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A b s t r a c t .  

This part contains Chapter 3 (of 5), which is mainly concerned with the derivation, 
analysis and applications of a summation formula, due to Lindelhf, for alternating 
series and complex power series, including ill-conditioned power series. An appendix 
is devoted to complete monotonicity and related questions. 

The reader is referred to Part I (in this volume of BIT) for the abstract, the contents 
and the bibliography of the whole work. A short list of references for this part is at 
the end of this part. 

3 T h e  Linde lhf  s u m m a t i o n  formula .  

3.1 Derivation of the summation formula, the Fourier transform and the mo- 
ments. 

Let C be a closed rectangular  contour with vertices at ( m -  �89 - i f  t), ( n +  1 _ i f  t), 
( n + ~ + l  i~) ,  (m - 3+1 if~), and consider the integral 

I = 1 f 7rf(s) ds. 
27ri Jc  sin 7rs 

Most texts on Complex Analysis consider the case where ft = n + �89 m -- - n  
and f ( s )  is regular in the whole plane, except for a finite number  of poles {pj}. 
Moreover, they assume tha t  If(s)l = O ( N  -2) as Is I -4 oc, so tha t  I -4 0 as 
n -4 cx~. For example, if the poles are non-integers and simple, we have by the 
residue theorem as n -4 ~ ,  

f i  ( - 1 ) k f ( k )  = _ Ezrres / (p j ) / s inTrp j .  
] g = - - ~  j 

Let 
S----c~ + iw; m* = m  1 

2" 

Consider again the contour integral I ,  but  following Lindelhf [9, 19o5], we shall 
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make a different set of assumptions, in order to derive Eq. (3.1) (which is equiv- 
alent to alternative L in (1.10)). 

(a) f ( s )  is analytic in the half-plane, ~ >> m - �89 ( f ( s )  is not assumed to be 
analytic at ce.) 

(b) lim~_~• + iw) = 0, uniformly in every strip a C [ m -  1 n + �89 
m < n .  

(c) l im~_~ f_~ e-~P~[If(a + iw)l dw =- O. 

In this case, I = E~=m(-1)kf(k). By Assumption (b), the contributions from 
the horizontal sides tend to zero, as ~ -+ oe, (for any n). The rectangle becomes 
a strip. Then, by Assumption (c), the contribution from the right boundary of 
the strip tends to zero, as n --+ ~ through integral values. So, I reduces to the 
integral along the left boundary of the strip, i.e., 

E ( -1 )k f (k )  = f ( m  - -~ + iw) 
~=m ~ 2sin((ra �89 dw. 

The LindelS"f summation formula follows: 

~0 F 1 (3.1) E ( -1 )k f (k )  = ( -1)m f ( m  - ~ + iw) dw. 
k=m oo 2 c o s h  T'~d 

It is important that we have obtained an integral with a positive weight function 
called the Lindelb'f density and denoted wn(w) ---- 1/(2coshTrw) that does not 
depend on f and m. This form of the Lindel5f summation formula is easier to 
handle for theoretical discussions than the equivalent formula (3.21), which is 
better for practical computation. (The latter is the same as alternative L in 
(1.10).) 

Suppose that ~ is to be computed. It is most common to choose m > 1, k = l  

but for the applications to a power series the choice of a non-positive m is 
occasionally useful. With the convention ~ 0  . . . .  0, we have 

oo m - - 1  c<~ ~o 0 

(3.2) E :  E § m> 1, E - - - E §  
1 1 m 1 m m 

The application of (3.1) to the case f ( s )  -= e -t~ yields, after some simplification, 
the Fourier transform of the Lindel5f density and some other relevant old results, 

1 _ et/2 fcx~ e_iw t oo 
(3.3) 2 cosh t /2  e t + ~  - J _  2 cosh ~r~ dw = E #p-(-it)p 

p=O P! ' 

where pp are the moments of the relevant weight function, 

(3.4) #P = 2 cosh 7r~ da. 
o~ 
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(By symmetry, the moments of odd order are zero.) This indicates a connection 
with the Euler numbers En defined by the generating function 

1 ~ E p ( t ) p  
(3.5) cosht /2  - p~o= ~" ~ ' 

see, e.g., Abramowitz and Stegun, [1, Sec. 23.1]. It follows that E0 = 1, E2 = 
-1 ,  E4 = 5, E6 = -61,  

(3.6) #2k = 2-2k-llE2kl,  signE2k = (--1) k, E2k+l = 0, Ek = IEkli k. 

In particular, P0 = 1/2. 

An asymptotic formula for the Euler numbers is given in (3.16). The appli- 
cation of the Krylov algorithm (2.42) or (2.40) to Eq. (3.8) is a convenient way 
to compute the Euler numbers. See w about a similar computation of the 
Bernoulli numbers. 

A curious spin-off: by a simple change of variables in (3.3), we find that  
1 / c o s h ( t x / - ~ )  is an eigenfunction of the Fourier transform belonging to the 
eigenvalue v/2~. Another eigenfunction to the same eigenvalue is ex p ( -1  2 ~t ). 
These results will not be used in this paper, but the following simple lemma is 
fundamental for the next section. 

LEMMA 3.1. The Euler numbers are uniquely determined by a recurrence 
relation that can be written in "symbolic" form as 

E o = l ,  ~ ( I E l + i )  k = 0 ,  k = l , 2 , . . . ,  

where, after the expansion by the binomial theorem, the power IEI p should be 
replaced by IEpl. 

PROOF. Write "symbolically" 

e,E, x ~-~ , E~w.xk ~-~ Ek ( ix ) k _ 1 _ 1 
= - ~ cosh ix cos x '  

k =0  k=0  

x E R .  

We here used (3.6) and (3.5). Hence 

eix 

COS X 

OO 

k~ 
k =0  

Since ReiX/cosx  ~- 1, the sequence of Euler numbers satisfy the recurrence 
relation. It is evidently the only sequence that satisfies the initial condition~ 
E0 = 1 too. Note that the recurrence relation implies the well known fact that  
the Euler numbers are integers. [] 
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3.2 The three term recurrence relation. 

The  computa t ion  of the matr ix  07 according 
that /3k : �89 i.e., 

0 1 0 . . .  0 0 

1 0 2 . . .  0 0 

(3.7) 207= 0 2 0 . . .  0 0 
�9 . . . . .  �9 . 

0 0 0 . . .  0 n - 1  
0 0 0 . . .  n - 1  0 

to Section 2 led to the conjecture 

1 Recall tha t  ] i s  uniquely determined by the moments  #k, 0 < k < 2n, #o = 3" 
By (2.39) and (3.6), this conjecture is therefore equivalent to the equations 

(3.8) e T ( 2 j ) k e l  = 2k~k/~o = IEkl, 0 _< k < 2n. 

By Lemma 3.1, it is then equivalent to the equations, 

(3.9) ~elT(207 + i i )kel  = N(IE I + i) k = { 0,1, ifif 0k = < k0, < 2n, 

where the middle expression is "symbolic". We now formulate the conjecture as 

a theorem and prove it. 

THEOREM 3.2. The three term recurrence relation for the orthonormal polyno, 
mials for the L indelb'f density function w L (w) = 1/(2 cosh 7ra~) has the coefficients 
[~k = k 

PROOF. Let 07 be defined by (3.7). By the above discussion it is necessary 
and sufficient to prove Eq. (3.9). Evident ly  this is valid for k = 0. Consider the 
Krylov row sequence, vk = eT1(207+ iI) k. We shall show tha t  the real par t  of 
the first component  vkel is zero for k = 1, 2 , . . . .  We do this for the infinite- 
dimensional matrix,  i.e., n = oc. (For the n x n principal submatr ix  of 207, vkel 
is the same, as long as k < 2n.) 

Note tha t  Vl = [i, 1 ,0 ,0 ,0 , . . . ] .  The  following pat terns  were discovered by 
numerical experimentat ion;  for some real numbers aj, aj; aj", 

v2~-1 = [ ial, al, ia2, a2,...], 

v2m = [ 0 ,  i4,  al, ia;, aL...], 
I f  �9 f l  I f  

V2m+l ----- ['~al", a l ,  za2,  a2 ,  . . . ] .  

Note tha t  the row V2m+l has the same pa t te rn  as V2m-1. It will now be proved 
by induction tha t  this is generally true. Therefore assume tha t  the first formula 
holds for a certain m; we already know tha t  it holds for m = 1. Then  consider 
v2,~ = v2m-l(207+ iI). The first component  equals ali 2 + al = O. 

= ' = 2p(ap + For column 2p we obtain i@ i%(2p - 1) + %i + iap+12p, i.e., ap 

a p + l ) .  
For column 2p + 1 we then obtain %2p + iap+l i + %+1 (2p + 1) = 2p(ap + %+1). 

So the formula for v2,~ is t rue with @ = 2p(% + %+1) E R, p > 1. 
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In the same way, if we set a~ = 0, we find that  the formula for V2m-- 1 - -  

V2m(2J+ iI) is true with a~ = (2p - 1)(ap_ 1 + a~) E R. 
This completes the induction, and we see that  the real part  of the first com- 

portent of vk is always zero. This proves Eq. (3.9). [] 

After the theorem had been proved, the writer was informed that  the result 
is not new. It  is implicitly contained in an early study of a family of continued 
fractions, Stieltjes [10, 1889]. Some ideas of Stieltjes and more recent authors are 
presented in w and applied to the recursion coefficients for the Abel density. 

3.3 A semi-convergent expansion related to the LindelSf formula. 

The relation of the Plana formula to the Euler-Maclaurin expansion was men- 
tioned in the introduction. We shall now consider an expansion that  is related 
to the Lindel5f formula in a similar way. It is mentioned by Lindel5f, [9], p. 78, 
and a remainder is given on p. 83. Since little attention has been paid to it in 
the numerical literature, we shall now discuss it. Consider (3.1) 

/ 1 oo f(m* +iw) d~, m * = m - - .  
( - 1 ) k f ( k )  = ( -1 ) '~  2coshTrw 2 

k = m  c~  

Expand f(m* +iT) into powers of w, with a remainder, and exchange the order of 
summation and integration. This leads to an expansion }-~=m(-1)k-mf(k) = 
~2~q_oi~P,f(~)(rn*)/~! + R'q, where # ,  is the moment defined by (3.4). The 
remainder Rq will be discussed below. By (3.6), 

o o  q E2pf(2p)(m.) 
(3.10) E ( - 1 ) k - ' ~ f ( k )  = E + ' 

k = m  p = 0  22p+1 (2P)! Rq. 

Note that  all imaginary quantities have disappeared. Also note that  the expan- 
sion contains the derivatives of even order, while the Euler-Maclaurin expansion 
(1.6) contains the derivatives of odd order. This expansion usually diverges as 
q -+ oe, but it is semiconvergent; for large values of m a modest number of terms 
often yields rather high accuracy. The first coefficients are as follows: 

2:o 0 2 4 6 8 10 

E2p 1 - 1  5 - 6 1  1385 -50521 
E2p 1 --1 5 --61 277 - -50521 

2 16 768 92160 4128768 21110! 

The reader may, as a hopefully amusing exercise, apply (3.10) for explaining 
the following curious observation, see Borwein et al. [2, 1989]. 

x-~5~ 4 (_ l )k  
- 3 . 1 2 1 5 9 4 6 5 2 5 9 . . .  

k = l  

7r -- 3.14159265359 . . . .  

Note that  only three digits disagree. There are several variations on this theme.~ 
Borwein et al. actually displayed the case with 40 decimal places based on 50,000 
terms. You may find out how few digits disagreed. 
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In this subsection we drop all analyticity assumptions, and this is the main 
reason for the inclusion of it in this paper. We make instead the following 
assumptions. 

(a) The series E ~ ( - 1 ) k f ( k )  is convergent, 

(b) All derivatives f(~)(s) occurring below exist for s >_ m*, and tend to zero 
aS 8 - - +  (X). 

(c) All integrals from m* to oc occurring below are absolutely convergent. 

n--1 k Results concerning a finite sum ~ k = m ( - 1 )  f(k) formally obtained by sub- 
tracting an expression for }-:~__,~(-1)kf(k) from the corresponding expression 
for ~ _ m ( - 1 ) k f ( k ) ,  are here valid, also if the infinite expansions diverge. (A 
similar remark was made in the introduction concerning Eq. (1.4).) The deriva- 
tion of the remainder R~ is rather analogous to well known derivations concerning 
the Euler-Maclaurin summation formula. We need some basic properties of the 
Euler polynomials and the periodic Euler functions. Since this is classical, we 
omit the details of some straightforward computations. 

The Euler polynomials En(x) are defined by the generating function, 

2exy cc y~ 

eY + 1 - Z z (x) n!" n~O 

The following equations are rather immediate consequences of the generating 
functions for the Euler polynomials and the Euler numbers: 

(3.11) E n ( l  - x) = ( - 1 ) h E n ( x ) ,  2nEn(~)  : En, 

(3.12) Eo(x) = 1, E~n+I(x) = (n+ 1)E~(x), E2p(O) = O, (n > 0). 

The periodic Euler functions En (x) are defined by 

E~(x)=E~(x)  ( 0 < x < l ) ,  / ~ ( x + l ) = - / ~ ( x ) ,  g x e R .  

The period is evidently equal to 2. The integral of E~(.) over a full period is 
zero. The equations (3.11), (3.12) hold for the periodic Euler functions too, and 
note that 
(3.13) ~n(m*) = (-1)m-lEa(2)  = 2-n(-1)m-lEn.  

By (3.12) and (3.13), 

f x  k.( t)  dt _ k.+l(x) - E.+l(a) 
(3.14) 

]a n! (n + 1)! 

(This is used below for a = 0 or a = m*.) For n > 0 the piecewise polynomial 
En(') belongs to c n - I ( R ) .  /~n(') is even when n is odd, and vice versa. 
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Eo(x) -- 1, hence /~0(x) = (_l)L~] is % square wave" with a well known 
Fourier expansion. By termwise integration of this 2p times we obtain, because 
of (3.14), 

(-1)P4(2p)! ~-~ sin(2u + 1)7cx 
(3.15) /~2p(X) -- 7c 2p+1 ~ (2u + 1) 2p+1 " 

p=0 

(A cosine expansion for/~2p+1 (x) can be obtained by one more integration.) We 
obtain, for x = �89 the following approximate expression for the coefficients of 
(3.10). 

(3.16) E2p ~ 2(-1)---~P (p-+ ec). 
22p+1(2p) !  7r2P+ 1 

For example, when p = 3 the right hand side equals 6.622.10 -4, while the left 
hand side (mentioned above) is 61/92160 ~ 6.619.10 -4. 

After some straightforward calculation, we obtain 

(3.17) 2 (--1)kf(E) = -/~o(m*)f(m*) - o(s)f'(s) ds. 
k=m J m* 

After repeated integrations by parts, and by the use of (3.14), the right hand 
side becomes 

Ezj(m*)f(2J)(m *) f~  F_,2q(8)f(2q+l)(8) 
_ _  

j=o (2j)! Jm. (2q)! 

We now compare this with (3.10). Notice the factor 2 on the left hand side 
of (3.17), and recall that  /~2p(m*) = 2-2P(-1)'~-1E2p. We then find that the 
expansions are equivalent, and we conclude that the remainder of (3.10) becomes 

(3.18) 1 E Rq = ( - -1 )  m - 1  E2q(S)f(2q+X)(s) ds. 
. ( 2 q ) !  

This is not so useful, since the integral of  E2q(8) over a period is zero. A more 
useful form for Rq is obtained by integrating (3.18) twice by parts, 

(3.19) 1 E = - 

We shall now see that the error estimation can be much simpler, under certain 
assumptions, which are often satisfied. It is known that [/)2p(S)] _< [/)2p(m*)[ = 
[/)2p(1)[ = [2-2pE2p[, see, e.g., Abramowitz and Stegun [1], formula 23.1.13, 
hence 

(3.20) [Rql _< 
2-2qlE2q[ / ~  

2(2q)! , [f(2q+l)(8)l ds ~ - -  C 2 If(2q§ ds. 
7r2qq -1 . 
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It also follows that  /~2p(m*) - E2p(s) has constant sign in [m*, oc], the same 
as E2p(m*). Suppose that  f(2q+3)(s) has constant sign in the interval (m*, oc). 
Then, by (3.19) and (3.12), 

signR~q -- sign((-1)m-lP,2q+2(m*)f(2q+2)(m*)) = sign(E2q+2f (2q+2) (m*)). 

An important  conclusion is that  R~ has the same sign as the first neglected 
term on the right hand side of (3.10), if f(2q+3)(8) has constant sign in the 
interval (m*, ce). I f  we moreover assume that f(2q+5)(s) has the same sign as 
f(2q+3) (s), s ~ m*, then ]Rq[ does not exceed the magnitude of the first neglected 
term, for then sign R~ -- - s ign  R~q+l, since the Euler numbers have alternating 
signs. 

These assumptions hold for all q when f (s)  is completely monotonic. Then 
f (s)  is analytic and bounded for ~s  _> m*, but not necessarily entire, see w 

By (3.20), a sufficient condition for convergence of the expansion to the correct 
sum as q --+ oe for a fixed m* is that  f (s)  is an entire function, such that  
If(s)[ = O(eals]), a < 7v. This is to be looked upon as an almost necessary 
condition for convergence, although there are exceptional cases, e.g., if f ( s -  rn*) 
is an odd function, then all terms in the expansion are zero. In such exceptional 
cases the remainder may or may not converge to zero, as q --+ c~ for a fixed m*. 
It can happen that  the expansion converges to the wrong result, if the remainder 
is not taken into account! 

This type of convergence is, however, not necessary for the practical use of 
the expansion. Therefore the expansion can be useful when f (s)  is a completely 
monotonic function that  is not an entire function. 

For example, take f (s)  = s -1. By (3.20), the smallest error bound for a given 
m* is obtained when 2q ~ ~rm*. The error bound, and the true error, are then, 
by Stirling's formula, about e -~m* V/2/m *, which can be made arbitrarily small, 
if m* is chosen large enough. The expansion is semi-convergent. 

In practice, since the computation of higher derivatives usually costs much 
more than the computation of f (k) ,  also with modern methods for automatic 
differentiation, it is usually bet ter  to choose a moderate value of q and to diminish 
the error by increasing rn*. 

Suppose that  complex arithmetic is conveniently available and that  high ac- 
curacy is needed. Unless the computation of derivatives is extremely simple, the 
writer considers the Gauss-Lindelhf approach, discussed in the following sections, 
superior to the expansion (3.10), even with optimal m and q. By the way, this 
remark also applies to the comparison of the Euler-Maclaurin expansion with 
the Gauss-Plana approach, see Ch. 4. 

Finally, it should be mentioned that  Lindelhf [9, w 39] has a different rep- 
resentation of the remainder as an integral f~p2k(rn* ,~)wL(w)da4  where 
p2k(rn*,w), k = q + 1 is an integral form for the remainder in Taylor's formula 
that  requires f(2k)(m. + in) for - w  < u < w. 
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3.4 Nodes and weights etc. for the Gauss-Lindelb'f rule. 

In this section we re turn  to the nota t ions  for the Lindel5f formula  originally 
given in (1.10); w L is called the Lindel6f density. 

m* = m -  1/2, 
1 (  1 

(3.21) gL(~)  = f ( a + i w ) + f ( a - - i c o ) ) ,  wL(w)-- 2coshTrw'  

oo m--1 oo 
E ( - 1 ) k - l f ( k )  _-- E ( - 1 ) k - x f ( k ) +  ( - - 1 ) m - i / _  gL.(w)wL(w)dw. 
k=l  k=l  oo 

This is equivalent to Eq. (3.1). The  last t e rm  is called the Lindelbf integral. Note 
t ha t  if f(s) is real on the real axis, then L g,~. (co) = ~f(rn* + iw). Recall tha t ,  
by Theo rem 3.2 and (2.17), the  recursion coefficients and the leading coefficients 
are 

(3 .22)  ~n = ~,  do ~- ~to 1/2 v/2,  A n  = ~ t o l / 2  I I / ~ - i  2n+1/2  
= k - -  n! ' 

k=l 
The  error constant in (2.28) becomes 

(3.23) rn - 
1 2-2n-1(n! )  2 

A2n(2n)! (2n)! 

where the  last expression is a useful approximat ion ,  obta ined  by Stirling's for- 
mula.  For example,  if n = 4, r,~ = 2.790.10 -5,  while the approx imat ion  gives 
2.705.10 -5 . 

20 

0 

-10 

-20 

-30 

4~ 013 o:4 o:5 o:6 0:7 0:s 0:9 

Figure 3.1: lOglorn(a), according to (2.30), n = 2 : 2 : 30. 

The  errorfactorrn(a), defined in (2.30), is shown in Fig. 3.1. I t  was computed  
for n = 2 : 2 : 30 without  t runca t ion  error by means  of the Gauss-LindelSf rule 
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with n = 32. We have rn(1) = rn. rn(a) seems to be of l imited practical  interest 
1 f o r d <  5" 

Put  ~ = 7r(1 - ~) .  A prel iminary s tudy of Fig. 3.1 indicates that  l o g r n ( ~ )  
logrn + ~ ( n  + ~ l ( n ) )  + ~2(0 .14n + e;2(n)), where ~ ( n )  --~ 0 as n ~ ec. From 
the above expression we see that  logr~  = - 4 n l o g 2  + ~0(n) ,  where ~ ( n )  ~ 0 
as n --+ ec.  Then,  for n >> 1, o--~ l o g r n  = 0 w h e n  - 4 1 o g 2  + ~ + 0 .14~ 2 = 0. 
The posit ive root  of  this quadratic is c) ~ 2.14, i.e., c~ ~ 0.32. This  fits well 
with  the a lmost-convergence  of the pencil  of  curves in Fig. 3.1 at c~ ~ 0.32. The 
coefficients of ~ and c~ 2 can also be derived from an approximat ion of ~2 (w)w L (w) 
for w = n + O ( v ~ )  by a Gauss  function,  see Fig. 3.2. 

0.05 

0.045 

0.04 

0.035 

0.03 

0.025 

0.02 

0.015 

0.01 

0.005 

O 
0 

' i 

,,,,,,, 
20 30 40 50 6'0 70 10 80 

Figure 3.2: ~(w)wL(w) versus w for n ---- 30 and n ---- 60. 

Before the writer had found the explicit expression for the recursion coeffi- 
cients fin, the power basis was tried. The Cholesky  factorizat ion RTR : G was 
computed  with  the shortcuts  of  w By  (2.20), fli = r i+ l , i+ l / r i , i .  The/3~ were 
obtained exact ly  for i < 11; afterwards the logarithm of the relative error of 
~i grew almost  linearly, until  the Cholesky factorization broke down at i = 48. 
The  relative error is about  10 -12 and 10 -6 ,  for i = 16 and i -- 32, respectively, 
a l though the condit ion numbers  of G are as large as about  109, 1016, 1054, and 
1096 for i = 11, 16, 32, and 47, respectively; see Fig. 2.1. 

Thus,  the accuracy was high in such a long sequence,  that  it was easy to  
conjecture T h eorem 3.2, which was eventual ly  proved. As ment ioned in w 
the 12 condit ion number is somet imes  a misleading measure of the expected loss 
of  accuracy, and Fig. 2.2 shows that  it drastically changes with  the scaling of the 
w-axis by some power of 2, a l though the computa t ion  of the recursion coefficients 
is practical ly the same.  

B y  the remark at the  end of w the po lynomia l  Cj(u) = 2JCj(u/2) satisfies 
the recurrence relation ( ~ j ( u )  : u ( ~ j _ l ( l t  ) - ( j  - 1)2(~j_2(u).  In  other words, 
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Cj (t) = 2-Jq~(2t). Similarly, Cj (t) = O(2t)v/-2/j!. 
The expansion of Cj (u) into powers of u has integer coefficients, which are 

given for j < 10, separately for even and odd degree, in the columns of the 
following tables. The leading coefficients are in the main diagonals. 

j :  0 2 4 6 8 10 
power: 

0 1 -1  9 -225 1 1 0 2 5  -893025 
2 1 -14 439 -24940 2250621 
4 1 -55 4214 -463490 
6 1 -140 21378 
8 1 -285 
10 1 

j :  1 3 5 7 9 
power: 

1 1 -5  89 -3429 230481 
3 1 -30 1519 -122156 
5 1 -91 10038 
7 1 -204 
9 1 

r 

Similarly, 

For example, the monic orthogonal polynomial 

2_4(~4(2t) 2_4( 9 14(2t) 2 + (2t)4) 9 14t2 t4" 
16 4 

r -- 2 -3( -5(2 t )  + (2t) 3) = - 4  t + t 3 . 

A different explicit formula, due to L. Carlitz [3, 1959], is quoted in w 
We now proceed to the nodes wn,j and weights qn,j for the Gauss-LindelSf 

rules. These are independent of ra. We follow the notations of w except that 
t is replaced by w. Set gj = gL, (wj). For j > 0, wj equals one of the positive 
nodes ~k, and qn,j --- 2d~. For j -- 0, ~0 = 0, and the factor 2 is to be omitted 
for qn,0. By (2.45), the Gauss-Lindel5f rule then reads 

/ g~* (a~)wL(w) dw ~ z.-,j=l qn,jgj, if n is even; 
~_ v'(n-1)/2 q~,ogo -- z.-,j=l qn,jgj, if n is odd. 

The nodes Wn,j are the singular values of the matrix B, 

l 
1 0 0 . . . )  

1 2 3 0 
B = ~  0 4 5  " 

0 0 6 

When the weights were computed by means of the first components of the singu- " 
lar vectors, according to w the relative accuracy became very poor for small 
weights, with the available software (of good reputation). See Fig. 2.4. 
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A more "robust" computation of the weights is used instead. In order to 
simplify the correspondence with the theory in w we describe it in terms 
of the tridiagonal matrix J (instead of the bidiagonal matrix B). After the 
computation of the nodes, we compute the matrix ~ b y  the forward use of 
the three term recurrence relation. The equation V = ff~D, see (2.23), then 
shows that the elementwise division of V by ~ provides, in the kth column, n 
values for dk, which are more or less sensitive to the influence of rounding errors. 
Let these n values be rearranged according to magnitude. Then compute the 
n - 4 averages of 5 successive values. The final estimate is the average of the 
two estimates which are closest to each other. (We omit the description of the 
case n < 5, and the handling of some tie situations, that never occurred in our 
practice.) The writer also tried the median�9 It worked well in Example 3.3 below, 
but the theoretical support is weak, with the incomplete knowledge about the 
error propagation in this problem. 

It is possible that this procedure will not be needed in the future, since Pro- 
fessor C. Moler's more elegant suggestion, mentioned in w may prove to be 
satisfactory in more general situations�9 The suggestion is "to literally rotate the 
matrix B 180 ~ so that B becomes 

n - 1  n - 2  0 " "  / 

1 0 n - 3  n - 4  

/ ~ = ~  0 0 n - 5  " 

In the Golub-Welsch formula the relevant vector is then the last row of the 
left factor of the SVD. So far it has helped in practice�9 The relative difference 
between the weights obtained in this way and the "robust weights" never exceeds 
2000 macheps for n < 60. 

If the eigenvectors of J (without a "rotation") are used in the Golub-Welsch 
formula (2.34), instead of the singular vectors of B, the weights are obtained 
with comparable accuracy. The nodes and weights were computed for n _< 64, 
by means of the exact recursion coefficients. A few of these results are reproduced 

1 here. Note that,  for each n, the sum of the weights equals #0 -- 5" 

These tables indicate that  for 4 < n < 30, n - v ~  and 1 / ( 2 ~ )  are crude 
approximations to the largest and the smallest nodes, respectively. It is not 
claimed that these formulas are asymptotically correct. 

n o d e s  n = 2 w e i g h t s  n o d e s  n = 3 w e i g h t s  

0.5 0.5 1 .118033988749895  0.1 

0 0.4 

n o d e s  n = 4 w e i g h t s  n o d e s  n = 5 w e i g h t s  

1 .825140769936442  1 .282917548737155E-2  2 .581758305384656  1 .336242484891108E-3  

.4109272075633473  4 .871708245126284E-1  .9135228801608363  1 .391131957173561E-1  

0 3 .595505617977529E-1  
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nodes n = 6 weights  nodes n = 7 weights  

3.370828693386971 1.223407724290348E-4 4.183291543696620 1.023405065729494E-5 

1.500000000000000 2.597402597402594E-2 2.140529970514226 3.887491425770930E-3 

.3708286933869707 4.739036332535445E-1 .8174370347413366 1.601442692742280E-1 

0 3.359580052493438E-1 

nodes n = 8 weights  nodes  n = 10 weights  

5.013590998533394 8.001981823412229E-7 6.713998580578509 4.218621455080911E-9 

2.819460883146335 5.028132602853774E-4 4.259481576640110 6.225131684773411E-6 

1.339565281839086 3.642548641342816E-2 2.526738310307730 1.061793131887495E-3 

.3465695940557425 4.630709001281033E-1 1.239309786252533 4.474097721942072E-2 

.3297643449118767 4.541910002983865E-1 

nodes  n = 12 weights  nodes  n = 14 weights  

8.453347903173963 

5.777514103673806 

3.838414271325175 

2.336827448313167 

1.168953990294477 

.3171749309554650 

1.92837958162765E-11 

5.832275927573558E-8 

1.963104592549384E-5 

1.717789945684028E-3 

5.150927695826492E-2 

4.467532437080832E-1 

10.22108146406223 

7.351118932789519 

5.234967120496440 

3.557141316039247 

2.200580917974644 

1.115997338946113 

.3072500755830933 

7.95592305804367E-14 

4.49706641736970E-10 

2.692429594544697E-7 

4.219281804600763E-5 

2.419066880760435E-3 

5.714388502817652E-2 

4.403945855802724E-1 

nodes  n = 16 weights  nodes n = 18 weights  

12.01058333490213 

8.966709918439545 

6.694226574496088 

4.864120937429322 

3.351505108292601 

2.096580573878714 

1.074215034819995 

.2991399916273569 

13.81740174777518 

10.61534348358555 

8.202138454558078 

6.236840447479230 

4.588698971769358 

3.192487340453952 

2.013754644146923 

1.040113898109668 

.2923342448020694 

3.03663974943886E-16 

2.99837271048565E-12 

2.973809336675933E-9 

7.656859607867542E-7 

7.366601092222453E-5 

3.135307274955956E-3 

6.192609712010618E-2 

4.348641609312475E-1 

1.08999946639983E-18 

1.78479281618689E-14 

2.78216796779075E-11 

1.109251804680936E-8 

1.661762357359788E-6 

1.131623459449303E-4 

3.849097691308150E-3 

6.605069861460117E-2 

4.299853684654316E-1 

nodes n = 20 weights  nodes n = 30 weights  

24.89059235467940 

20.94348405071561 

17.88034959027363 

15,30477809470250 

13.06298951129011 

11.07505770742079 

9.293018844648667 

7.685623687341179 

6.231567882358909 

4.916142168252414 

3.729554787153382 

2.666322121641025 

1.725830933638742 

.9160218796471180 

.2661052306485067 

15.63838144144657 

12.29077851842402 

9.749119413395031 

7.661613553430950 

5.892640787977603 

4.373283447600949 

3.064661226519408 

1.945718906956708 

1.011562470306445 

.2865048435249019 

3.72211065232145E-21 

9.69621421543740E-17 

2.28051839578041E-13 

1.34725258658107E-10 

2.985266996023355E-8 

3.042283435423722E-6 

1.595900136242516E-4 

4.550576509929410E-3 

6.965620066409162E-2 

4.256305605412983E-1 

1.03374776317862E-33 

1.80927133069462E-28 

2.23920787957928E-24 

6.28352455045472E-21 

6.33046362253946E-18 

2.91299311560182E-15 

7.07728697852114E-13 

9.97731346586592E-11 

8.700920021927225E-9 

4.902084626834046E-7 

1.834079202366247E-5 

4.614669064534812E-4 

7.756170389583585E-3 

8.268757873358269E-2 

4.090759441684911E-1 

3.5 Numerical studies with Lindelb'f's formula. 

The tables of the following examples  contain the relative errors divided by 
raacheps = 2 -53 1.1 10 -16 

As explained in the introduction,  the "head" of the series, i.e., the first m - 1 
terms are added, while  the convergence acceleration,  i.e., the LindelSf summat ion-  
formula with  a Gauss-Lindel6f  rule applied to the integral, is applied to the "taiF 
of the series. 
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In each row m is constant .  In each column the number  of nodes,  n, in the  
Gauss-LindelSf  rule is constant .  The  value of n is given at  the  top  of the  column; 
due to the  symmet ry ,  the  number  of t e rms  in the  rule is �89 

For  example ,  in the  first table ,  an i t em of the  second row, i.e., m = 6, reads  
4E6. It  is loca ted  in the  column, where you read  n = 8 on the top.  Hence, in 
the  app l ica t ion  to the  series ~ k _ 1 ( - - 1 ) k - 1 1 / k  wi th  m = 6, n = 8 the  re la t ive  
error is 4.106 macheps.  The  ac tua l  re la t ive  error  is therefore abou t  4.10 -1~ 

The  exponent ia l  pa r t  is omi t t ed  when when it should have been E0. This  
makes it easy to find the  places where "full accuracy" has been reached. 

EXAMPLE 3.1. Convergence acceleration of four alternating series. Errors 
with macheps  as  unit; 

o o  

s u m  = }_; ( - - 1 ) k - i f ( k ) .  

k = l  

We see in Tables A - D  below tha t  the  error  depends  on (m, n) in a lmost  the  
same way in all four cases, even though  f(k) behaves ra the r  differently for large 
k. We also see t ha t  above the ma in  diagonal  of a t ab le  it  is more prof i table  to 
increase m t h a n  to  increase n; below the  d iagonal  i t  is the  o ther  way around.  
Moreover,  it  is seen t ha t  along the main  d iagonal  the  error  is d iv ided  by approx-  
ima te ly  1000, when bo th  m and n are increased by 2. Full  accuracy  is ob ta ined  
when m = 12, n = 10. This  happened  also when the  nodes and weights had  
been c o m p u t e d  by  means  of the  power basis; it  was ment ioned  above t ha t  the  
reeursion coePficients became exact  for n < 11. 

The  convergence as n -+ oo for m fixed is very sl0w. In case A, which shows 
the effect of a s imple pole at  the  origin, it  was exper imen ta l ly  found t ha t  the  
error  is app rox ima te ly  

1 1 1 1 1 
2n + 4n 2 8n 4 + 4n 6 nS for m = 1, n = 20 : 2 : 60. 

Case B has also a s imple pole at  the  origin wi th  the  same residue as case A. 
Case A, wi th  the  known sum log 2, can therefore,  as suggested in Cha p t e r  1, be 
used as a comparison series, i.e. one makes  a correct ion of the  value obta ined ,  
for a cer ta in  (m, n) in case B by means  of the  ac tua l  error  ob ta ined  for the  same 
(m, n) in case A. 

1 
A. 

8 

n = 2 4 6 8 10 12 
? n z  

4 2E12 7El0 6E9 1E9 2E8 7E7 
6 3El l  2E09 6E7 4E6 4E5 6E4 
8 6E10 1 E 0 8  2E6 5E4 3E3 2E2 
10 2El0 2E07 1E5 1E3 4El 2 
12 8E09 4E06 9E3 8E1 2 2 
14 4E09 9E05 1E3 8 2 2 
16 2E09 3E05 2E2 2 2 2 

s u m = l o g  2=0.6931471805599453. 
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1 
B. f(s) - log(s  + 1) '  s u m  = 0.9242998972229387. 

n = 2 4 6 8 10 12 

m ~ 

4 2E12 5E10 5E9 8E8 2E8 5E7 

6 2 E l l  2E09 4E7 3E6 3E5 5E4 

8 5E10 1E08 1E6 4E4 2E3 2E2 

10 2E10 2E07 8E4 1E3 3E1 4 

12 7E09 3E06 7E3 6E1 2 2 

14 3E09 7E05 1E3 6 2 2 

16 2E09 2E05 2E2 2 2 2 

C. f ( s )  = e x p ( - v ~ ) ,  s u m  = 0.2256921834909404. 

n = 2 4 6 8 10 12 

m z 

4 2E12 2E10 1E9 2E8 3E7 8E6 

6 3 E l l  9E08 2E7 8E5 8E4 1E4 

8 8El0 1E08 7E5 1E4 6E2 5E1 

10 3El0 2E07 5E4 6E2 1El 2 

12 1El0 4E06 6E3 4E1 0 2 

14 7E09 1E06 1E3 4 0 2 

16 4E09 4E05 2E2 0 0 0 

1 
D. f ( s )  -- s2 + 1 '  s u m  = 0.3639854725089334. 

n ---- 2 4 6 8 10 

m ~ 

4 4E12 9E10 4E9 - 1 E 8  - 2 E 8  

6 4 E l l  3E09 9E7 4E6 2E5 

8 7E10 2E08 3E6 8E4 3E3 

10 2El0 3E07 2E5 3E3 7El 

12 6E09 5E06 2E4 1E2 2 

14 2E09 1E06 2E3 1El - 1  

16 1E09 3E05 3E2 0 - 1  

W e  s h a l l  n o w  see  h o w  t h e  t e c h n i q u e  w i t h  a c o m p a r i s o n  s e r i e s  w o r k s  fo r  a f ew  

v a l u e s  o f  ( re ,  n ) .  T h e  s e c o n d  a n d  t h i r d  i t e m s  a re  e r r o r / m a c h e p s  fo r  c a s e  B 

wi thou t  a n d  with  t h e  u s e  o f  c a s e  A as  a c o m p a r i s o n  se r ies ,  r e s p e c t i v e l y .  

m n 

1 10 

1 30 

4 10 

4 3O 

Without  comparison With  comparison 

5E14 1El0 

2E14 5E8 

1E8 3E4 

2E5 3 
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In the four cases A-D,  f ( s )  is analyt ic  and bounded for Ns > or0 > 0; there 
exists an absolutely convergent Laplace-Stiel t jes integral  representat ion,  see w 

// (3.24) f ( s )  = f l  (s) = e - ~  dc~(x), 

where c~ is a usually unknown function of bounded variation. Eq. (3.24) defines 
a class of functions tha t  is impor tan t  per  se, and can be used for the analysis of 
many  numerical  methods .  

If ~(x)  is non-decreasing, we have a completely m ono ton i c  funct ion.  The  t e rm  
e.m. will be used for this, bo th  as an adjective and as a noun in singular and 
plural. We shall use the terminology and some propert ies  of these which are 
discussed in an appendix  labeled w A function tha t  satisfies (3.24) is thus 
a difference of two c.m. The  reader who is not familiar with these notions is 
advised to read w first. 

There  is at  least one singular point  on the imaginary  axis in these examples.  
1 It  is then  pract ical  to choose a0 a little away from the imaginary  axis, a0 = 

(say), so tha t  f o  e-~~ Idc~(x)i is of modera t e  size. 
We saw tha t  the technique with a compar ison series worked well in an ex- 

ample,  but  it is not really necessary for series of this type,  because there is no 
disadvantage increasing m instead. We shall see other  types  of series below, 
where the use of a compar ison series is more impor tan t ,  Example  Li4, and w 

The  following rule of t humb  is obta ined from Fig. 3.4, which is based on a 
theory  given in Example  3.2: 

[lOgl0tOl[ { 2 ,  i f 2 < n < 1 2 ;  
(3.25) n - -  1.6 , m - a 0 - n =  4, if 1 4 < n < 2 4 ,  

where tol is the to lera ted  error, relative to the size of a term,  where the series 
begins to become slowly convergent.  As a check one can make another  compu-  
tat ion,  where m and n are decreased by 2. The  result of the first computa t ion  is 
accepted if the difference of the results does not exceed 1000 t imes the acceptable  
error; if it does, a new computa t ion  is suggested with larger values of m and n. 

In the cases A, B, C c~(x) is non-decreasing for x _> 0. In other  words, the 
function f ( s )  and the sequence { f (k )}  are complete ly  monotonic.  In case D, we 
can only claim tha t  a (x )  is of bounded  variation,  i.e. t ha t  f ( s )  is the difference 
between two complete ly  monotonic  functions. In fact 

1 1 2 

s 2 + 1 s 2 - 1 s 4 - 1" 

We note tha t  all errors have the same sign in the cases A, B, C, while in case D 
there are sign changes in the table. (Note tha t  m and n are even.) I t  is na tura l  
to ask whether  the error is always posit ive when f ( s )  is complete ly  monotonic.  
It  is, by (3.24), with a (x )  non-decreasing, sufficient to s tudy  f ( s ; x )  = e - ~ .  
This will be done in Example  3.2. Al though the theoret ical  answer is "no", the 
pract ical  answer is "yes", if the above recommendat ions  concerning the choice of 
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m, n are followed, since the contr ibut ions from values of x with negative errors 
are likely to be much smaller  than  the tolerance. 

The trapezoidal rule with a fixed step size Aw is a na tura l  a l ternat ive  to a 
Gauss-Lindelbf  rule for an integrand tha t  decays rapidly  as ]wl --+ oc. Is expo- 
nential decay fast enough? The  error has then two components :  the error of the 
infinite t rapezoidal  sum and the error due to the t runca t ion  to a finite sum. We 
make a heuristic s tudy  for the case gL .  (w) _ 1, as a guide for exper iments  with 
the four series above. 

The  first component  can be es t imated  by means  of the first t e rms  of Pois- 
son's s u m m a t i o n  formula,  see Fettis [6, 1955]. By (3.3), the Fourier t rans-  
form of the densi ty function is ~L(t) = 1/(2 cosh( t /2)) .  The  es t imate  becomes 
2@L(27r/Aw) = 1/cosh(Tr/Aw).  

In the second component ,  set t2 = max  w. If  the to lera ted  error is small  
enough, we have cosh(Trw) ~ �89 exp(l lral)  for Iwl _> ~.  We also approx imate  the 
neglected tail of the t rapezoidal  sum by the integral  

~ wL(~)  d~ ~ 1 / ( ~ c o s h ~ ) .  
I>a 

I t  is a lmost  op t imal  to choose the two components  a lmost  equally small. If  we 
choose 1 /Aw = ~t = - T r - l l o g e ,  the error es t imate  becomes (2 + 2/Tr)e, and 
the number  of complex function evaluat ions becomes N = ~ / A w  + 1 ~ i22 = 
7r-21 log c] 2 = 0.541 log10 el 2. If e = 2 -53, which corresponds to "full accuracy",  
we obta in  N ~ 137 ,~  = 11.7, Aw = 0.086, and the error es t imate  becomes 
3.10 -16" 

The  writer  made  computa t ions  with the series A - D  with N = 129, ~t = 11, 
hence A a  = 0.086, and obta ined a lmost  "full accuracy" in these four cases. 
Wi th  the Gauss-Lindel6f  we had a lmost  "full accuracy" for n = 10, m = 12, 
i.e. with 5 complex function evaluat ions and 12 real function evaluations.  We 
can therefore claim tha t  the trapezoidal rule requires more than 10 times as 
much work for "full accuracy" for a slowly convergent alternating series, at  
least when f (s)  is complete ly  monotonic,  or is the difference of two complete ly  
monotonic  functions. More generally, the above heuristic theory  implies tha t  
the amount of work for the trapezoidal rule is proportional to I log cI 2, while it is 
only proportional to I log c I for the Gauss-Lindelb'f rule, by (3.25). 

We must  point  out tha t  there are m a n y  convergent a l ternat ing series tha t  
cannot  be handled by the Lindelbf formula. One example  is the series genera ted 
by f (s)  = e x p ( - a s 2 ) ,  a > 0, s = a+iw because, for ~ = m -  1/2, ] e x p ( - a s 2 ) l  = 
exp(aw 2 - a~r 2) does not satisfy the assumpt ions  (b) and (c) made  in w The  
Lindelbf summat ion  cannot  be used, nor is it needed, unless a <4 1. The  Poisson 
s u m m a t i o n  formula  is r ecommended  instead for series of this type.  

Another  interesting class of series is generated by f (s)  = fl(s)/r(as), a > 0, 
where Ifl(s)l < C1 for ~ s  > or0. For cr > ~r 0 fixed, and Iw] >> 1, we have by 
Stirl ing's formula,  

(3.26) If(~ § iw)l = C(ao')lwl-acr+l/2eal~lr/2(1 + o(1)). 
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The LindelSf formula can thus be used for a _< 2 only. A more rapid decay of 
the terms of the original series makes the performance of the LindelSf formula 
worse. We shall return to this example, multiplied by (:t:z) s, in w and w 

Similar remarks are relevant for all our four summation formulas, except that, 
for the Plana and the Midpoint formulas, the condition in the second case be- 
comes a _< 4 due to the more rapid decay of wP(co) and wM(w).  

EXAMPLE 3.2. f(s;  X) = e - ~ ,  x > O; with extension to alternating series 
that sat isfy (3.24). 

This is a theoretical study of the application of the Gauss-Lindel5f rule on a 
class of series, exemplified in Example 3.1. We shall use the notations of w 
except that the independent variable is now w instead of t; x is to be considered 
as a positive parameter; w f ( w )  = 1/(2eoshTrw). Integrals without limits are 
over R.  We confine the discussion to even values of m and n. If needed, the 
results can be easily modified to odd values. 

The sum of the alternating series is in this case - ( e ~ +  1) -1 , and the tail equals 
-e (1-m)x(e  x + 1) -~.  By (3.1), the tail equals the integral 

f e(-m*-i'~)~wL(w)dw = f gL(w; x)wL(~)d~z, where gL(w; x) = e -'~*~ C O S  0 i X .  

(Recall that m* = m - 1 ) The truncation error of the evaluation of the tail by 
2 "  

the Gauss-LindelSf rule with 1 ~n positive nodes reads R~gL(.; x), see Fig. 3.3. 
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Figure 3.3: loglo[R~gL(';x)l for n = 2 : 2 : 10. To the left: f(s)  = e - ~ ,  rn = n + 2 ;  
To the right: f(s)  = e - ~ ,  m = 3. All curves are computed as the difference between 
Gauss-Lindel6f results and exact results, without the use of (3.28). 

We first note that IR~gL(.;x)l <_ e -m-x,  by (2.33), with ~ = 1, P = 0. This is 
no good for small values of x. So, as in w let P E P2n be the Hermite interpo- 
lation polynomial  determined by the conditions, P(Ak) = gL(Ak; x); P'()~k) = 
g~(Ak;x),  k = l : n .  By  (2.29), 

( 2 n ) / , -  
( 3 . 2 7 )  - = 2 =  ne-m* X2nCOS Jr 
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Hence, by (2.27), together with the bound IRngL(.; x)l < e -m*x given above, we 
obtain 

(3.28) ]RngL(';  X)] ~ e - m * x  m i n { r n  x2n, 1 } .  

For the application to a series, where f(s) = fl  (s) satisfies (3.24). the truncation 
error becomes 

= R,~g (.; x) da(x), Tm,nf L 

oo 1 hence IT.~,nfl < Mm,~ fo e-~~ da(x)l, where we set ~ = m - ~ - Cro, 

(3.29) Mm,n ==- maxe-r~Xmin{rnX 2n, 1} ~ / ~ m  n 
x > O  

(3.30) ~/fmn ~- m a x e - m ~ m i n { x 2 n 2 - 4 n v ~  ~ 1} 
' x > 0  ' " 

(We used (3.23) here.) The number of correct decimal digits is measured by 
log10 2V/m,~ ~ log10 Mm.,~, while the computational work is measured by k = 
rh + n. (Both measures are open to criticism.) 

We first estimate ~Im,n. Note that e-~Xx2~ has a local maximum equal to 
e-2nx 2n when x = �9 -= 2n/fn; we call 2 "the worst x". Hence 

1 log(nlr/4) log/~/m,~ = 2n(log 2 - 1 - 2 log 2) + 

1 log(n~r/4) < 0. (This condition is satisfied in all interesting if 2n log(~/4) + 
c a s e s . )  

Next we compute the value of 2n/~h = 2 that minimizes ~/m,~, for a given 
amount of "work" k = ~ + n. Note that n -- k~/(2 + 2). By straightforward 
calculation, we find that  log/V/m,n is minimal when 

2 2 + 2  1 
(3.31) l o g ~ + ~ - 2 1 o g 2 +  4k2 - 0 ;  i.e., 2 ~ 1 . 7 0 5 - 2 -  ~. 

(The error of the approximation is less than 0.001 i fk  _> 10.) As k ~ oc, r=n/n -+ 
2/2 = 1.173, so the optimal path in the (m, n)-table deviates a little from the 
main diagonal, but that is relevant only if one wants extremely high accuracy. 

1 log k - 1.013 • 0.004 for k > 10. It follows that  min log/V/m,~ = - 2 k  + ~ 
Fig. 3.4 was constructed by means of these equations together with the formu- 

l a s n = k ~ / ( 2 + 2 ) ,  V n = k - n ,  r n = r h +  �89  
Measuring work by the parameter k means that the evaluation of f(s) for a 

real s costs 1 unit, while the evaluation of ~f(s)  for a non-real s costs 2 units. 
The formula for minlogM,%n implies that,  for large k, one unit of work yields 
Z/ log 10 = 0.741 decimal digits, hence "full accuracy" costs 22 units of work, in 
excellent agreement with Example 3.1. 

This can be compared with the results of Dahlquist, Gustafson and Sikl6si [5, 
1965, w 4], that the Euler transformation, with optimal division of a sequence into 
a head and a tail, yields log10 3 = 0.477 decimal digits for one unit of work, while 
a kind of Chebyshev acceleration, later algorithmically modified and improved 
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Figure 3.4: The number of correct decimal digits in the sum versus n with optimal m 
for "the worst x", when f(s; x) = e -~=. The lower curve shows the optimal choice of 
rh - n. The + points are results from Example 3.1, case A, m = n + 2. 

by Gustafson [7, 1978], yields log10(3 + v/8) = 0.766 decimal digits for one unit 
of work, hence Gustafson's  Chebyshev acceleration is about  3 % more efficient 
than the Gauss-Lindel5f rule. 

The cost for "full accuracy" is for the three methods mentioned thus 22, 34 
and 21 units of work, respectively. It  has been experimentally found tha t  the 
e-algorithm and Gustafson 's  Chebyshev acceleration both  need on the average 
20 terms for full accuracy. 

We are also interested in the sign of the remainder. The cusps in the right 
par t  of Fig. 3.3 indicate tha t  there are sign changes of R~gn(.;x). Probably,  
Rngn('; X) > 0 to the left of the first visible cusp of each curve, but  since there 
may be some doubts,  whether  the irregularities near the origin are entirely due 
to rounding errors, we make a s tudy for small values of x. By (3.27), 

RngL(.; x) = /(gL(a;; x) -- P(w))wL(a;) dw = rne-~Xx2~(al + a2), 

where 

al = f~,<n coswx Cn(w)2wL(w)dw, a2 = jflw J>f~ coswx Cn(W)2wL(w)dw" 

Choose f~ = 7r/(3x), and set r/ = f ~ i > a  r Then al + a2 > 

�89 - r/) - 77 > 0 if rl < 1/3. Supported by Fig. 3.3, we conjecture tha t  77 < 1/3 
if f~ _> n, i.e., if x < ;r /(3n).  We conclude tha t  

(3.32) R~gL(-;x) > 0 if x < ~/(3~). 
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EXAMPLE 3.3. Power series and Fourier series. 
In order to apply the LindelSf formula to a power series, we introduce one 

more complex variable z = [zle ir Let 5 be any positive number. Set, for 

1~- r  < ~ - ~ ,  
(3.33) (_z)S = izl~e~(~-r log Izi-~<~-~). 

Put  f ( s )  = f ( s ;  z )  = (-zFA(s) into (3.21), where A(s) satisfies (3.24), and set 

(3.34) F(z)  - ~ f l ( k ) z  k 
k = l  

m - 1  

(3.35) F(z)  = E f l ( k ) zk  + (--1)m-1 f gL. (CO; z)wL(w) dw. 
k=l J 

(Recall that  m* = m - 1/2.) Eq. (3.34) defines an analytic function in a circle 
Izl < r. We know that  r > 1, since {f l (k)} is bounded. On the other hand, 
(3.35) defines an analytic function in the z-plane, cut along the positive real 
axis, because the integrand is, for any R > 0, 5 > 0, majorized by Rr~*e -51~1 in 
the region defined by the inequalities Izl <_ R, I~r - r <- ~r - 5. 

These functions coincide in the intersection of their regions of validity; a fact 
that  has been anticipated in the notation. Eq. (3.35) therefore provides an ana- 
lytic continuation to the union of these regions, i.e., to the z-plane, cut from r 
to oc along the real axis. The question is: how well can this be approximated 
by means of Gauss-LindelSf rules? 

Note that  the assumptions for the derivation of LindelSf's summation are rel- 
evant for obtaining a start  for the process of analytic continuation only. They 
are irrelevant, after analytic continuation has been applied. For example, as- 
sumption (c) of w is no longer valid when Izl > r. Anyway, the analytic 
continuation requires the convergence of the LindelSf integral, so at least the 
restrictions on the growth of f (m*  4- iw), Iwl -+ oc cannot be ignored. 

In this example we consider Fourier series, which can be computed by means 
of F(z)  for z = e ir 0 < r _< Tr; more specifically the case where f l ( s )  = s -1. 
The sum equals F(z)  = - log(1 - z) = - l o g  2sin ~ i(~-r Note that  for 2 2 

= 0 we have a divergent series with positive terms, while for ~ = 7r, the series 
is the alternating series Example 3.1, case A (with sign reversed). 

There are two sources of possible trouble: 

�9 The decay of the integrand is only like el~-r 4- iw I = 
e-Ir /Im* 4- iw I. 

�9 There is a pole of f l  (s) at the origin. 

The nearness to the pole may be the dominant error source for (say) ~ > ~ 
- -  2 '  

We could use the comparison series y~ ( -1 )kk  -1 here, but it seems easier ~co 
escape from the pole by increasing m in this example just like in Example 3.1. 
For smaller values of r the slow decay of the integrand takes over the role as the 
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dominant error source, and the writer does not know how to cure that  efficiently 
by a comparison series. 

The largest node is a little less than n. In order to obtain d significant decimal 
digits, it is thus conceivable that  e-Ir should not be much larger than 10 -d, 
i.e., n should be something like 2.3d/~. Actually, the results below indicate that  
this is a little larger than necessary. 

Computat ions were made with several values of rn and n, n < 64. The best 
errors em,~ obtained are tabulated below. We there exclude some "occasional 
good results" obtained for lower values of n, where the error changed sign, since 
such a result would not have been recognized in a realistic example, where the 
exact sum is not known. "Convergence ratio" means the ratio tSm,n/em_2,n_ 2 

1 or, for r < ~r ,  era,ale, . . . .  2, estimated by experiment. 

r ~ 3~/4 ~/2 ~/4 ~/8 ~/16 ~/64 ~/256 

error/macheps 

r~; n 

c o n v e r g e n c e  r a t i o  

1 1 1 1 6E3 2E9 3E13 6E14 
12; 10 12; 10 8; 16 6; 42 4; 64 2; 64 2; 64 2; 64 

0.001 0.001 0.03 0.20 0.44 0.66 0.88 0.96 

The pr imary output (not displayed here) shows that  the convergence ratio is 
amazingly independent of n, until the error is at the level of rounding errors. 
This indicates that  further improvement can be obtained by the use of higher 
values of n, or by Aitken extrapolation. (In the writer's experiments n was 
limited by certain software restrictions on the size of a matrix.) 

A preliminary experiment was made with Aitken extrapolations of the Gauss- 
LindelSfresults obtained with n = 52 : 2 : 6 0  for ~p = 7c/8, :r/16, 7r/64. It  proved 
so successful that  Aitken extrapolation was applied also to the extrapolated 
sequences, and this was also successful. For ~p = 7r/16 the improvement was 
about 4 decimal places for the two extrapolations together. 

As in the previous tables, the relative errors are divided by macheps. 

~p ~r/8 7r/16 7r/64 

Orig. error, n = 60 2E4 6E9 4E13 

Aitken extrapol. 5E1 3E7 2E12 

Iterated Aitken - 7  5E5 2El l  

m; n 4; 60 4; 60 2; 60 

It would have been more economical to apply the extrapolation to the sequence 
obtained with a sparser sequence of values of n. It is questionable how much 
efforts like this should be made to improve the Gauss-Lindel5f results. 

The Plana formula applied to the same series converges much faster for small 
values of r see w Example 4.3. The price paid for the fast convergence of the 
Plana formula is the computation of f ~  S f (a ;  z)dcr, and this can sometimes 
be costly, compared to the few function evaluations requested by the LindelSf 
formula. The writer recommends unconditionally the LindelSf formula for ~b >>_ 
~7I'.1 Sometimes it can, perhaps together with Aitken extrapolation, compete 
with the Plana formula even for (say) ~p = 7c/16. 
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The writer believes that  this example is representative for series generated by 
f ( s )  = e - iCs f l ( s ) ,  0 < Ir <- 7r; f l ( s )  satisfies (3.24). The theoretical support  
for this belief is so far only that  for r = 7v--see Examples 3.1 and 3 .2-- the  
behaviour is essentially the same for any function f l  of this class. 

The above tables of results were obtained by the use of "robustly estimated 
weights", as described above. When r is small, the slow decay of the integrand 
necessitates large values of n. Even the smallest weights should then have a 
reasonably good relative accuracy. At least they should not be wrong by several 
orders of magnitude, like some of the weights shown in the right part  of Fig. 2.4. 
Nor would weights determined from the power basis be sufficiently accurate for 
small values of r 

Some additional experiments were made in order to illustrate these matters.  
The weights shown in the right part  of Fig. 2.4 gave full accuracy for ~ >_ ~/2.  
(The weights have no serious errors for n < 16.) For r = 7~/4, however, the best 
error, 3.105 macheps ~ 3.10 -11, was obtained for n = 14; for n > 14 the errors 
grew. The experience for r = 7r/8 was similar; the best error was 10 l~ macheps 
(instead of 6.103 macheps with the robust weights). 

EXAMPLE 3.4. Analyt ic  continuation o f F ( z )  outside the circle of  convergence. 
Recall the introduction of the previous example. Consider again (3.35). Sup- 

pose that  f l ( s )  = s -x ,  hence f ( s ; z )  = s - l ( - z )  s, F ( z )  = - l o g ( 1  - z ) ,  but 
this t ime z assumes real negative values outside the unit disk. The power series 
diverges for [z[ > 1, but the Lindel6f formula (3.35) provides an analytic contin- 
uation. The integrand is the real part  of e iwl~ Izl (m* 4- iw)- lwL(w),  multiplied 
by the outside factor [z[ "~*. There are three sources of possible trouble: 

�9 When Izl >> 1, F ( z )  is a relatively small difference of terms of the size 
[ z p  -1. The truncation error is multiplied by the factor Izl "~* . 

�9 There is a pole of f l  (s) at the origin. 

�9 The nodes of the Gauss-Lindelhf rule remain rather sparse, unless n is ex- 
tremely large, and may not be able to resolve the oscillating factor e ~ log Izl, 
if (say) log Izl >> 7c. 

We must avoid a large value of m* here, when Izl is large. On the other hand, if 
m* is not large, the nearness to a pole of f l  (s) has also a harmful effect on the 
truncation error. This seems like a market for the use of a comparison series. 

Computat ions were made for several values of m, n, n < 64, first without the 
use of a comparison series. They were interrupted at a value of n, n < 64, if 
either "full accuracy" had been obtained, or if the absolute value of the error 
began to grow. The convergence ratio does not make sense here. 

Without a comparison series: 

- z  1 2 5 10 20 50 100 

error/macheps < 10 < 10 74 554 9858 3E5 5E8 

m; n 12; 10 5; 24 4; 36 3; 48 3; 54 2; 64 2; 64 
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Considering how slowly the distance between the successive nodes shrink as n 
increases, the accuracy is much bet ter  than  expected, but  note tha t  log [z[ is not  
very large at these computat ions.  

Then a comparison series was used. Note tha t  the residue of f ( s ;  z) at s = 0 
equals 1 for all z. The error for F ( - 1 )  = - l o g 2  was computed  for m = 0 : 
3, n = 10 : 2 : 60 and subtracted from the errors of F ( z )  for the same z as above. 
The best result was always obtained for rn = 1.  Full accuracy was obtained for 
- z  < 20; for larger values of - z  the comparison series technique improved 
the results by more than  3 digits. In addit ion to the table below, F ( - 5 0 0 )  is 
correct to 5 digits, and F ( - 1 0 0 0 )  is correct to 3 digits. When  Izl >> 1, the error 
decreases rather  slowly with n. The improvement in F ( - 1 0 0 )  from n = 32 to 
n = 60 is 5 digits; for F ( - 1 0 0 0 )  it is less than  2 digits. 

With a comparison series: 

- z  1 2 5 10 20 50 100 

error/macheps - < 10 < 10' < 10 ~ 10 80 3E5 

m ; n  - 1;2 1;34 1;50 1;50 1;56 1;60 

3.6 Application to ill-conditioned power series. 

We call an infinite series ill-conditioned if  small  relative changes of the terms 
can cause a large change of its sum, relative to some natural  reference for the 
sum. A typical example was mentioned in Ch. 1. The series converges for all z, 
but the modulus  of the terms increases rapidly at the beginning. The plot of the 
terms, Fig: 1.1, is reminiscent of an earthquake with an epicentre at k ~ 2y - 1. 
Numerically this means catastrophic cancellations, if the sum is evaluated by the 
addition of terms or by the Horner scheme. The terms behave in the opposite way 
to the terms of a semi-convergent series. An alternative name to "ill-conditioned" 
could be "semi-divergent". 

EXAMPLE 3.5. A series related to the exponent iM integral. Set 

/0 z ( - z ) S  F ( z )  = E ( - 1 ) k f ( k ; z )  = e - t  - 1 (3.36) f ( s ; z )  sF(s  + 1) '  ~ dr. 
k = l  

In the notat ion of Abramowitz  and Stegun [1], Ch. 5, F ( z )  = - E l  (z) - log z - 7; 
7 is Euler 's  constant.  The logari thm is the dominant  par t  when Iz[ is large. 

The term with the largest modulus  is obtained for k ~ Izl - 1. By Stirling's 
formula, I f ( I z l -  1;z)l ~ cdzrlz1-3/2. For z = -100 ,  this becomes 104~ while 
F(-100)  - s .  

The integrand in LindelSf's integral (including w E) is, by (3.26) and (3.33), 

Clzl~-l/%~l~ Iwl >> 1. 

The sources of trouble are of the same kind as in Example 3.4, and the experi- 
ences are quali tatively similar. 
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The  tab le  below contains  numer ica l  resul ts  for these examples .  The  first two 
rows are the  average absolu te  errors,  for 50 _< n _< 60, wi th  macheps  as unit ,  
ob ta ined  wi thou t  a compar ison  series, for m = 4 and m = 5, respectively.  

In the  last  row the  series genera ted  by f(s) = s -1 is used as a compar i son  
series. The  no ta t ion  m = 1C means  m = 1 wi th  a compar i son  series. (This 
has the  same pole and residue as f(s;z) has for every z.) As expected ,  the  
improvement  ob ta ined  by the  use of a compar i son  series increases wi th  Izl. 

The  tab le  this  t ime  displays  the  absolute errors d iv ided  by  macheps;  the  sum 
increases from abou t  1 to  5 as z increases from 1 to 100. 

- z  10 20 50 100 200 500 1000 

e r r o r / m a c h e p s ,  m = 4 2E3 2E3 1E5 2E6 4E7 2E9 1E16 

er ror /macheps ,  m = 5 1E3 1E4 8E5 4E7 1E9 7El0  - 

e r ror /macheps ,  m = 1C 3 E l  5E l  8E1 1E2 4E2 2E3 2E9 

The  resul ts  for 20 < n < 30 had  only 5-10 t imes  as large errors  when Izl < 100. 
We also used the series genera ted  by f(s;-10) as compar i son  series. This  

changed the  absolu te  errors by abou t  30 macheps (which is the  error  ob ta ined  
for z = - 1 0  by the  a id  of the  o ther  compar i son  series.) 

The  Lindelhf  m e t h o d  is not  equal ly  successful if, for example ,  z = iy, y > O. 
The in tegrand  ( including W L) is now C(~r)Izl~O(l~ [ -~-3 /2) ,  by (3.26) and (3.33) 
for a = 1. The  Lindelhf  in tegral  converges re la t ive ly  slowly, pe rhaps  too  slowly, 
since the  error  analysis  of w (with w(w)/w(aw)) indica tes  t ha t  the  Gauss-  
Lindelhf  rule may  require  some exponent ia l  decay of the  in tegrand  ( though this  
is a sufficient condi t ion  only).  

In  fact,  numer ica l  exper iments  indica te  t ha t  the  use of the  compar ison  series 
genera ted  by f(s) = s -1 ,  m = 1, n = 60, seems to be the  bes t  a l t e rna t ive  when 
y > 50, bu t  the  accuracy  is r a the r  low; the  re la t ive  error  of RF(iy) grows from 
5-10 -4  for y = 50 to  5.10 -2 for y = 1000. For n = 30 the  errors are abou t  5 
t imes  as large. For y < 50, the  use of higher  values of m gave be t t e r  resul ts  t han  
the  use of a compar ison  series. The  error  decreases rapidly,  as y decreases.  Full  
accuracy  is ob ta ined  for y _< 5. 

Note  t h a t  the  series for RF(iy) can also be wr i t t en  • (-y2)k/(2k(2k)!), and 
hence it can be t r ea t ed  as a real  a l t e rna t ing  series, wi th  the  same mediocre  
performance.  

This  form also reminds  of the  power series for the  cosine funct ion and,  more 
interest ingly,  for the  Bessel funct ion 

(-1)ky 
(3.37) J , ( 2 Y ) = E F ( k + l ) F ( k + ~ + l ) ,  y E R '  y > > l .  

The  per formance  of the  Gauss-Lindelhf  rule is mediocre  also in th is  case. The  
Gauss -P l ana  rule per forms much be t t e r ,  due to the  faster  decrease of w P ( ~ ) ,  
bu t  the  in tegra l  f ~  z~f(o-; z) do- t ha t  occurs in the  P l a n a  formula  here requi tes  
a special  t r e a t m e n t  and  re la t ive ly  much work, see w 
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3.7 Appendix. Complete monotonicity and related questions. 

We shall s tudy  the class of functions tha t  can be represented by a Laplace- 
Stieltjes integral, 

// ( 3 . 3 8 )  f ( s )  = e - s x  

where (~ is a usually unknown function of bounded  variation. (Compare  (3.24).) 
This class is a closure of sums of exponentials  and is hence convenient for the 
analysis of numerical  methods  for the summat ion  of series, see, e.g., Example  
3.2 or Dahlquis t  et al. [5], and for several other  numerical  problems.  A few of 
their numerous  propert ies  are selected here, with their  numerical  applicat ions in 
mind. 

The  class includes m a n y  common  functions, e.g., all ra t ional  functions tha t  are 
real on the real axis and bounded  in a hMf-plane. You find more examples  below 
and in tables of Laplace t ransforms.  These  may  be t ransformed and combined 
according to rules given below. 

We shall be ra ther  short  and refer as much as possible to Widder  [12, 1941], 
[13, 1971 , Ch. 5] for proofs and more  precise information.  Unless the integral  
converges absolutely for all s or for no s, there is a real number  ha, such tha t  it 
converges absolutely when ~ s  > era but  not when ~ s  < era. The  function f ( s )  
is analytic and bounded for ~s >_ ~o for every or0 > a~, but  this is itself not 
sufficient for the existence of a representa t ion of the type  (3.38). If, however, we 
add the condit ion t ha t  

// (3.39) I f ( a + i w ) t d w < o o ,  f(s)--+O, as Is]--+oo, a > a 0 ,  
OO 

then f (s )  satisfies (3.38), see Widder  [13, 1971, w and so does every linear 
combinat ion of such a function with other  functions, for which the validity of 
(3.38) can be proved by other means.  (Condit ion (3.39) is namely  not necessary.) 
In the general case, we cannot  be sure tha t  f (s )  has a singulari ty where ~ s  = Cra. 

If c~(x) is non-decreasing, f (s )  is called a completely monotonic function (c.m.) 
on the open interval s > (7 a and on the interval s > a0, for any or0 > a~. The  
abbrevia t ion  c.m. will be used, bo th  as an adjective and as a noun, and bo th  in 
singular and in plural.  If  f ( s )  is a c.m., it has a singulari ty at  s = a~. 

A function satisfies (3.38) with absolute convergence if and only if it is the 
difference of two c.m. (We omit  the interval of validity, when it is fairly obvious 
from the context.)  

This  p roper ty  can be used to find tha t  a given function is not c.m., e.g. f (s )  = 
1/(1 + s 2) is not c.m., since the r ightmost  singularities are s = +i ,  while s = 0 
is no singularity. This  function, however, is the difference of two c.m., since it is 
analytic and bounded,  and satisfies (3.39), for any positive a0. We shall see an 
actual  decomposi t ion  below. 

Another  useful criterion for this kind of negative conclusion is tha t  a c.m. can 
never decrease faster than an exponential as s -+ +oc along the real axis. (This 
follows ra ther  directly from the integral representat ion.)  For example,  e -s2 and 
1/F(s)  are not c.m. 
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An important extension of the class defined by (3.38) is the class defined by 
f ( s )  = ( - z ) S f l ( s ) ,  0 < argz  _< It, where f l (s )  satisfies (3.38). This is funda- 
mental for the application of the Lindelhf formula and many other numerical 
methods to power series, see Examples 3.3 and 3.4. The restrictions on f ( s )  for 
the Lindelhf formula, see [9], w are still satisfied in this extension. 

The facts mentioned so far are rather powerful for finding out whether a given 
function is completely monotonic or not, but we shall list some other criteria 
that may often be easier to apply. The deepest criterion is the following classical 
theorem of Bernstein. 

(A) f ( s )  is a c.m. if and only if 

(3.40) f ( s )  >_ O, ( -1)Jf (J) (s)  > 0, j = 1 , 2 , . . . ,  s �9 [a0, oc). 

The "only if" part follows rather directly from the definition, but the proof 
of the "if" part is difficult, see Widder [13, 1971], w w The theorem 
states that (3.38) and (3.40) are equivalent; it therefore plays no role that 
Widder uses (3.40) as the definition, while we use (3.38). 

As an application it follows directly from (3.40) that  the functions s -p, 
s > 0 ,  p > 0 a r e c . m .  

(B) A uniformly convergent positive linear combination of c.m. is itself c.m. 

The term "positive linear combination" includes sums with positive coef- 
ficients and, more generally, Stieltjes integrals f f (s;  p)d/~(p), where ~(p) 
is non-decreasing. 

(C) I f  f ( s )  is c.m., and a >_ 1, b >>_ O~ then g(s) -- f (a s  + b) and (-1)J  f(J)(s),  
are c.m., j = 1, 2, 3 , . . . .  

With appropriate changes of or0 for f and g this can be extended to, e.g., 
a > 0 o r b < 0 .  

(D) The product of two c.m. is c.m. 

This can evidently be extended to products of any number of factors. Hint 
to a proof: use the Leibniz rule to show that (3.40) holds. 

A function F(x)  is called absolutely monotonic in an interval, if F (j) (x) >_ 
0, j  = 0, 1, 2 , . . .  there. If F1, F2 are absolutely monotonic (in appropriate 
intervals) it can be shown by induction that FI(x) .F2(x)  and FI(F2(x)) 
are absolutely monotonic. 

(E) I f  F is absolutely monotonic in the range of the c.m. f ( s ) ,  then F ( f ( s ) )  
is c.m. 

Hint: Reduce this to the previous statement about the composition of two 
absolutely monotonic functions. 
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Example: F(x)  = 1/(1 - x) is absolutely monotonic  for 0 _< x < 1, and 
s -p, p >_ O, is completely monotonic  for s > 1. Hence 1/(s p - 1) = 
s -P~(1-s  -p) is completely monotonic  for s > 1. Hence, the decomposit ion 

1 1 2 tells tha t  1 8~q-1 - ~ - ~ ~ is the difference of two c.m. for ~ s  > 1, 
but  by a less constructive argument,  we know already tha t  this is true even 
for Rs > 0. 

On the other hand, if f (s) ,  g(s) are c.m., then F(s) = f(g(s))  is not c.m., 
unless F(s) is a constant;  indeed F'(s) > 0 while complete monotonici ty  
would require F'(s) < O. 

(F) If g'(s) is c.m., and f is c.m. in the range of g then F(s) = f(g(s))  is 
c.m. 
(Note tha t  the requirement above may necessitate an increase of a0. Also 
note tha t  g(s) itself is not  c.m.) 

Hint to a proof: show by induction tha t  

P 

(-- 1)PF (p) (s) ~-- E ~;PJ (s)( -  1) j f(J)(g(8)), 
j = l  

w h e r e  ~pj (s) is c .m .  

This criterion, which is not easily found in the literature, can be used to 
prove tha t  the functions 1 and e -~/~, used in the examples of w log(s+1) 
are c.m. for ~ s  > 1. 

It  is left to the reader to find out if or how these properties can be modified 
for the class of functions defined by (3.38). 

Up to now we have mentioned completely monotonic  functions only. We 
U co now define a completely monotonic sequence as a sequence { n}0 tha t  

satisfies the difference analog of (3.40), 

(3.41) ( -1)JAJu,~ > 0, j , n  = 0 , 1 , 2 , . . . ,  (A~ -= u , ) .  

We use the abbreviat ion c.m. also for sequences. 

Suppose tha t  u ,  = f ( a +  hn), a > 0, h > 0, n = 0 ,1 ,2 , .  . . . .  By a 
fundamental  proper ty  of finite differences, e.g., Dahlquist  and Bjhrck [4, 

1974w 
( - 1 ) ~ J ~  = ( -h )g / ( J ) (~ )  _> 0. 

It  follows tha t  

(G) If the function f is c.m., then the sequence {u~}~ is c.m. 

Conversely, there exists a function f ( s )  completely monotonic in [0, co) 
that interpolates a sequence {u~}~ ,  i.e. f (n)  = Un, n = 0, 1, 2 , . . . ,  if the 
sequence is a minimal completely monotonic sequence. 

"Minimal" means tha t  the sequence ceases to be a c.m. when u0 is de- 
creased. (See Widder  [12, 1941], w The following theorem of Hans- 
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dorff, which is analogous to Bernstein's theorem, see Widder [13, w has 
also been used in the analysis of convergence acceleration, Dahlquist et al. 
[5]. 

(H) A sequence {un} can be represented as a momen t  sequence on the interval 

[0, 1], i.e. un = f i  o x ~ d/3(x), ~(x) non-decreasing, if and only i f  {un} is 
c . m .  

Property H indicates a relationship between the theory of convergence 
acceleration and the theory of moments (with a density that  depends on the 
sequence) that  is very different from the relationship via Gauss quadrature 
which is a subject of this paper. In the latter the densities w X ( w ) , X  -- 
P, A, L, M ,  do not depend on the series. Hausdorff 's original application 
of completely monotonic sequences has a third, very different, relationship 
to the summabili ty of sequences, see, e.g., Hardy [8, 1949, Ch. 11]. 

For applications of higher monotonicity concepts to the construction of rigor- 
ous error bounds for numerical methods, see Str5m [11, 197o ]. 
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