given by (2.2), 80 E R and let BR (0) C ~2 denote the disk of  radius R centered 

at O. Then, there exists el > O, a domain D with ~2~ C D for 8 E R, 18 - 8ol < el, and functions 
U, V : BI+EI(0) • [8 E C : 18 -80[ < el} "4" Csuchthat: 

(i) For each fixed 8 E ~ with 18 - 8ol < ~1, U(.~; 8) and V(s 8) are real-valued. 

(ii) For each fixed 8 E R with 18 - 8ol < El, the function 

F (~; 8) = U (~; 8) + iV  (~; 8) (2.3) 

maps B1 (0) and BI+~t (0) conformally in the variable z = Xl -b ix2 onto f2~ C C and onto 
a neighborhood o fD  C C, respectively; 

(iii) F(2; 8) is a jointly analytic function of the complex variables z = Xl + ix2 and 8; and 

(iv) throughout its domain of  definition 

Re (U2, + V21) >_ c > O for some constant c . 

In particular, the function 

§ > 

is well defined and analytic in (2; 8)for (2; 8) e BI+EL(0) x {8 E C : 18 -80I  _< el}. 

Proof.  The existence of a function satisfying (i) and (ii) is a direct consequence of the Riemann 
Mapping Theorem and of the analytic continuation results for these mappings that hold for analytic 
domains (see e.g., [32, Chap. 17] or [27, Chaps. 9 and 10]). However, a more careful analysis is 
needed to obtain a map that is, in addition, regular in the variable 8 (cf. (iii)). To this end, we shall 
appeal to the equivalence between the Riemann Mapping Problem and the Dirichlet Problem for 
Laplace's equation [32, Chap. 17] and to the analyticity results for the latter that were derived in [5] 
(see also [4]). 

Following [32, Section 17.25], for each 8 6 R fixed we consider the functions 

g (2; 8) = - log 121 + u (2; 8) 



Boundary-Variation Solution of Eigenvalue Problems for Elliptic Operators 173 

[ 
or 

where u solves 

Au( . ;8)  = 0 in fl~ (2.5) 
u ( - ; 8 ) = l o g l .  I o n 0 f l ~ .  

Thus, g(.; 8) is nothing but (a multiple of) the Green's function for g2~ with pole at the origin. In 
particular, for instance, 

g ( 2 ; 8 ) > 0  for 2 E ~ 2 ~ .  

Since the domains f2a have analytic boundaries and depend analytically in 8 and since the boundary 
values in (2.5) are themselves jointly analytic functions of  (2; 8) (in fact, they are independent of  8), 
it follows from [5] that there exists a number vl and a domain D 1 containing ~-~ for 18 - 801 _< vt such 

that the solution u is a jointly analytic function of  2 and 8 for (2; 8) in D 1 x {8 ~ C : 18 - 801 < Vl }. 

Next, let 2o 76 0 be an arbitrary fixed point belonging to every f2~, 18 - 801 < Vl (8 ~ N), 
and let v(2; 8) denote the (unique) harmonic function conjugate to u(2; 8) in fl~ and satisfying 
v(s 8) = v0 where v0 is any real constant. Note that the analyticity properties of  u imply that there 
exist a number v2 < Vl and a domain D 2 ___ D l, ~-8 C D 2 for 18 - 801 < v2, such that the function 

h(2; 8) --- u(.~; 8) + iv(2; 8) is jointly analytic in 2 and 8 for (2; 8) in D 2 x {8 E C : 18 - 801 < v2}. 
Thus, the same regularity properties hold for the function 

R (2; 8) = (Xl + ix2) e -h(;;8) �9 (2.6) 

On the other hand, the results in [32, Section 17.25] show that, for each 8 ~ R, i8 - 80[ < v2, this 
function maps the domain f2~ onto Bt (0) conformally in the variable z = Xl + ix2. Moreover, since 
each f28 has an analytic boundary it follows from classical analytic continuation results (see e.g., 
[32, Chap. 17] or [27, Chaps. 9 and 10]) that there exist v3 < v2 and a domain D 3 _ D 2, again with 
f2--~ C D 3 for 18 - 801 < v3, such that the function R(-; 8) in (2.6) defines a conformal transformation 
from D 3 onto a neighborhood .Ms of B1 (0). In fact, without loss of  generality, we may assume that 
this last property holds for 8 ~ C, 18 - 801 < v3, by slightly reducing v3 and the size of  the domain 
D 3 if necessary. Thus, the function R is jointly analytic for (z; 8) ~ D 3 x {8 ~ C : 18 - 8ol < v3} 
(since it is analytic in each variable separately [21]) and conformal in z for each 8. Finally, we define 

F(.;  8) = R- l ( . ;  8) (2.7) 

in a uniform neighborhood .IV" of B1 (0) with ~ C .Ms for 18 - 801 _< v3. Then, F satisfies (i)-(iv) 
provided we choose E 1 < I) 3 such that Bl+E1 (0) _c .N'. [ ]  

Using the conformal change of variables F [cf. (2.3)] we may recast the eigenvalue prob- 
lem (2.1) in the form 

Aw+~'LkOxl]  +\ax~] j w = 0  inBl (0 )  (2.8) 

w = 0 on OBl(0) , 

fo fo 2zr w(r, O; 8) = )~(8) g(r, p; 0 -- ~)w(p, q~; 8)s(p, q~; 8) 2 p d~k dp (2.9) 

where g = g(r, p; 8 - 4,) denotes the Green's function for the unit disk in polar coordinates (see 
e.g., [17]), 

1 [ l o g ( r 2 + p 2 - 2 r p c o s ( O - d p ) )  g(r, p; O - qb) = -~-ff 

- l o g  ((rp)2 + 1 - 2rpcos(O-  40)]  , (2.10) 
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and 

s(r, O; 8) = S(r cos(0), r sin(0); 8) [cf. (2.4)]. (2.11) 

Equivalently, setting 

W (r, 0; 8) = s(r, O; 8)w(r, O; 8) (2.12) 

we are to find functions W(r, 0; 8) satisfying 

/0'f? W(r, 8; 8) = )~(8) k(r, 8; p, d?; 8)W(p,  qb; 8) p ddp dp = )~(8)~(W)(r, 8; 8) (2.13) 

with the kernel k and the operator G defined by 

k(r, O; p, cp; 8) = s(r, 8; 8)g(r, p; O - dp)s(p, d~; 8) (2.14) 

and 

f0 f0 ~07)(r, O; 8) = k(r, 8; O, dp; 8) rl(p, qk; 8) p dqk dp . (2.15) 

In operator form, equation (2.13) is 

( I  - L (8 )~ ) (W)  = 0 (2.16) 

As we shall show, equation (2.16) can be solved in a space of 

(2.17) 

with norm given by 

II011 = sup Irl(r, O; 8)1. 
re[O,1],l Im(O) l_<~ 

I,~-8o1__,~ 

As an easy consequence of Lemma 1 we have the following. 

Corollary 1. 

There exists E2 > 0 such that s E ~E2 (80). 

Next we show that the operator ~ has a natural extension to the spaces ~ (80). 

~ ( 8 o )  = {0 = o(r, | 8) : ~ is 2zr-periodic in | 17 is continuous for 

r e [0, 1], [Im(O)l < E, 8 ~ BE(8O) C C and, for each r ~ [0, 1], 

rl(r,-; .) is holomorphic for [ Im(| < c ,  8 ~ B, (80)} 

where I denotes the identity map. 
holomorphic functions. To this end, and for 8o as in Theorem 1, we define the (Banach) space of  
tangentially analytic functions 



Boundary-Variation Solution of Eigenvalue Problems for Elliptic Operators 175 

L e m m a  2. 
Let E2 be as in Corollary 1. Then, for any E <_ E2, ~ can be (uniquely) extended to an operator 

from ~E (80) into itself. 

Proof .  We shall show that, if ~ _< ~2, then for each 17 ~ ~E (80) the extension of ~(r/) is given by 

/01fo ~(rl)(r, 0 + it; 8) = s(r, 0 + it; 8)g(r, p; 0 - q~)s(p, d~ + it; 8) 

x rl(p, dp + it; 8) pddpdp (2.18) 

= k(r, 0 + it; p, r + it; 8)r/(p, ~b -t- it; 8) p ddp dp 

where t ~ R, Ill < E. Indeed, since s e 7-tE2(80) and r / e  7~(80) it follows from (2.10) and (2.18) 
that ~(r/)(r, | 8) is continuous for r e [0, 1], I Im(| < E2 and 8 ~ B~(8o) C C and analytic in 8 
for 8 e BE(8O). On the other hand, since s and r/are analytic in | = 0 + it we have 

(0o + iat)s(r,  0 + it; 8) = (0~ d- iOt) rl(p, dp q- it; 8) = 0 

which implies that 

(0o + lot) ~(rl)(r, 0 + it; 8) = (0o + iOt) (k(r, 0 + it; p, d~ + it; 8) 

x rl(p, cp+i t ;8 ) )pdcpdp  

= - 0 e s(r, 0 + it; 8)g(r, p; 0 -- qk)s(p, qk + it; 8) 

x O ( p , q ~ - t - i t ; 8 ) ) p d ~ d p = O  

that is, G(0) satisfies the Cauchy-Riemann equations in O. Thus, ~(r/) in analytic in | I Im(| < E, 
and it therefore belongs to ~ (80). [ ]  

Our proof of Theorem 2 will be based on the reduction of equation (2.16) to a finite-dimensional 
(matrix) problem for which analyticity results are well known [34]. To this end, we will need to 
approximate the operator ~ by an operator with a finite-dimensional range. 

L e m m a  3. 
Let k be as in (2.14). Then, given any tr > O, there exist "3 = ,3(tr, '2) > 0, '3 < '2 (with 

"2 as in Lemma 2), an integer N, a symmetric matrix B = (bij) E R NxN and functions ~j(r, O; 8) 
such that 

(i) I~j E ~L[,2(80), 
(ii) By is real valued when restricted to real arguments; 

(iii) {/~j(.; 8)}N=l isa linearly independent set for 8 E C, 18 - 801 < '2. 

(iv) The function 

N 

k~(r, p; t/p, O; 8) - E bij~i(r, 0; 8)~j(p,  dp; 8) (2.19) 
i,j=l 

satisfies 

max f l  fO2rr[k(r ,O+it ;p ,  cp+i t ;8 )  
rE[O,1],ltl<~ ,/0 

]8-~O]_<E 

- k(r,O + it; p, d? + it; 8){pddpdp < cr . (2.20) 
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for every E < ~3. 

P r o o f .  First note that we can approximate the Green's function g by continuous and symmetric 
functions gr, Y > 0, defined by 

g~,(r, p; qb) = l~,(r, p; ~) -- mr(r, p; q~) 

where 

1 { log (r 2 + p2 _ 2rp cos(O - ~b)) 
Iv(r, p; 0 - ~b) = - 2--~- log(y) 

if r 2 + p 2 - 2 r p c o s ( O - q ~ ) > y ,  

if r 2 + p 2 - 2 r p c o s ( O - q ~ ) < y ,  

and 

1 
mr(r, p; 0 - d~) = -2"--~ 

log ((1 -- rp cos(O - ~ ) ) 2  + r 2 p 2  _ (rp cos(O - -  ~b)) 2) 

if rp cos(O - ~b) _< 1 - y ,  

log (y2 + r2p2 _ (1 - y)2) if rp cos(O - ~) > 1 - y .  

Indeed, as is easily checked, 

m a x  f 1 fo2~r r~[O,1],O~Rdo [g(r,p;O --dp) --g~,(r,p;O --~b)[ pdq~dp --> 0 as y - -~0.  

Next, since g~, is a continuous function of 

(2, Y) = (Y(r, 0), Y(P, 4))) - - ,  (r(cos(O), sin(0)), p(cos(~b), sin(40)) 

for (2, Y) 6 BI(0) x Bl(0), we can find polynomials Pe.r(7,, Y) such that Pe,y ~ gy uniformly on 
BI (0) x B1 (0) as e ---> ~ .  Moreover, since gr is symmetric as a function of (2, Y), Pe,r can be 
chosen to be of the form 

N 
Pe,r (2, Y) = Z bijTi (2) Tj (7) 

i,j=l 

where N = N(e) and where {7] } are linearly independent polynomials (with real coefficients) and 
B = (bij) E R N •  is a symmetric matrix (which depends on e and y). In particular, given cr > 0, 
we can choose • ~ and a number ~3 = E3 (~r, ~2) > 0, E3 < E2, sufficiently small so as to guarantee 
that 

max f l  fo2~r g ( r , p ; O - r 1 6 2  pddpdp 
r~[O,1],ltl-<E3 ,]0 

O" 

- l l s l l ~ , ~ ( 8 o )  
(2.21) 

where E2 is as in Lemma 2. Then, letting 

fli(r, /9; S) = ~ (r cos(0), r sin(O)) s(r, O; 8) 

and 

~(r, p; q~, 0; 8) -- s(r, O; 8)Pe,• (s 7 )s (p ,  ~; 8) 
N 

-~ E bijl~i(r' 0; ~)flj(p, ~b; 8) 
i,j=l 
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we clearly have By E ~2 (80) satisfying (ii) and (iii). Finally, the estimate (2.20) follows from (2.21). 
[ ]  

Proof  of  Theorem 2, From Theorem 1 we know that functions k I (8), holomorphic for 18 - 801 < 
v0, exist so that equation (2.16) with k = kl has nontrivial solutions. Since the functions kl(8) are 
positive for 8 E R we may assume, by reducing v0 if necessary, that 

min IXl(8)l > 0 .  
l~-~ol<uo 

disc 

We shall show that solutions to (2.16) can chosen to belong to a space ~ (8o). To this end, fix 
l and let 

1 
cr = max 

la-aol_<vo 2 Ikl(8)l 

For this value of or, let k 'denote the kernel in (2.19) satisfying (2.20). Then, defining 

f01 f027r ~(o)(r, 0 + it; 8) = k'(r, 0 + it; p, cp + it; 8) O(P, cp + it; 8) p dcp dp 

and 

~(o) = (7(0) - ~ ' (n) ,  

we have, from Lemmas 2 and 3, that 

max 
lS-aol_<E 

where 

(2.22) 

(2.23) 

1 
Ilkl(8)~llz:(~,(~o)) ~ ~ for every E < E4 (2.24) 

E4 = E4 (P0, ~2) ~ min (v0, E3) 

and ~3 is as in Lemma 3. Note that, from (2.14), (2.15), (2.19), and (2.22), for r r/ E 7-t~3(80) we 
have 

f0'f02  /01f02  ~(rl)(p , dp; 8)~ (p, dp; 8) p ddp dp = rl(p, ~; 8)~(~ )(p, dp; 8) p ddp dp 

~(rl)(p, 4); 8)~(p, ~; 8) p dd~ do = rl(p, dp; 8)~(~ )(0, d~; 8) r d~ do 

so that, using (2.23), 

f0'C f0lf? T~(rl)(p, qb; 8)~(p, cp; 8) pdqbdp = rl(p, cp; 8)~(~)(p,  cp; 8) p dcpdp . (2.25) 

Thus, for k = A t we may write equation (2.16) in the form 

(I  - .~I.A/[) (W) = 0 (2.26) 

where 

IV = (I  - ),l~) 1/2 (W) (2.27) 
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and 

.A,4 ~ ( I  - -  ~./'R-) - 1 / 2  ~ ' ( I  - *k/~2~-) - 1 / 2  . 

From (2.22), (2.25), and (2.28) 

foil0 3d(rl)(r, 0 + it; 8) = N(r, 0 + it; p, d~ + it; 8) rl( p, qk + it; 8) p d~ dp 

where 

and 

N 
~(r, O; p, dp; 8) ---- E bijlzi(r' O; 8)tzj(p, qb; 8) 

i,j=l 

(2.28) 

(2.29) 

(2.30) 

N 

Akn(8) = ~ bijcik(8)Cjn(8) 
i,j=l 

so that, since bij ---- bji (cf. Lemma 3) 

A = A(8) = (Akn(8)) is holomorphic for 18 - 801 < E4 and 

A(8) is a real symmetric matrix for 8 ~ R .  

where 

(2.33) 

N 

O; 8) = y ~  cij(8)otj(r; O; 8) Izi(r; 
j = l  

where Cij(8) is holomorphic for 18 - 8o1 < E4 and, since/zi is real for real 8, Cij(8) E ~ for 8 6 R. 
Thus, 

N 

~(r, O; p, dp; 8) = ~ bijlzi(r, O; t~)lzj(p, ~; ~) 
i,j=l 

N N N 
-~- ~ bij ff'2 Cik(8)Olk(r, O; 8) ~dt"~ Cjn(8)Oln(p, ~; 8) 

i,j=l k=l  n = l  

N 

= ~ Akn(8)Otk(r, O; 8)Otn(p, ~b; 8) (2.32) 
k,n=l 

Then, 

]-/.j ~ ( I  - -  ~.l~-~)--1/2 ( /~ j )  E 7-~ (80)  , • _~< E 4 . 

In view of equation (2.24), the operator (I - ~.tT"q.) -1/2 : 7-/~ (8o) --+ 7-/~ (80), ~ < E4, is well defined 
and, in fact, it can be represented by a Neumann series. Also, from (ii) and (iii) of Lemma 3, the 
functions/zj are linearly independent and real valued on real arguments. 

Next, let {otj (-; 8)}~= 1 C 7-/E (8o), E < E4, denote the orthonormal set of functions that results 

8 N from the Gram-Schmidt process applied to {/zj ( . ; ) } j = l '  so that 

f o l f o  2u { 1 i f i = j ,  (2.31) oti(p,rk;8)otj(p, qb;8)pdq~dp= 0 if /  r  



Boundary-Variation Solution of Eigenvalue Problems for Elliptic Operators 179 

Hence, using (2.26)-(2.33), we find that solutions if" of (2.26) must have the form 

N 

I~'(r, 0; 8) = E 0)j(8)oQ(r, O; 8) 
j = l  

where the unknown coefficients 0) = [0)1 . . . . .  0)N] T satisfy 

09(8) = ~.1(8)A(8)0)(8)  . 

(2.34) 

Since the reduction of (2.16) to (2.35) is reversible, we have that the operator (I - )~ ,1(8)~)  has a 
nontrivial nullspace if and only if so does the finite-dimensional operator (I - ).t (8)A(8)). Thus, for 
8 E 1~, ~-I (8) -1 E R is an eigenvalue of A (8) and, using (2.33), it follows from [34, Thm. 1-p. 33] that 
there exist a number E5 = E5(64) > 0, E 5 < E4, and a function 0)(8) = [o)1(8 ) . . . . .  0 )N(8) ]  T 7 (= 0, 
holomorphic for 18 - 801 < E5 and satisfying (2.35). Then, from (2.27) and (2.34) we see that the 
eigenfunction Wl that solves (2.16) with L(8) = ~4 (8) can be expressed as 

N 

Wl(r, O; 8) = E 0)j(8) (I -- ~.l(8)T~) - 1 / 2  (otj)(r, O; 8) E ~,s  (80) 
j = l  

and therefore, using (2.12), 

wt(r, O; 8) -- 
Wl(r, O; 8) 
s(r, O; 8) 

"HEs (80) �9 (2.36) 

In particular, from (2.9), 

Owl 
(1,0 + i t ; 8 )  = 

Or 

and therefore 

Xt(8) f01 f02rr ( 1 - P  2 ) 
2re 1 + p 2  - ~ c o s ( 0  - ~b) 

wl(p, dp + it; 8)s(p, ~ + it; 8) 2 p d$ dp 

aWl 
- - ( 1 ,  # + it; 8) is analytic for Itl < E5, 18 - 801 < E5 �9 (2.37) 
0r 

Finally, we may consider the (non-characteristic) Cauchy problem for a function p = p(g'; 8) = 
p(r, O; 8) 

Flail  + -XLkOx,/ + \,0Xl/jp=0 
p = 0  

Owl "1 
~-~Pr (1, 0; 8) = --~-r ( , 0; 8) 

to conclude, from the Cauchy-Kowalevsky theorem, that there exists E0 > 0 such that the function 
Wl is jointly analytic in (s 8) for (~; 8) E Bl+Eo(0) x {18 - 801 _< E0}. Letting 

ut (~; 8) = wl (R (~; 8) ; 8) [cf. (2.6) and ( 2 .7 ) ] ,  

choosing E0 to also satisfy E0 < E1 and using Lemma 1, the theorem follows. []  

in BI(0) x {18 - 801 < Es} 

on 0BI(0) x 118 - 801 < Es} , 

on 0BI(0) x {18- 801 < Es} , 

(2.35) 
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3. The Algorithm 

Theorem 2 asserts that it is possible to choose solutions to (2.1) that depend (jointly) analytically 
on (27; 8). In this section we shall describe an algorithm that produces such solutions; the results of 
a numerical implementation of these methods follows in Section 4. 

To describe the process, let us consider the eigenvalue problem (2.1) and let us assume that 

u (27; 8) = ~'~uk(27)8 k and ~.(8) = ~_aqk8 k . 
k>0 k>0 

Then, it follows from Theorem 2 that the coefficients (Un; qn) satisfy the recursive relations 

~',n-1 u "r 0) for r < 1, AUn(r, O) q- qOun(r, O) = -- 2..,p=oqn_ p pl, , (3.1) 

and Un(1, O) ~, -- Z~m-~_ 1 "f(o)n-m on-mum (1, O) 
(n--m)! Or n-rn 

The function u0 is an eigenfunction of the Laplacian in the disk 92 0, of course, and it is therefore 
given by 

1/2 1/2 uo(r, O) = otOJM (qO r) e iM~ + ~oJM (q 0 r) e -iM~ o t 0 , ~ 0 E ~ ,  (3.2) 

where JM denotes the Bessel function of order M > 0. The unperturbed eigenvalue q0, in turn, 
satisfies 

JM(q 1/2) = 0 .  

Note that the constants or0, fl0 in (3.2) are arbitrary (any linear combination provides an eigenfunction 
in f20) since q0 has multiplicity two. However, upon boundary deformations this double eigenvalue 
will, in general, "split" into two simple ones, each having only a one-dimensional family of associated 
eigenfunctions. The requirement of analyticity (or even continuity) in 8 of these eigenfunctions will 
thus force a very particular choice of the constants c~0,130. As we shall see below, however, this choice 
may not be apparent until several Taylor coefficients in the expansion for (u(., 8), ~.(8)) have been 
derived, as the aforementioned splitting may occur at any order in 8, depending on the perturbation 
function f(O). For this reason, our algorithm to find the coefficients (Un('), qn) in (3.1) proceeds in 
several steps, which we describe in what follows. 

Step  1. Assume 

/ 1/2 "~ eiMO uo(r, O) = JM I~qo r j  (3.3) 

Note that, as we said, this assumption will generally be inconsistent with the desired analytic depen- 
dence of eigenfunctions on the perturbation parameter and will therefore have to be reconsidered at 
a latter stage of the algorithm (see Step 5). In any case, the question arises as to how to represent the 
successive derivatives Un. A possible choice for basis functions are the actual eigenfunctions for the 
unperturbed geometry. However, such a choice would result in infinite series representations, and 
we therefore choose instead to define functions 

rk [ 1/2 \ 
Jr+to {flo r) and tbk,l(r, O) = ~Pk,t(r) ----- (4q0) k/2 k! ~k, lll(r)e it~ 

These functions are characterized by 

Pt (lPk,l) = 'Pk-ld and /2(~bkd) =~k-l,/ (3.4) 
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where 

P l ( ' ) = O 2 + ! ~ r + ( q o - ~ )  

And, if f(O) has a Fourier series expansion 

we will seek Un of the form 

and E ( . ) = A + q o .  

F 
f(O) = E Cl,leilO 

l=-F 

Un(r, O) = Z d~, l dPk,l(r, 0 ) .  
0<k<n 

M-(n-k) F<l<M+(n-k)F 

(3.5) 

Step 2. Find qn. Multiplying the first equation in (3.1) by ~-6 and integrating on {r < 1} we find 
that 

1 I P 0 m n-m [ qn-- O - -  -- E qn-pdk,MAk+l,IMl+ E Cn-m'M-sd~,sAk,lsl 
AldMI l<p<n-1 0<m<n-1 I 

o~k~p -O~-k~-'~ i 
M-min(m-k,n-m ) F <s < M +min (m-k,n-m ) F 1 

where 

Anml = 07 ~n, l and f (o)n n~ r=a n[ leilO 
l=-nF 

Step 3. Find d~nl for 1 < k < n (all except k = 0). For this, we use the differential equation for Un 
[cf. (3.1)] and the properties (3.4) which imply that 

and therefore 

ff"(Un) = E dtk, l ~k-l , l  = -- E qn-p ~_, dff,,t ~k,l 
k,l p k 

n-1 n ~ P 
~, l  -- Z qn-pdk- l , l "  

p=k-1 

Step  4. Find d~, t and check for eigenvalue "splitting." For this, let Vn = E l  d~),l (~),l and recall that 

~b0,/(r , 0) = Jlll(ql/2r)e ilO solves (A + qo)~o,l = 0. Then, from (3.1), (3.5), 

Avn(r, 0)+q0vn(r ,  0 ) = 0  for r < 1, 

On(l, O) = -- ~_,nm--1 f(O)~-m Onr-mum(1, O) -- ~_,l<k<nd~, l ~bk,l(1, 0 ) .  
(n-m)! -1-  

Thus, if B~ denotes the l-th Fourier coefficient of the boundary values Vn (1, 0), 

Vn(1, O) = ~ B'~e it~ 
! 

(3.6) 
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then, the solution takes the form 

Vn(r'O)= E B~ Jlll(ql/2r) eilO (3.7) 
, Jlli(qo/2) 

Now, the choice of qn (cf. Step 2) guarantees that the coefficient B~t of the (resonant) mode I = M 
1/2 

in (3.6) vanishes (recall JM(qo ) = 0). However, the coefficient Bn__M may or may not vanish. And, 
in fact, it can be shown that 

the eigenvalue "splits" < ',, BnM ~ 0 for some n 

(see equation (3.8) below). Therefore, the procedure follows different paths depending on the value 
Bn__M . If  Bn_M = 0, then we may indeed define On as in (3.7) and continue: replace n --+ n + 1 and 
go back to Step 2. Otherwise, if Bn_M ~ 0 we proceed to the next step. 

S tep  5. (Only necessary under eigenvalue splitting as described in Step 4). "Recalculate" (the 
correct value of) qn and choose appropriate eigenfunctions to order 0. As we said, once the splitting 
has been identified it needs to be accounted for by an appropriate choice of the constants or0 and t0 
in (3.2) and the determination of coefficients q+ and q~- corresponding to each of the two distinct 
eigenvalues, which have been found (cf. Step 4) to split at order n (i.e., q+ = qk = qk for k 
1 < k < n - 1). To this end, we first note that if we begin the procedure, in Step 1, with u0 in (3.3) 
replaced by 

u~ = a0u0 + t~0~ 

we get that the corresponding higher order coefficients uk will be given by 

Ulk = aOUk + ~0"5-[ (1 < k < n - 1) 

which satisfy 

Aul(r,  0) + qoulk(r, O) k-1 = -- )--~p=0 qk-pulk( r, O) for 

~-',k-1 f(o) k-m zk-m 1 Urn and ul(1, 0) = - z--,m=0 ~ ar--'-~w--~ ( 1, 0) 

r < l ,  

T~176176176176176  andintegratein 

{r < 1}. After some straightforward calculations, and using the previously derived value of qn, we 
find that 

q~n = qn + IB~-MI = + IB -MI and = B _M (3,8) 

where, as we said, the superscripts + differentiate the two (simple) eigenvalues. Thus, we define 

u~ '• = otffUk + ~'5-~ for 0 < k < n -- 1 

and now uln '•  can be computed as in Steps 3 and 4, since the choices in (3.8) guarantee that the new 
B n vanish. +M 

S tep  6. Calculate qn+l+v and choose appropriate eigenfunctions to order 1 + v for each v _> 0 
(iterate in v). For this, assume that for a fixed integer v > 0 we have calculated 

[ 1 r • 'U v+l'• and Iqk Jk=0 
I t Jk=0 

(qk ~ = q k  f o r k = O , ' ' '  , n - 1 )  . 



Boundary-Variation Solution o f  Eigenvalue Problems for  Elliptic Operators 183 

We want to define q~n+v+l and new corrections lu~ +2'+ 1~+[ +1= where 

v+2 4- v + l  4- 
u k ' = u  k ' for k = 0 , . . . , v  

4- t 2,4- a n + l  U2,4- u l ,4 -  For instance, if v ---- 0, we want to define qn+l  and corrections luk /k=0; however, = 

has already been appropriately chosen in the previous step. We shall then look for solutions u~ +2'+ 
of the form 

v+2 4- v+l ,4-  
u k ' = u  k f o r k - - 0 , . . . , v  

v+2 4- v + l  4- 4- 4- _ 
U k ' = U  k ' ~ - O l u + l U k _ v _ l - ~ - l ~ v + l U k _ v _  1 f o r k = v + 1 , - . .  , n + v  

where the urn, 0 < m < n - 1, are those that were originally found (Steps 1-4). As before (Step 5), 
from the orthogonality conditions it is possible to find the values of qff+l+v, ~ and/~+1" And, 

finally, v+2,4- can be determined as in Steps 3 and 4. Un+v+l 

4. Numerical  Results 

As it follows from Theorem 2, the procedure above produces the complete Taylor series of 
eigenvalues and eigenfunctions. Moreover, these series define analytic functions of 8 throughout the 
domain 181 < 1/max [f[. Of course, the series themselves may not be the appropriate representation 
of these functions as they may diverge for relatively small values of the deformation (see Figs. 1-4 
below). On the other hand, since the functions are indeed analytic for 181 < 1/max Ifl ,  it should be 

a | 

I 

I 

I 

i 

1 
| 

! I , 
o o.o~ o.~ o.'~ o'.~ o.2~ 
FIGURE l 

Dashed: Taylor series (order 28); solid: Pad6 [14/14]. Inset: domains r = 1 + 8f(O) for 8 = 0.10 and 8 = 0.20. 
Continuation of three zeros of J0 as eigenfrequencies for perturbations with f(O) = 2 cos(20). No splitting. 

possible to a n a l y t i c a l l y  c o n t i n u e  the  Taylor series to this domain. Several strategies are possible to 
numerically achieve this continuation (see [6, 7] and the references therein). Here we shall use Pad6 
approximation (see e.g., [2]) as our continuation mechanism. 

Below we present the results of our implementation of the algorithm described in Section 3 
for a variety of perturbations f ( O ) .  Figures 1-4 depict the results of our codes in cases where no 
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FIGURE 2 Continuation of  a zero of  J2 as eigenfrequencies for perturbations with f(O) = 2 cos(40). Splitt ing at order  
1. Dashed: Taylor series (order 28); solid: Pad~ [14114]. Inset: domains r = 1 + 8f(O) for ~ = 0.10 and 8 = 0.20. 
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FIGURE 3 Continuation of a zero of J3 as eigenfrequencies for perturbations with f (0) = 2 cos(30). Splitt ing at order 
2. Dashed: Taylor series (order 28); solid: Pad6 [14/14]. Inset: domains r = 1 + 8f(O) for 8 = 0.05 and 8 = 0.10. 

splitt ing occurs  and where  the e igenvalues  separate at orders n = 1, 2 and 4, respectively.  For  the 

case  o f  first order  split t ing (Fig. 2) we  also include a table where  we  have  recorded  the ou tcome  

of  convergence  studies. These  results show that, as c la imed,  very  accurate  approximat ions  can  be 

achieved for substantial deformat ions  which may  be  wel l  beyond  the disk o f  convergence  o f  the 

Taylor  series. 
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FIGURE 4 Continuation of a zero of ,/6 as eigenfrequencies for perturbations with f (0) = 2 cos(30). Splitting at order 
4. Dashed: Taylor series (order 28); solid: Pad6 [14/14]. Inset: domains r = 1 + 8f(O) for 8 = 0.05 and 8 = 0.10. 

TABLE 4.1 

Numerical values for the example of  Figure 2: 
f(O) = 2 cos(40). Continuation of  the zero 
z = 5.1356223 of  J2(z). 

N 8 Pad6 ([N/2,  N/2])  Taylor (N) 

4 0.10 5.932459814 5.933746721 

8 0.10 5.939888161 5.939685615 

12 0.10 5.940103147 5.940002737 

16 0.10 5.940063852 5.940052067 

20 0.10 5.940063913 5.940061333 

24 0.10 5.940063912 5.940063302 

28 0.10 5.940063912 5.940063758 

N 8 Pad6 ( [N/2,  N/2] )  Taylor (N) 

4 0.20 7.250946252 7.290785243 

8 0.20 7.430618958 7.338717672 

12 0.20 7.476836436 7.147414978 

16 0.20 7.459583127 6.463497406 

20 0.20 7.462505263 2.837427216 

24 0.20 7.462303523 Diverges 
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