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A b s t r a c t .  

Multigrid methods are developed and analyzed for quadratic spline collocation equa- 
tions arising from the discretization of one-dimensional second-order differential equa- 
tions. The rate of convergence of the two-grid method integrated with a damped 
Richardson relaxation scheme as smoother is shown to be faster than 1/2, indepen- 
dently of the step-size. The additive multilevel versions of the algorithms are also 
analyzed. The development of quadratic spline collocation multigrid methods is ex- 
tended to two-dimensional elliptic partial differential equations. Multigrid methods for 
quadratic spline collocation methods are not straightforward: because the basis func- 
tions used with quadratic spline collocation are not nodal basis functions, the design 
of efficient restriction and extension operators is nontrivial. Experimental results, with 
V-cycle and full multigrid, indicate that suitably chosen multigrid iteration is a very 
efficient solver for the quadratic spline collocation equations. 
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1 I n t r o d u c t i o n .  

Multigrid methods  are considered to be some of the most  efficient methods for 
the iterative solution of linear systems ar is ing from the discretization of partial 
differential equations. Multigrid methods  have been developed and analyzed 
for linear systems arising from finite difference or Galerkin type finite element 
discretization of differential equations. The related work for finite element collo- 
cation discretization is very limited [6]. This paper  develops multigrid methods  
for quadrat ic  spline collocation. We include an analytic proof  of convergence, 
using Fourier analysis techniques, independent  of mesh spacing for a two-level 
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method in one dimension. These results may be extended to two (or more) 
dimensions. Numerical tests confirm the high-quality convergence. 

The development and analysis of efficient solvers for the spline collocation 
equations are at a beginning level. Some solvers for the quadratic spline colloca- 
tion equations are being considered in [5] and their parallel performance tested. 
The present paper contributes to that respect, in the sense that it develops and 
analyzes iterative methods for the spline collocation equations with rate of con- 
vergence independent of the step-size and optimal performance. Developing a 
general convergence analysis for iterative methods for quadratic spline colloca- 
tion is more difficult than for Galerkin finite elements and is a much less mature 
area. 

The application of multigrid methods to quadratic spline collocation is non- 
trivial since quadratic spline collocation uses non-nodal basis functions in the 
discretization. In most conventional lower order finite element methods, nodal 
basis functions are used; hence, the coefficients in the linear system represent val- 
ues of the function at particular nodes on the grid. (A similar interpretation may 
also be Used for finite difference methods.) This is not the case with quadratic 
spline collocation. The unknown coefficients do not represent function values 
hence directly interpolating them between the grid levels in multigrid makes no 
sense. We use a clever observation about the structure of the quadratic spline 
collocation basis functions to provide efficient restriction and extension opera- 
tors, see Section 3.1. These operators can also be used with other finite element 
methods based on quadratic splines, e.g. quadratic spline Galerkin. 

In Section 2, we present a brief overview of the optimal quadratic spline collo- 
cation (QSC) method and the spectral properties of the quadratic spline collo- 
cation matrix. In Section 3, we develop an extension and restriction operator for 
quadratic splines and carry out the convergence analysis of the two-grid method 
for one-dimensional QSC equations. In Section 4, we discuss the implementation 
of the multigrid method for two-dimensional QSC equations, and in Section 5 
we develop alternative restriction operators. In Section 6, we present the results 
of numerical experiments which indicate that the multigrid solvers are very ef- 
ficient compared to other solution methods for QSC equations. The summary 
and conclusions from this study are stated in Section 7. 

2 The optimal quadratic spline collocation method. 

We consider a boundary value problem described by the operator equation in 
a domain ~ (one-dimensional or rectangular multi-dimensional), 

(2.1) Lu(x) --  g ( x )  in ~t, 

and some boundary conditions defined on the boundary, 0~t, of ~, 

(2.2) Bu(x) -- 7(x) on 0R. 

Here L is a linear elliptic differential operator, B is a linear boundary differ- 
ential operator, g and 7 are given functions of x (one-dimensional or multi -= 
dimensional), and u is the unknown function of x. 
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Given a node parti t ion A of t2, we choose a set of basis functions for the 
quadratic spline space, that  is, the space of quadratic piecewise polynomials of 
continuity C 1 on the  nodes of the partition. We also define the set of data points 
or collocation points in ft and on 0~t. If ft is one-dimensional, the collocation 
points are the midpoints of the subintervals of the parti t ion and the boundary 
nodes. If ~t is multi-dimensional, the collocation points are tnples of collocation 
points in each dimension. The collocation method determines the approximation 
UA to U by requiring that  the residuals LUA -- g and BUA -- "~ of the differential 
operator L and boundary operator B, respectively, are zero on the data points. 
If the approximate space is a space of smooth splines, this formulation leads 
to non-optimal solution approximations, in the sense tha t  the convergence or- 
der of the spline collocation approximation is lower than the order of the spline 
interpolant in the same approximation space. The formulation of the optimal 
spline collocation methods is based on the construction of appropriate perturba- 
tions PL and PB of the operators L and B respectively. Two formulations were 
derived: the one-step or extrapolated methods, in which UA is determined by 
requiring that  the residuals (L + PL)UA -- g and (B + PB)UA -- ~ of the perturbed 
operators L + PL and B + PB, respectively, are zero on the data points, and 
the multiple-step or deferred-correction methods, in which a low (second) order 
approximation is generated first, and in subsequent steps, higher order approxi- 
mations are generated, by moving the perturbat ion operators to the right hand 
side of the PDE problem, and applying them to the lower order approximations 
of the previous step(s). The number of such steps required depends on the or- 
der of the BVP and the degree of splines used. For example, for second-order 
problems and quadratic or cubic splines, two steps suffice. The perturbation 
operators for quadratic splines and two-dimensional second-order problems are 
developed in [4]. 

Both formulations are equivalent with respect to convergence properties, but 
the deferred-correction methods are more efficient with respect to t ime and mem- 
ory requirements [11], [2], because they give rise to a linear system having a 
smaller bandwidth, with fewer nonzero entries per row than the extrapolated 
methods. In this paper we consider multigrid methods for the solution of the 
linear system arising from the two-step QSC equations. 

2.1 Spectral properties of the QSC matrix. 

Our analysis is applied to the QSC matrix arising from the discretization of 
the BVP 

(2.3) Lu(x) _-- - u "  = g(x) in ~ - (0,1), 

subject to boundary conditions 

(2.4) Bu(x) - u = 0 on x = 0 ,  x = 1. 

A set of basis functions for the quadratic spline space constructed on a partition 
of ~ with uniform step-size h and n subintervals is the set of quadratic B-splines 
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{•h[x•'tn+l h ~i ~ JJ~--0, with r (x) 
is defined by 

!~ tx- - i + 2) where the quadratic spline function 2 ~h  

x 2 for 0 < x < 1 
- 3 + 6 x  - 2x 2 for 1 < x < 2  

(2.5) ~ ( x ) =  9 - 6 x + x  2 f o r 2 < x < 3  

0 elsewhere 

We note that a quadratic spline basis function ch has support in at most three 
elements, and that,  at any point of the domain (0, 1), there are at most three 
non-zero basis functions. More specifically, there are exactly three non-zero 
basis functions on any non-nodal point of (0, 1), and exactly two non-zero basis 
functions on any node of the partition of (0, 1). Thus, these basis functions 
are not the usual nodal basis functions we are used to from conventional finite 
element methods. 

Based on the functions Ch(x) we construct a set of basis functions {r (x)}~=l,n 
so that they satisfy the homogeneous boundary conditions (2.4). They are 

= - 

(2.6) ---- r  i - - - - 2 , . . . , n - 1 ;  
h & 

: ~ g n ( X )  - -  n + l k  /"  

For problem (2.3)-(2.4), the QSC method implemented with the basis func- 
tions defined by (2.6) results in a tridiagonal linear system of the form 

3 - 1  
- 1  2 

- 1  1 
A x -  

- 1  
2 - 1  

".. ".. ".. 

- 1  2 
- 1  

x = g ~  

- 1  
3 

g(h/2) 
g(3h/2) 
g(5h/2) 

: 

g((2n - 3)h/2) 
g((2n- 1)h/2) 

(2.7) 
where h = 1/n. 

As shown in [4], the eigenvalues of the matrix A in (2.7) are given by 

(2.8) Ai = ~-~24 
i_~_~ 

sin 2 
2n'  

and its orthonormal eigenvectors 5i, i -- 1 , . . . ,  n, are 

(2.9) {5~j = v / ~ s i n  (2j - 1)i7~ 2n , i = l , . . . , n - 1 ,  and 

(~nj = v/~sin (2j : l ) n T r ~  
2n J '  j = l ' ' ' ' ' n "  

3 The multigrid method for QSC equations. 

In this section, we introduce the use of multigrid methods for QSC. We also 
explain the difficulties that arise when the underlying discretization does not 
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use nodal basis functions and how we deal with this for the QSC method. The 
extension and restriction operators developed in the next sub-section and in 
Sections 4 and 5 are applicable whenever quadratic splines are used as the ap- 
proximation space, for example, when quadratic spline Galerkin or collocation 
is considered as the discretization method. The analysis, though, in Section 3.3 
uses the eigenvalues of the QSC matrix, therefore, it applies only to the QSC 
discretization method. 

3.1 The restriction and extension operators for QSC equations. 

We first develop restriction and extension operators for QSC equations. Let 
Ch(x), i = 0 , . . . , n  + 1, be the quadratic spline basis functions constructed 
with step-size h and 2h r (x), i = 0 , . . . , n / 2  + 1, be the quadratic spline basis 
functions constructed with step-size 2h. Let also Ch(x), i = 1 , . . . ,  n and ~b~h(x), 
i = 1 , . . . ,  n/2, be the respective quadratic spline basis functions that satisfy zero 
Dirichlet boundary conditions. 

Since the basis functions are not nodal, the values of the coefficients do not 
represent function values at particular grid points. Thus, directly interpolating 
these coefficients from a coarse to fine grid makes no sense. Instead, naively 
one must calculate the function values on the coarse grid (from the coefficients), 
interpolate these to the fine grid, and from these calculate the appropriate coef- 
ficients on the fine grid. That  final step, however, would require a global linear 
system solve, which is clearly unacceptable. 

Fortunately, in the following lemma, we show that any nodal basis function 
in the coarse grid can be represented as a particular linear combination of basis 
functions on the fine grid (i.e. the underlying spaces are nested). From this 
we can calculate explicit "interpolation-like" formulas to move the coefficients 
directly from the coarse to fine grid. 

~-~n/2 2h 2h LEMMA 3.1. I f  q(x) = z--,i=l Oi r (x) is the representation of any quadratic 
spline q(x) with respect to the basis functions 2h r , i = 1 , . . . , n / 2 ,  then q(x) = 

0i r (x) is the representation of q(x) with respect to the basis functions E i = I  h h 

Ch, i = 1 , . . . ,  n, where the following relations hold: 

(3.1)  e l  h = , ~2h  2"1  

(3.2)  e~j = 1 r~A2h 2h a ~ - j  +0j+1),  j = l , . . . , n / 2 - 1  
(3.3) h 1 {A2h 2h 822_}_ 1 ----- ~ v - j  +30j+1) , j = l , . . . , n / 2 - 1  

1 D2h (3.4) e~ = ~.~/~. 

PROOF. Using (2.5) and the definition of C}(x), i = 0 , . . . ,  n + 1, as in (2.6), 
we can easily prove that C}(x), i 0,. n + 1 and 2h = " ,  r ( x ) , i = O , . . . , n / 2 + l ,  
are related by 

( 3 . 5 )  r  = 1 h ~(3r + r 
(3.6)  r _ 1 h h ~ h - ~ (r  + 3r + 3r + %1+1),  
(3.7) 2h = 1 h r a(r + 3r 

i = l , . . . , n / 2  
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The relation r ) = r 

(3.8) 

Similarly, we can get 

(3.9) 

Then 

q(x) = 

- r (3.5), and (3.6) with i = 1 lead to 

r = �88162 + 3r + g)h). 

2h 1 h h h = + r  r ~(2r + 3r 1 

E n / 2  2h 2h i=l Oi r (x) 

1 ~ - ~ n / 2 - 1  02h(,,/,  h (X ,  ~ = ~ = 2  ~ ~2~-2~ j + 3 r 1 6 2 1 6 2  

+~1~"~ r + 3 r + r 

1~2h (2 h h (3.10) + ~'~/2 %~(x) + 3  c h _ l ( x  ) + r  

= ~201 r  + ~,""1 +o~h)r  + ~ a  + + ' ' '  

1 (cto2h 02h  h 1 (02h  j_ 3 0 2 h  "io/,h (X  ~ 
~- 4\~" n /2 - -1  "~ n / 2 ) ~ ' ) n - - 2 ( x )  "~ ~ t  n /2 - -1  " n / 2 l ' t ~ n - - l k  ] 

1 2,~2h - - h  (, .~ 

Relations (3.1)-(3.4) are derived directly from Relation (3.10). [] 

Relations (3.1)-(3.4) lead to the following extension operator matrix E E R ~• 
for the coefficients of the finite element representation of a quadratic spline: 

1 
(3.11) E = 

2 
3 1  
1 3  

3 
1 

1 
3 

�9 . .  "~  

3 1 
1 3 

2 

Thus, if w 2h is a vector of size n/2 corresponding to step-size 2h, the respective 
extended vector w h corresponding to step-size h is defined by 

w 2 h  W 2h 
W h = 1 . h n / 2  

-~ : W n - -  ~ , 

2h 2h 
(3.12) h w~ +3w~+ 1 i = l ,  .. n / 2 - - 1  

W 2 i + l  - -  4 ~ " 

w h i  - -  3 w 2 h  -]- Wi'~4~l i =  1, . . .  n / 2 -  1; 
4 ' 
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For the purpose of carrying out the analysis of the two-grid method for QSC 
equations, we define the restriction operator matrix R to be the transpose of E, 
scaled by 1/2, namely, 

1 T (3.13) R = 

Thus, if w h is a vector of size n corresponding to step-size h, the respective 
restricted vector w 2h corresponding to step-size 2h is defined by 

+ + 
W 2h = 

8 

(3.14) 2h wh-2 + 3wh-1 + 3wh + wh+l i = 4, 6 , . . ,  n -- 2, 
W i / 2  ~-- 8 ' " 

h 3w _1 wn_2 + + 2h 
W n / 2  8 

The restriction operator is applied to residual values on the data points. Note 
that the restriction operator R of (3.13) gives rise to the following interpolation 
formula, which uses the values of a function u at points hi2, 3h/2, 5h/2, and 
7h/2 to compute an approximation of u at point 2h: 

1 ( u ( h ) + 3 u ( ~ ) + 3 u ( 5 ~ h 2 ) + u ( 7 ~ h 2 ) )  (3.15) u(2h) g 

It is worth noticing that the above formula is exact for constant and linear 
polynomials, but not for quadratic ones. It is also interesting to note that 
the quadratic spline collocation stiffness matrix, 2.7, very closely resembles the 
matrix arising from centered finite difference, while our extension, 3.11, and 
corresponding restriction operators are quite different from the standard linear 
ones used with finite differences. 

3.2 The coarse grid correction scheme for QSC equations. 

Having defined the restriction and extension operators, at any iteration, we 
have the following coarse grid correction scheme (or two-grid scheme) for QSC 
equations: 
Step 1: Apply the restriction operator to the residual to obtain a restricted 
residual vector corresponding to the coarse grid. 
Step 2: Solve the coarse grid QSC system with right-side vector the restricted 
residual from Step 1. The result is the vector of coefficients of the finite element 
representation of the error corresponding to the restricted residual. 
Step 3: Apply the extension operator to the vector of coefficients from Step 3 to 
obtain a coarse grid corrected residual corresponding to the fine grid. 

We emphasize that  the extension operator is applied to the coeff ic ients  o f  
t h e  f ini te  e l e m e n t  r e p r e s e n t a t i o n  of the error correction and not to the 
c o m p o n e n t s  of  t h e  e r r o r  c o r r e c t i o n  itself. This is because there is more 
than one non-zero quadratic spline basis function on the data points. Thus the 
values of a function written as a linear combination of the quadratic spline basis 
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functions on the data points are different from the coefficients of the linear com- 
bination. This is true for any finite element method considered, e.g. collocation 
or Galerkin, as long as it is based on quadratic splines. 

3.3 Convergence analysis of the two-grid method for QSC equations. 

In this section, we study the behavior of the error at any iteration of the two- 
grid method for QSC equations. We consider two types of two-grid methods, 
which turn out to be almost equivalent as far as convergence rate is concerned. 
Both methods consist of a simple iterative scheme, like Richardson's iteration, 
integrated with a coarse grid correction scheme. They correspond to multiplica- 
rive and additive algorithms in the literature of multilevel methods. We note 
that  the multiplicative version can be applied directly as a classical multigrid 
method. The additive variant, in general, must be accelerated with a Krylov 
subspace method. 

For the first method we assume that,  at some iteration k, given an approximate 
solution x (k), we first apply a simple relaxation scheme, to get an approximation 
:~(k) and the respective residual § Then we apply the coarse grid correction 
scheme, as described in Section 3.2, to ~(k) to obtain the preconditioned residual 
g(k). The approximation x (k+l) is obtained by x (k+l) = ~(k) + g(k). 

The effect of the coarse grid correction scheme on the error can be expressed 
as the result of the application of the operator 

(3.16) M~ = I - E.A  ' - I . R . A  

to the error vector, where I is the identity operator of appropriate dimension; A 
and A r are the QSC matrices for step-sizes h and 2h, respectively, as defined in 
(2.7); and E and R are the extension and restriction operators respectively, as 
defined in (3.11)-(3.14). 

As a simple relaxation scheme, we choose Richardson's iteration, damped by 
the factor h~. Thus, the effect of one iteration of the relaxation scheme on the 
error can be expressed as the result of the application of the operator 

h 2 
(3.17) M~ = I - -~-.A. 

Then, the effect of one iteration of the two-grid method on the error is expressed 
as the result of the application of the operator 

(3.18) M = Mc.M~. 

THEOREM 3.2. Let an iteration of the two-grid method for QSC equations 
(2.7) consist of a Richardson iteration damped by ~ and a coarse grid correction 
scheme characterized by the extension operator (3.11)-(3.12) and the restriction 
operator (3.13)-(3.14), and applied to the residual of the damped Richardson it- 
eration approximation. Then the two-grid method converges with rate bounded by 
1/2 and a contraction factor less than 1/2 in the Euclidean norm, independently 
of the step-size. 
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PROOF. In our analysis, we follow [10]. Let 5i, i = 1 , . . . , n ,  and 5~, i = 
1 , . . . ,  n/2,  be the eigenvectors of A and A ~, respectively. Let Q be the matrix 
with its columns formed by the eigenvectors of A in the following order: 

(3.19) Q ~ [~n, (~1,5n--1, 52, 5 n - - 2 , ' ' ' ,  5n/2--1,5n/2+1, (~n/2]" 
Let Q~ be the matrix with its columns formed by the eigenvectors of A ~ in the 
natural order: 

! (3.20) Q' ___ 

it  andci  --- c o s ~ ,  i = 1 , . . , n .  Let si -- s i n ~  
Consider the transformed matrices 

M~ =- QT 'Mr .Q ,  f/ic =- QT.M~.Q 

and 

~/I -- Q T . M . Q = M ~ . M ~ =  (I - f i , . f 4 ' -~ .R f i ) ( I  - ~ - f t }  

with 
- QT .E .Q ' ,  ft  '-1 - Q ' T . A ' - I . Q ' ,  i t  = Q 'T .R .Q  

and 
.~ = Q r . A . Q .  

Taking into account that ASi = ,kiSi, i = 1 , . . . , n ,  we get a block-diagonal 
structure for the transformed matrices. More specifically, 

= ~-~2 blockdiag{A0, A1, . . . ,  An~2} 

with 

[ ~ 0 ]  
A0=[1];  Ai - -  si 2 , i = l , . . . , n / 2 - 1 ;  An/2=[1 /2] ,  

0 c i 

where the notation blockdiag{B1,.. . ,  Bn} denotes a block-diagonal matrix with 
blocks B1 , . . . ,  Bn on the diagonal. Also, 

~/~ = blockdiag{M~0, M~I , . . . ,  M~n/2} 

with 

[201 Mro=[0] ;  M r i =  ci 2 , i = 1 , . . . , n / 2 - 1 ;  M~n/2=[1/2] 
0 8 i 

A 
/i '  ~- blockdiag(X, ' ' with ' 2 2 = , A 2 , . . .  = [si "ci]. , An~2} Ai hZ ~ ~ 

Noting that 

sin (2j - 1 ) i ~  + 3 sin (2j + 1 ) i ~  
2n 2n 

iF (2y'- 1)i  
= 8 cos 3 ~n'Sin 2n 

+ 3 sin (2j + 3)i7r + sin (2j + 5)i7r 
2n 2n 
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with j '  = (j + 1)/2, j = 1, 3 , 5 , . . . , n -  1, i = 1 , . . . , n / 2 ,  we also get 

Q'T.R.Q v ~  blockdiag{[0], [Cl a s31],.. 3 3 = . [ e n / 2 _  1 V/2[C3/2]  } , s n / 2 - 1 ] ,  

and 

Thus, 

with 

QT.E.Q'  = 2(Q'T.R.Q) T. 

B~/c = blockdiag{M~o, M ~ I , . . . ,  M ~ / 2 }  

1 -c  I -8~c~ ] 
Mco = [1]; Mci  = - s a c k  1 - s 4 ' i = 1 , . . . , n / 2  - 1; M c n / 2  = [1/2], 

and 

with 

2~ = blockdiag{M0, M 1 , . . . ,  Mn/2} 

4 2 3 3 ] 
( 1  - c i )c i - s i  c i 

M 0 = [ 0 ] ;  M i =  3 3 ~ i-) ; / l - s4~s2  , i = l , . . . , n / 2 - 1 ;  M~/2=[1/4]. 
- -8  i C i 

It  is easy to prove tha t  the blocks Mi, i = 0 , . . . ,  n/2, a r e  symmetric positive 
definite and so is M. Therefore the Euclidean norms of M and of the blocks 
Mi, i = 0 , . . . ,  n/2, are the same as the respective spec t r~  radii. According to 
Lemma 10.3.1 in [10], the Euclidean norm of the matr ix  M is the maximum of 
the Euclidean norms of the blocks Mi, i = 0 , . . .  ,n /2 ,  that  make up 2~/. 

It  is easy to see that  the eigenvalues of the blocks Mi, i = 1 , . . . ,  n/2 - 1, are 
2 2 Then, 2 2 a n d # i 2 = 2 s  ic i. ~ i l  = 8 i C i 

n/2--1 n/2--1r~ 2i7r } 1 
= si  ci } = {2  < - .  max{l#i l l ,  l#i2l} m a x l  z 2 2 nm//2axl l s i n  2 

i = l  i=1  i=1 ~-~ 2 

Thus, S(~/ )  < max{0, 1/2, 1/4} = 1/2. So the Euclidean (spectral) norm of ~ /  
is bounded by 1/2, independently of the step-size. This proves the convergence 
of the two-grid method for QSC equations corresponding to the model problem 
(2.3)-(2.4). [] 

We now consider the determination of the optimal damping factor in the 
Richardson relaxation and the effect of having two or more relaxation sweeps per 
i terat ion.  Let w ~ denote the damping factor, with a / =  4w/h 2, and ~, denote the 
number of relaxation sweeps per iteration. Then the matrices Mi as computed 
above are given by 

i].; i 
Mo = [ 1 -  Mn/2 = [~(1 - )u]; 

03 

1 Mi = ~-)u -s{c3(l - ~)" 

-4c{(1- 9)~ (i- 4)(1- ~-)~ ' 
i = 1 , . . . , n / 2 -  1. 
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Table 3.1: Convergence rates of the two-grid method for QSC equations with the 
natural and the optimal damping factors. The damping factor is w I = 4w/h 2, with the 
natural w being 1 and the optimal as shown in the table. The number of relaxation 
sweeps per iteration is denoted by u. 

u Pl w opt imal  p~ 
1 0.50 0.75 0.33 
2 0.26 0.70 0.19 
3 0.19 0.67 0.13 
4 0.15 0.64 0.10 
5 0.12 0.63 0.08 

The opt imal  damping factor corresponds to tha t  w tha t  minimizes the maxi- 
mum eigenvalue of Mi for all i, i.e. for all 0 _< ci < 1. For one smoothing 
step the opt imal  w is approximately  0.75 and the spectral radius of the error 
i teration matr ix  is approximately  0.33. In Table 3.1, we give the approximate  
convergence rate fll for the natural  damping  factor ( that  is, with w = 1) and for 
the opt imal  damping factor for 1 to 5 smoothing steps. 

For the second method  we assume that ,  at some iteration k, given an approxi- 
mate  solution x (k) and the respective residual r (k), we apply a simple relaxation 
scheme, to get an approximat ion 2 (k). We also apply the coarse grid correction 
scheme, as described in Section 3.2, to r (k), to obtain  the precondit ioned resid- 
ual s (k). The approximat ion x (~+1) is obtained by x (k+l) -- 2 (k) + s (k). This 
is known as an a d d i t i v e  multilevel scheme, whereas the first method  can be 
interpreted as a m u l t i p l i c a t i v e  multilevel scheme. 

In this case, the effect of the coarse grid correction scheme on the error is 
expressed as the result of the application of the operator  

(3.21) N = I  - - h4.A - E . X - 1 . R . A .  

THEOREM 3.3. Let an iteration of the two-grid method for QSC equations 
(2.7) consist of a Richardson iteration damped by ~ and a coarse grid cor- 
rection scheme characterized by the extension operator (3.11)-(3.12) and the 
restriction operator (3.13)-(3.14), and applied to the residual of the previous 
two-grid method iteration approximation. Then the two-grid method converges 
with a contraction factor less than 1/2 in the Euclidean norm, independently of 
the step-size. 

PROOF. The proof  is similar to the proof  of Theorem 3.2. The t ransformed 
matr ix  N is now 

h2 -] 
f~ = QT .N .Q  = I - f i , . i t ' - l . [ tA - T A  

where Q , / ~ ,  A~, /~ and _A are the same as in the proof  of Theorem 3.2. We can 



792 C H R I S T I N A  C. C H R I S T A R A  AND B A R R Y  S M I T H  

show that  
2~ = blockdiag{N0, N 1 , . . . ,  Nn/2} 

with 

[ - Q - s i  ] i = 1 ,  n / 2 - 1 ;  Nn/2 [0]. No=J0] ;  N i =  1 4 2 -s~c~ 
--83Ci 1 4 2 , " " �9 , --~ 

- -  8 i - -  C i 

Note that  the blocks Ni, i = 0 , . . . , n / 2  are not symmetric positive definite. 
The Euclidean norm of Ni is easily shown to be s~ci, therefore, 

n/2-1 n 1 11- -112 = m a x { 0 ,  m a x  { s i c i } }  = �89 c o s -  < - .  
n 2 

This proves the convergence of the additive two-grid method for QSC equations 
corresponding to the model problem (2.3)-(2.4). [] 

It  is certainly possible to use a Gauss-Seidel smoother, rather then the Jacobi- 
Richardson scheme used in the analysis above. However, the technical details 
in calculating the eigenvalues of the error propagation operator are much more 
tedious. 

4 E x t e n s i o n  to  t w o - d i m e n s i o n a l  p r o b l e m s .  

We consider the extension of the two-grid method described and analyzed in 
Section 3 to a general two-dimensional linear elliptic BVP defined in a rect- 
angular domain ~. We first define two-dimensional extension and restriction 
operators by relations similar to (3.12) and (3.14). 

If W 2h is a vector of size n m / 4  corresponding to step-size 2h in both dimen- 
sions, the respective extended vector w h corresponding to step-size h in both 
dimensions is defined by the following relations. The components of w h corre- 
sponding to points close to the corners are given by 

w2h 2h 2h 2h wl m/2 wn/2,1 wn/2,m/2 (4.1) w h 1,1. w h h h 
i,i---- 2 ' 1,m = ~ Wn' l  = 2 ; Wn 'm  : 2 

The components of w h corresponding to points close to the y = 0 boundary are 
given by 

W 2h 3W 2h 3W 2h W 2h 
(4.2) h i ,1 -~- i + l , i  W h i,1 -~- i+1,1 i = 1, . n / 2  -- 1, 

W2i+1'1 ~--" 4 ~ 2i,1 = 4 ' "" ' 

and similarly for the other points close to the boundary. At the rest of the 
points, we have for i -- 1 , . . . , n / 2 -  1, j -- 1 , . . . , m / 2 -  1, 

2h 2h 3w2h  2h 
9 w i , j  + 3 w i , j + i  ~ i + l , j  ~- W i + l , j + l  

whi ,2 j  = 
16 

2h w2h  2h 3wi 2h + 9w~j+l + i + l j  + 3Wi+l,j+l 
(4.3) h W2i,2j+ 1 

16 
2h 9w2h  2h h 3Wi2, h ~- Wi,j+l ~- i4-1,j -~- 3Wi+l,j+l 

W2i+1,2 j 
16 

2h 2h 3w2h  2h Wi , j  Jr- 3 W i , j + l  "~ i + l , j  + 9 W i + l , j + l  h 
W2i+l ,2 j+  1 ~-- 

16 
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If w h is a vector of size nm corresponding to step-size h in both dimensions, the 
respective restricted vector w 2h corresponding to step-size 2h in both dimensions 
is defined by the following relations. The component of w 2h corresponding to 
the point close to the (0, 0) corner is given by 

(4.4) w2hl,1 = (4Wlh,1 + 6Wlh,2 + 2wh,3 + 6w/2~,1 + 9wh,2 

+ 3w~, 3 + 2w~, 1 + 3w~, 2 + w h a ) / 6 4  

and similarly for the other points close to the corners. The components of w 2h 
corresponding to points close to the y = 0 boundary are given by 

W2/~,l = (2W52,1 § 6W/h-l,1 § 6W/h, 1 § 2W/h+l,1 § 3W52,2 § 9W51,2 

h 3w/h 1,3 § 3wh3 w/h+1,3)/64, (4.5) + 9w 2 + awL1,2 + wi-2,3 + + 

for i = 4, 6 , . . . ,  n - 2, and similarly for the other points close to the boundary. 
At the rest of the points, we have for i = 4, 6 , . . . ,  n - 2, j = 4, 6 , . . . ,  m - 2, 

2h -- ( i - -2, j -2 § 3w/h--2,j-1 § -}- i -2 , j+1 Wi/2 , j /2  -- W h 3wh_2, j  W h 

(4.6) + 3w/h_l,j_2 § 9wh 1,j_l § 9wh_l,j + 3w/h 1,j+1 

§ w/h-l - 1,j-2 § 3w/h§ 1,j-1 § 3w~_ 1,j § w/h+ 1,j+1)/64" 

Given the relations (4.1) (4.3), it is easily seen that the computational cost of 
the application of the extension operator in two dimensions is three floating-point 
operations (flops) per (non-boundary) component, i.e. asymptotically, a total of 
3n 2 flops for an (n + 1) x (n + 1) grid (i.e. n subintervals in each dimension). 

Similarly, given the relations (4.4) (4.6), it is easily seen that the computa- 
tional cost of the application of the restriction operator in two dimensions is 15 
floating-point operations (flops) per (non-boundary) component, i.e. asymptot- 

ically, a total of L ~  flops for an (n + 1) x (n + 1) grid. 

5 A l t e r n a t i v e  coarse  grid m e t h o d s .  

5.1 The two-grid method with grids of  step-size ratio 4. 

In this section an alternative two-grid method is presented. We will assume 
that the fine grid has step-size h, while the coarse one has step-size 4h. A 
possible advantage of such a two-grid method is that the coarse problem is of 
smaller size. In the one-dimensional case it is of size 1/4 of the fine one, instead 
of 1/2, but in the two-dimensional case it is of size 1/16, instead of 1/4. A 
coarse grid problem of step-size 4h also has the consequence that in the case of 
a multigrid method (i.e. a recursive application of the two-grid method until 
a fixed size coarse grid is reached) the coarsest grid will be reached with fewer 
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§ ~ + 

(a) 

A_ 

§ 0 f 

(b) 

Figure 5.1: The dependency of vector components corresponding to grids with 
step-sizes h, 2h and 4h when applying (a) the extension operator (3.12), and (b) the 
restriction operator (3.14). A "+" denotes a grid point, while a "o" a collocation point 
(midpoint). 

steps. More specifically, log4~ steps, instead of log2 ~ steps, where nc is the 
coarsest grid size. In addition, the restricted vectors are of smaller size, so fewer 
components need to be computed. 

In order to use a coarse grid of step-size 4h, extension and restriction relations 
between levels 1 and 3 are needed. If the extension and restriction relations 
(3.12) and (3.14) (or (4.1)-(4.3) and (4.4)-(4.6) in two dimensions) are applied 
once between levels 1 and 2 (step-sizes h and 2h respectively), and once more 
between levels 2 and 3 (step-sizes 2h and 4h respectively), extension and re- 
striction relations directly between levels 1 and 3 arise. A clear disadvantage 
in this approach is that  the extension and restriction relations between levels 
1 and 3 require more flops than those between levels 1 and 2. For example, 
the one-dimensional restriction relation (3.14) between levels 1 and 2 requires 3 
flops (using 4 components),  while the respective relation between levels 1 and 3 
requires 9 flops (using 10 components). Table 5.1 lists the flops required for the 
extension and restriction operators in one and two dimensions when the step- 
sizes have ratio 2 and 4. Figure 5.1 shows the dependency of components of 
levels 1, 2 and 3. 

Table 5.1: Floating-point operations required to apply the extension and restriction 
operators (3.12) and (3.14) in one dimension and the respective ones (4.1)-(4.3) and 
(4.4)-(4.6) in two dimensions, when the step-sizes have ratios of 2 and 4. 

extension 
restriction 

step-sizes h and 2h 
ID I 2D 
n 3n 2 

1.5n 3.75n 2 

step-sizes h and 4h 
1D 2D 

1.5n 5.25n 2 
2.25n 6.1875n 2 
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5.2 Alternative restriction relations. 

In this section alternative restriction relations are developed. These are ad- 
vantageous from the computational  complexity point of view when step-sizes of 
ratio 4 are used. They are also more accurate, as we shall show. 

Recall that  the restriction operator (3.14) gives rise to the interpolation for- 
mula (3.15), which is exact for polynomials of degree at most one. Consider now 
the following interpolation formula: 

1 ( - u ( h ) + 9 u ( 3 - - h 2 ) + 9 u ( 5 ~ h 2 )  u(7~-~)) (5 .1)   (2h) - 

This formula is exact for polynomials of degree at most three and uses four 
components and three flops. 

Cubic interpolation can be used to develop restriction relations between either 
levels 1 and 2, or levels 1 and 3, or any two levels. For example, if w h is a 
vector of size n corresponding to step-size h, the respective restricted vector w 2h 
corresponding to step-size 2h is defined by 

W 2h : 5 w h  -[- 15W h -- 5W h + W4 h 

16 

(5.2) Wi/2 = 16 , i = 4 , 6 , . . . , n - - 2 ,  

h - 5 n%2 + 15  _1 + Wn-- 3 2h 
Wn/2 

16 

Also, if w h is a vector of size n corresponding to step-size h, the respective 
restricted vector w 4h corresponding to step-size 4h is defined by 

(5.3) 4 h  - -  wh-3 + 9wh-2 + 9wh-1 -- wh i = 4 , 8 , . . .  n. 
w~/4 = 16 ' ' 

Thus, in the one-dimensional case, only 3 flops are required for the computation 
of each of the components of the restricted vectors, either at level 2 or 3. 

Relations (5.2) and (5.3) can be extended to two dimensions in a natural way. 
Table 5.2 lists the flops required for this type of restriction operator in one and 
two dimensions when the step-sizes have ratios of 2 and 4. Figure 5.2 shows the 
dependency of components of levels 1, 2 and 3. 

Table 5.2: Floating-point operations required to apply the restriction operators (5.2) 
and (5.3) in one dimension and the respective ones in two dimensions. 

restriction 

step-sizes h and 2h step-sizes h and 4h 
1D 2D 1D 2D 

1.5n 3.75n 2 0.75n 0.9375n 2 
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§ O ..J. / / ~ , ~ , ~  I 0 I 

.~- O § ~ J • ~ "  ' ~ " " ~  + 9 P 

• . . . .  0 • / ~  -'- 0 _L 

+ 0 § 0 + ~ . v .~ O § O + Z / \ \  

(a) 

(b) 

Figure 5.2: The dependency of vector components corresponding to grids with 
step-sizes h, 2h and 4h when applying (a) the restriction operator (5.2), and (b) the 
restriction operator (5.3). A "+" denotes a grid point, while a "o" denotes a collocation 
point (midpoint). 

6 N u m e r i c a l  r e su l t s .  

In this section results from numerical experiments that  demonstrate the con- 
vergence and computational  efficiency of the multigrid method for quadratic 
spline collocation (QSC) equations are presented. 

First, some results that  demonstrate the effect of the restriction operators 
(3.14), (5.2) and (5.3) on the convergence of the two-grid method are presented. 
The performance of the V-cycle and the full multigrid methods using the same 
three restriction operators are also tested. The V-cycle multigrid method con- 
sists of the recursive application of the two-grid method until a certain coarsest 
grid level has been reached. The full multigrid method constructs an initial 
approximation for each V-cycle starting from the coarsest grid. The interpola- 
tion operators used in the full multigrid method are identical to those discussed 
above. 

These tests were applied to Problem 1, listed in the Appendix, which gives 
rise to symmetric linear system if the set of basis functions h n {r (x)}i= i is used. 
Diagonal (Jacobi) preconditioning was used as a relaxation scheme. No accelera- 
tion method was used. At each iteration, we calculated the residual of the linear 
system and the maximum error of the collocation approximation on a constant 
8 x 8 grid. The latter can be considered as an approximation to the maximum 
norm of the error of the collocation approximation. These experiments were 
carried out using MATLAB. 

Table 6.1 shows the error and the residual for 5 iterations of the two-grid 
and the V-cycle and full multigrid methods with three restriction operators for 
a 257 x 257 discretization grid. The coarsest grid in the case of a multigrid 
method was 17 x 17. One relaxation iteration was applied at each level. The 
initial solution vector was chosen to be the zero vector and the respective error 
and residual are shown as "iteration 0" error and residual, respectively. 
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Table 6.1: Observed error of the QSC approximation and residual of the QSC linear 
system (both in exponential format) for 5 iterations of the two-grid, the V-cycle and 
the full multigrid methods corresponding to Problem 1 for a 257 x 257 grid size and 
for the first step of the QSC method. 

method full multigrid V-cycle multigrid two-grid 
restr, oper. (4.4-6) (5.2)(5.3) (4.4-6) (5.2) (5.3) (4.4-6) (5.2)(5.3) 

iteration 
0 
1 
2 
3 
4 
5 

iteration 
0 
1 
2 
3 
4 
5 

3.2e-43.2e-43.2e-4 
1.0e-72.5e-85.9e-6 
2.2e-84.0e-81.0e-6 
2.2e-81.6e-83.0e-7 
2.2e-82.4e-81.Te-7 

error 
3.2e-43.2e-4 
1.2e-53.5e-6 
5.9e-79.2e-7 
2.1e-77.6e-8 
9.6e-83.1e-8 

3.2e-4 3.2e-43.2e-4 
7.5e-6 1.Te-76.6e-8 
8.6e-6 2.2e-83.3e-8 
2.6e-6 2.2e-84.0e-8 
1.7e-6 2.2e-81.6e-8 

2.2e-82.1e-81.0e-7 

1.8e01.8e01.8e0 
5.1e-21.Te-28.5e-2 
6.6e-36.0e-32.5e-2 
1.7e-31.7e-31.1e-2 
5.1e-45.5e-46.1e-3 
1.6e-41.8e-43.8e-3 

4.8e-82.4e-83.6e-7 
residual 

1.8e01.8e01.8e0 
4.3e-15.2e-15.4e-1 
1.6e:11.7e-12.8e-1 
6.1e-23.4e-21.5e-1 
2.5e-27.1e-38.8e-2 
1.1e-22.0e-35.6e-2 

2.2e-82.4e-8 

3.2e-4 
4.7e-7 
5.5e-7 
2.5e-7 
1.4e-7 
6.6e-8 

1.8e01.8e0 1.8e0 
1.6e-1 1.5e-12.3e-1 
3.8e-22.8e-26.3e-2 
1.0e-27.6e-33.0e-2 
3.2e-3 1.5e-3 1.8e-2 
9.4e-44.8e-4 1.2e-2 

The experiments show that  the full multigrid method with restriction opera- 
tor (5.2) in 2D reaches the discretization error in 1 iteration. The full multigrid 
method with restriction operator (4.4)-(4.6) is just a bit behind and needs two 
iterations to reach the discretization error, while the full multigrid method with 
restriction operator (5.3) in 2D needs more than 5 iterations to reach the dis- 
cretization error. The two-grid methods with restriction operators (4.4)-(4.6) 
and (5.2) in 2D require 2-3 iterations to reach the discretization error, while the 
respective V-cycle methods take 4-5 iterations. As far as the residual conver- 
gence rate is concerned the full multigrid method with restriction operator (5.2) 
in 2D is again the fastest method. 

Another parameter  in the implementation of the two-grid or multigrid methods 
is the number of Jacobi iterations (diagonal preconditioning) applied before the 
coarse grid correction scheme is applied. By varying this number we found 
that,  in some cases, it is beneficial from the computational performance point of 
view to apply a few Jacobi iterations before the coarse grid correction scheme is 
applied. Figures 6.1(a) and 6.1(b) plot the error and the residual, respectively, 
versus the number of floating-point operations (flops) measured by MATLAB 
for the full multigrid method with three restriction operators on a 257 x 257 
discretization grid. The number of relaxation iterations applied at each level is 
shown on the figure. 

In order to view the details of the performance of the (5.2) restriction operator 
with 3 relaxations per level and of the (5.3) restriction operator with 6 relaxations 
per level we have included Table 6.2. 
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"~x. ......... restr,  oper .  (5.3) in 2D 
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0 . 0 1  - 
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Figure 6.1: Plots of the number of floating-point operations (flops) performed by the 
full multigrid method with three restriction operators versus the error (in log scale) 
of the QSC approximation (a) and the residual (in log scale) of the linear system (b), 
respectively, corresponding to Problem 1 with grid size 257 x 257 and for the first step 
of the QSC method. The numbers shown on each line indicate the number of relaxation 
iterations performed at each level of the multigrid method. 

Our experiments show that  when the performance criterion is the number 
of flops to reach the discretization error the best method is undoubtedly the 
full multigrid method with restriction operator (5.2) in 2D and one relaxation 
iteration per level. When the performance criterion is the slope of the number 
of flops versus residual line the best method is the full multigrid method with 
restriction operator (5.2) in 2D and three relaxation iterations per level, followed 
closely by the full multigrid method with restriction operator (5.3) in 2D and six 
relaxation iterations per level. The above results do not contradict [1], where it 
is stated that,  for the standard finite difference discretisation scheme, a simple 
injection restriction operator and linear extension operator, the optimal step- 
size ratio between the fine and the coarse grids is 2. It  is worth noting, though, 
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Table 6.2: Observed residual of the QSC linear system, error of the QSC approximation 
(both in exponential format) and flops (in thousands) required for 5 iterations of the full 
multigrid method with restriction operators (5.2) and (5.3), with 3 and 6 relaxations 
per level respectively, corresponding to Problem 1 for a 257 • 257 grid size and for the 
first step of the QSC method. 

restr, oper. 
no. of. relax. 

iteration 

(5.2) 
3 

residual error flops 
1.8e+0 3.2e~4 1388 
1.7e-3 1.5e-8 15722 
7.7e-5 2.2e-8 30055 
2.6e-6 2.2e-8 44389 
1.5e-7 2.2e-8 58722 
1.1e-8 2.2e-8 71816 

(5.3) 
6 

residual error flops 
1.8e+0 3.2e-4 1388 
1.8e-3 3.5e-8 15665 
1.2e-4 2.2e-8 29941 
1.9e-5 2.2e-8 44218 
3.3e-6 2.2e-8 58494 
6.9e-7 2.2e-8 71532 

that  for the QSC matr ix  and the operators developed in this paper, the observed 
performance of the multigrid methods with grids of ratio 4 does not fall so much 
behind that  of methods with grids of ratio 2. 

Next, the convergence of the two-grid method on PDE problems with various 
operators and boundary conditions is tested. Both steps of the QSC method 
[4] are considered. In some of the BVPs considered the solution function is 
not necessarily zero on the boundary. Therefore, the basis functions used for 

g,~h(xS~+l defined in Section 2. This set of functions gives QSC are the set t ~ i ,  JJi=0 
rise to unsymmetric linear systems, even for the Laplace operator, because of 
collocation of the boundary operator on the boundary collocation points. For 
this reason and for faster convergence, Bi-CGStab, a nonsymmetric acceleration 
method, was used. For the implementation of the Bi-CGStab acceleration the 
KSP package [7] was used. Due to the use of the basis functions ~ h ( x y V  '+1 L ~ i  ~ J J i = 0  ' 

the extension and restriction operators are adjusted on the boundary points. 
Diagonal (Jacobi) preconditioning was used as a relaxation scheme. Additional 

preconditioning was provided by a coarse grid correction scheme, characterized 
by the restriction operator (5.3) extended to two dimensions (with a coarse grid 
1/4 the fine grid size in each dimension). The coarse grid problem, which was 
1/16 the fine grid problem size, was solved by a direct band solver without piv- 
oting. The two preconditioned residuals, one from diagonal preconditioning and 
the second from coarse-grid preconditioning, were added. This method is re- 
ferred to as MGJ-BCGS. The stopping criterion used was the relative Euclidean 
norm of the residual and the tolerance was set to 10 -11 for the first step of 
the QSC equations and to 10 -9 for the second step. For the first step of the 
QSC equations the initial guess vector was the zero vector, while for the second 
step it was the solution vector computed in the first step. The solution vector 
computed was compared with that  resulting from a direct solver to ensure that  
the quality of approximation produced by the iterative solver was similar to that  
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produced by a direct solver. Note that  the stopping criterion and the tolerance 
chosen may force an iterative method to perform more iterations than those 
needed to reach the discretization error. We believe, though, that  the relative 
residual is a realistic and commonly used stopping criterion, and the tolerance 
chosen, though tough, ensures the equivalence of the iterative method with a 
direct one. Thus it is fair to test iterative methods with this stopping criterion 
and tolerance. 

The following five test problems are used. 

PROBLEM 6.1. 

u ~ x + U y y  = g in (0,1) • (0,1) 

u = 0 on x = 0 ,  x = l ,  y = 0 ,  y = l .  

The function g is chosen so that  the exact solution to the problem is 

u = x ~  ( x  - 1 ) 2 ~  (y - 1) 2. 

PROBLEM 6.2 .  

u x ~ + u y y  = g in (O, 1) x ( 0 , 1 )  

u = 7 on x = 0 ,  x = l ,  y = 0 ,  y = l .  

PROBLEM 6.3 .  

u ~ + U y y  = g in (0,1) x (0,1) 

u -- V on x =  1 

Un = 5 on x = 0 ,  y = 0 ,  y = l .  

PROBLEM 6.4 .  

U x x + U x y + U y y + U ~ + U ~ + u = g  in (0,1) x (0,1) 

u - - ~ /  on x = 0 ,  x = l ,  y = 0 ,  y - - 1 .  

PROBLEM 6.5. 

1 1 
Uxx -~ Uyy + x2 ~ 10_2 ux + Y--+ 10_2 Uy z g 

u = ' ~  on x = 0 ,  x = l ,  y = 0 ,  y = l .  

in (0,1) x (0,1) 

In Problems 2, 3, 4 and 5 the functions g, 7 and 5 (whenever applicable) are 
chosen so that  the exact solution to the problems is u = eX+K 

Table 6.3 shows the number of iterations required for convergence of the two- 
grid method for Problems 2, 3, 4 and 5 for several grid sizes. These experiments 
were carried out using FORTRAN on a Sparcstat ionl  in double precision. 

For Problem 2, the number of iterations is almost insensitive to the grid size. 
This behavior agrees with that  predicted by Theorem 3.2. Note that  Theorem 
3.2 applies to a symmetric linear system arising from the set of basis functions 
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Table 6.3: Number of iterations required for convergence of the two-grid method for 
quadratic spline collocation equations for several grid sizes and for both steps of the 
QSC method. 

grid size 
33 x 33 
65 x 65 

129 x 129 

Problem2 Problem3 Problem4 Problem5 
step 1 step 2 step 1 step 2 step 1 step 2 step 1 step 2 

31 22 38 29 46 37 94 91 
31 19 44 28 51 39 172 65 
30 20 40 35 47 37 40 26 

X n {g?~ ( )}i=1, while in the experiments the matrix solved is unsymmetric and its 
eigenvalues are not known in closed form. 

Problem 3 has Neumann conditions on one side of the boundary which make 
the matrix even more unsymmetric. Again, the number of iterations, although 
larger than for the Dirichlet condition case, because of the difficulty of the prob- 
lem, did not significantly vary with the problem size. 

Problem 4 has a cross-derivative term, which is of the same order as the second 
derivative terms uxx and uyy. Thus, the symmetry  of most of the matrix rows 
is significantly affected. The number of iterations, although slightly larger than 
that  for Problem 3, varies only slightly with the problem size. 

Problem 5 has a variable coefficient for the first derivative (convection) terms. 
The coefficients are chosen so that  they become relatively large on some parts 
of the domain. Thus, in the matrix rows corresponding to these parts of the 
domain, the first order terms, which are very unsymmetrie, are dominant, if the 
step-size is not very small. The approximation obtained in this case was of rea- 
sonable quality, but the number of iterations was large, unless the step-size was 
small. The poor, inconsistent convergence for this problem is not unexpected. 
In fact, similar behavior is noted for finite differences and finite elements and 
special techniques must be derived to deal with them. The construction of fast 
solvers for convection-dominated problems is still in its infancy [14]. 

Note that  the QSC matr ix  arising from PDE problems with first order deriva- 
tive terms when using the basis functions ~h(2g~ln+l ~ - i ,  JJi=0 cannot be written as the 
sum of a symmetric positive-definite matrix corresponding to the even order 
derivative terms and a non-symmetric or indefinite matrix (corresponding to the 
first order derivative terms). The dominating terms of the PDE do not give rise 
to a symmetric positive-definite matrix. Therefore, the techniques described in 
[13] or [12] are not applicable. 

Finally, the performance of the two-grid method for QSC equations is com- 
pared with that  of other solvers [5]. Figure 6.2 shows graphically the observed 
computational efficiency of several solvers applied to QSC equations arising from 
Problem 1. The solvers considered are: 

Band-LU: Banded Gauss elimination without pivoting. 

Rich-CG: Conjugate Gradient algorithm without preconditioning. 
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SC-PCG: 

MGSS-GMRES: 

IFlm-CG: 

MGJ-BCGS: 

Domain decomposition method with tridiagonally preconditioned 
CG solution of the Schur complement system [3]. 

Domain decomposition method with overlapping subdomains 
(Schwarz splitting), accelerated by GMRES and an additional 
coarse grid correction scheme similar to that  used for method 
MGJ-BCGS. 

Incomplete factorization preconditioned CG algorithm with level 
I for fill-in and row equality modification. 

The solver described in this paper. (Jacobi relaxation with a 
coarse grid correction scheme accelerated by Bi-CGStab.) 

Certain solvers, e.g. Rich-CG, are applicable only to symmetric systems. Prob- 
lem 1 has homogeneous boundary conditions, allowing the use of the set of basis 

h x n functions {r ( )}~=1, which, for the Laplace operator, give rise to a symmetric 
linear system. This set of basis functions was used for those solvers applicable 
only to symmetric systems. 

J _  400 - I Band-LU /1- 
Rich-CG 

. . . .  SC-PCG / 
�9 - - - MGSS-GMRES 3OO 
. . . . .  IFIm-CG 

�9 M G J - B ~ ~  

200- ~ time 

100- 

I I I 
60 80 100 120 

n 

Figure 6.2: Plot of the time in seconds taken by several methods applied to the system 
of QSC equations corresponding to Problem 1 versus the grid size n in one dimension 
and for the first step of the QSC method. The slopes in a log-log plot are: Band-LU 
4.09; Rich-CG 3.05; SC-PCG 2.71; MGSS-GMRES 2.19; IFlm-CG 2.57; MGJ-BCGS 
1.75. 

From the slopes of the t ime versus grid size lines plotted in Figure 6.2, it 
becomes clear that  MGJ-BCGS is an optimal method, with respect to asymp- 
totic computational  efficiency, and the best in both absolute and relative terms 
compared to the solvers considered. 
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7 S u m m a r y  a n d  conc lus ions .  

This paper describes the formulation and analysis of multigrid methods for 
QSC equations. Extension and restriction operators for quadratic splines are 
developed. The analysis is carried out for a model 1D problem. Alternative 
restriction operators are developed, for which the ratio of step-sizes of the coarse 
grid problem over the fine grid one may be 2 or 4. Two-grid methods as well as 
multigrid methods are tested. Experimental  results show that  the behavior of the 
methods agrees well with that  predicted by the analysis, even for problems with 
more general PDE operators and boundary conditions than those assumed in the 
analysis. The asymptotic  computational behavior of the methods is optimal. 
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