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A b s t r a c t .  

This paper is concerned with the numerical solution of the Cauchy problem for the 
Benjamin-Ono equation ut + uux - H u ~  = O, where H denotes the Hilbert transform. 
Our numerical method first approximates this Cauchy problem by an initial-value 
problem for a corresponding 2L-periodic problem in the spatial variable, with L large. 
This periodic problem is then solved using the Crank-Nicolson approximation in time 
and finite difference approximations in space, treating the nonlinear term in a standard 
conservative fashion, and the Hilbert transform by a quadrature formula which may 
be computed efficiently using the Fast Fourier Transform. 

A M S  subject classification: 45K05, 65M10. 

Key words: Benjamin-Ono equation, periodic, finite differences, quadrature. 

1 I n t r o d u c t i o n .  

This paper is concerned with the numerical solution of the Canchy problem 
for the Benjamin-Ono equation 

(1.1) u t + u u x - H u x ~ = O ,  f o r x C R ,  t > 0 ,  

where H denotes the Hilbert transform. This integro-differential equation arises, 
e.g., in the study of long internal gravitation waves in deep stratified fluids, see 
Benjamin [3] and Ono [9], and models the propagation of nonlinear dispersive 
waves in a similar way as in the Korteweg-deVries equation. For mathematical 
analysis we refer to Abdelouhab et al. [1], Case [5], and ISrio [6]. 

Because of the nonlocal character of the equation, the numerical method we 
propose replaces the pure initial-value problem for (1.1) by the periodic Cauchy 
problem with a large spatial period L. This may be justified by the decay of 
the solutions of the unrestricted problem as Ixl ~ co, but as this decay is only 
polynomial, in contrast to the exponential decay for the KdV equation, L has to 
be taken quite large in order to have a good approximation to the unrestricted 
problem. Our numerical method uses the Crank-Nicolson approximation in 
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time and finite difference approximations in the spatial variable, treating the 
nonlinear term in a standard conservative fashion, and approximating the Hilbert 
transform by a quadrature formula, which may be computed efficiently by the 
Fast Fourier Transform (FFT). We show second order error estimates in both 
space and time for smooth solutions and also that the first two invariants of 
(1.1) are conserved by our numerical method. 

Earlier published work on numerical methods for (1.1) include James and 
Weideman [7] and Miloh et al. [8]. In both these papers Fourier methods are 
used, and in [7] also a method based on rational approximating functions. Good 
computational results are reported but no error analyses are given. In recent 
work by Pelloni and Dougalis [10], L2-norm error bounds have been shown for 
a spectral approximation in the spatial variables, and numerical computations 
have been carried out for associated explicit discretizations in time. 

2 The Cauchy problem for the Benjamin-Ono equation. 

In this section we collect some known background material for the Cauchy 
problem for the Benjamin-Ono equation, 

(2.1) u t + u u x - H u x x = O ,  f o r x E R ,  t > 0 ,  with u(., 0) = Uo, i n R .  

Here H is the Hilbert transform defined by the principal value integral 

Hu(x) -- pvl~r /R U(Xy- Y) dy. 

We recall (see, e.g., Abdelouhab et al. [1]) that this equation has an infinite 
sequence of invariants, the first two of which are 

(2.2) (I'a(u) = udx, ~I'2(u) = 5 u2dx, 
J R  J R  

In the first case it follows at once formally by integration of (2.1) over R and 
integration by parts that (d/dt)~1(u) = 0, so that el(U) is constant in time. 
For (I'2(u) we multiply (2.1) by u and integrate over R to obtain 

1 d 2 ~ / l l u l l  + (uux,u) - (Hu~x,u) = 0, for t > 0, 

where // (u,v) = u(x)v(xldx, and Ilull = (u,u) 1/2. 
oo 

Here the second and third terms vanish because 

(2.3) (uu~, u) = (ux, u 2) = -(u,  (u2)~) = -2(uu~, u), 

and, noting that  since H is a convolution with an odd function it is skew- 
symmetric and commutes with differentiation, 

(2.4) (Huxx,u) = -(Uxx,gu) = -(u,(Hu)xx) = - (guxx ,u) .  

Thus (d/dt)~2(u) = 0, so that (I,2(u) = constant. 
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Equation (2.1) has soliton solutions, such as, for c arbitrary, 

4c 
(2 .5 )  u ( x ,  t) = 1 + c 2 ( x  - ct)2" 

In fact, since H((1 + x2) -1) = x(1 + x2) -1, one finds easily for u defined in 
(2.5) that (gu) (x ,  t) = 4c2(x - ct)/(1 + c2(x - ct)2), from which (2.1) follows by 
differentiation. Another family of soliton solutions is given by 

(2.6) u(x, t) = 4CLC2 (clA12 + c2A 2 + (cl 4-c2)3cllc;1(cl - c2) -2) 

(clc2 1   - (c l  + e2)2(c  - e 2 ) - 2 )  2 + + c2 2) 

where A/ = Aj(x, t)  = x -  c j t -  dj, j = 1,2, and Cl,C2,dl,d2 are arbitrary 
constants. 

We have the following existence and uniqueness result from [1]. Here we denote 
by ?_/s = 7/S(R) the Sobolev space defined by 

[[u[[n~ = ( / R ( I +  ~2)s/2[~t(~)[2d~) 1/~. 

THEOREM 2.1. Let s >_ 3/2 and assume Uo C 7t ~. Then there exists a unique 
solution u of (2.1) such that u C Ck(R+; Tt ~-2k) for integer k < (s + 1)/2. 

We are also interested in the behavior of the solution for large Ixl. For this we 
introduce the weighted Sobolev spaces F ~ defined by the norms 

I lul l~. = I lu l l~.  + II(1 + x2)~/2ull~=. 

We quote the following result from I6rio [5]: 

THEOREM 2.2. Let uo E 3:2. Then there is a unique solution u o] (2.1) such 
that u E C(R+;5 t-2) and ut E C(R+; L2). 

Let Uo C .7:3 with r = O. Then there is a unique solution u of (2.1) such 
that u C C(R+;~ "3) and Ol(u(t)) = O. The condition Ol(u0) = 0 is necessary 
for the existence of a solution in C(R+; ~3). 

/ ] u  E C([0, T];5 r4) for some T > O, then u(t) =_ 0 for t C [0,T]. 

For smooth initial functions u0 which decay rapidly we thus have essentially 
u(x, t) = O(]x] -2) as [x I --4 co, but even if u0 satisfies Ol(uo) = 0, faster decay 
than u(x, t) = O ( N  -3) in the above sense is not possible. 

For the Fourier transform of the Hilbert transform we have (see [4]) 

1 In  e - i~u (x )  dx, (2.7) gu(~)  = -isign(~)fi(~), where ~(~) - yr ~ 

with sign(~) = ~/1~1 for ~ ~ 0, sign(0) = 0. The limit in the decay of the solution 
is related to the lack of regularity of Hu; note that the condition Ol(u0) = 
fn  Uo dx = 0 means that fi0(0) = 0. 

For the purpose of indicating an argument in the subsequent analysis of our 
numerical method, we now show that the solutions of (2.1) are stable under 
perturbations of the initial data. 
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functions V = {Vj}j~_~ defined on this mesh, thus satisfying Vj+2N ---- Vj for 
all j ,  and introduce for this section the discrete inner product and norm 

2N--1 2N--1 1 h ( h 2 N - 1 )  1/2 

= E (V,W) =~--~ E ViWJ =2-L E VjWj, and IlYll "~  j=o 
j=0  j = 0  

For the purpose of discretizing uu~ and Huxx on the mesh, we set 

OUj = Uj+I - Uj OUj - Uj - Uj-1 and OUj - Uj+I - Uj-1 
h ' h ' 2h 

Note that by summation by parts (OU, V) = -(U,  OV) and (0U, V) = -(U, 0V). 
For our approximation of uu~ we choose, following Zabusky and Kruskal [12] 
(cf. also Richtmyer and Morton [11, Section 6.3]), 

(4.1) Fh(U) = �89 2) + �89 = QhU OU, (QhU)j 1 = + + 

clearly, for u smooth, Fh(u) - uu~ = O(h 2) as h ~ 0. To approximate u ~  we 
use  

 hvj = h- (O -  )Vj = h -2 (V j+l  - 2Uj + 

which is also second order accurate. 
To define a quadrature formula for the 2L-periodic Hilbert transform H we 

assume N even, N -- 2M, and divide the periodicity interval ( -L ,  L) into the 
N = 2M intervals (X2k,X2k+2), k = - M , . . .  , M - 1  of length 2h. We then apply 
the midpoint rule on each of these intervals, and set 

M - 1  

1 2hcot(~-~X2k+l)Vj-2k-1. (4.2) (HhV)~ = 2-L Z 
k=-M 

This may be thought of as a discrete convolution, writing 

t.kh ~ if k is odd, N - 1  h c o t ~  2L ] '  
(4.3) (tIhV)J = E ckVj-k, where Ck = 

k=-N 0, if k is even. 

Since cj is odd, i.e., c_j -- - c j ,  ~-I h is skew-symmetric. Note also t h a t  /~h 
commutes with translations, so that,  in particular, t thAhU ----- Ah~IhU. 

We wish to express the operator Hh in terms of a discrete Fourier transform. 
For W = {Wj} j c z  E ,-qh we define the discrete Fourier transform by 

N--1 

(4.4) WJ : E Wke-2"~Ok/N" 
k=--N 

which also belongs to Sh. The inverse Fourier transform is then 

N--1 
1 ~je2~ijk/N" 

(4.5) Wk = 2---N ~ 
j = - N  
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We note Parseval's formula 

(4.6) IIWII = v'2-NIIWII. 

The following lemma shows that our discrete Hilbert transform defined in (4.2) 
has inherited the property (3.2) of the Fourier transform; this is, in fact, the 
reason for our choice of quadrature formula. 

LEMMA 4.1. We have for the operator fth defined in (4.2) and sig~n E 8h 

( 1, / f l < k < N - 1 ,  
~IhVj = --i s~gn(j)Vj, where sign(j) = -1 ,  if - N + 1 < k < -1 ,  

O, if j = -N ,O .  

PROOF. Since with cj defined in (4.2), 

N - 1  N - 1  

cs v = Z 
k=--N l=--N 

A 

we need to show ~j = - i  sign(j). This is equivalent to showing that if Wj = 
- i  sign(j), then Wk = ck. But by (4.6) 

N--1 
i (eCrijk/N e_Trijk/N) 1 N--1 

Wk -- 2N Z - = N Z s i n ( r j k / N )  
j = l  j----1 

_ -     isodd, 
O, if k is even, 

which shows the lemma since h = L / N .  

Together with (4.6) the lemma immediately shows 

(4.7) IIHhVII < IIVIl. 

Since obviously 

N--1 

A h Y j  = Z (AhY)ke-~i jk /N = 2h-2(c~ - 1)Vj, 
k = - N  

A 

we have thus H h A h V j  = #jVj where #j = -2is ign( j )h-2(cos(Trj /N)  - 1). In 

our numerical work the evaluation of ~IhAhV, for V given, is therefore done 
by taking the Fourier transform of V, multiplying by #j, and then taking the 
inverse Fourier transform; in practise these operations are done using the FFT. 

Although the midpoint rule is of second order accuracy when the integrand is 
smooth, it is now applied in (4.2) to a function with a singularity at the origin. 
In spite of this, ITIhu is a second order approximation t o / ~ u  when u is smooth. 
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LEMMA 4.2. For u 2L-periodic and smooth we have 

II~Ihu -- [-Iull~ <_ Ch211ullc 3, where IIUII~ = m.axlUj[. 
3 

PROOF. We may think of (~Ihu)j as the result of applying the midpoint rule 
to 

~Iu(xi)  = ~-~ cot ~-~y (u(xj - y )  - u ( x j  + y ) ) d y  = 5 (x j ;y )dy ,  

where, with r  = y cot(Try) and w(x; y) = (u(x - y) - u(x  + y)) /y ,  

5(x; y) = ~-~ cot ~-~y (u(x - y) - u(x  + y)) = r  ) w(x; y). 

By the standard error estimate for the midpoint rule we therefore obtain, since 
r is smooth (Dy = O/Oy), 

I(~Ihu)j - ~Iu(xj)  I <_ Ch 2 max ID~5(x; Y)I <- Ch2 max IIw(x; .)llc 2 <_ Chellullc 3, 
x,y 

which completes the proof. [] 

Let k > 0 be a time step and tn = nk. With U ~ defined for n > 0 we set 

1 n OtU n = (U '~ - U '~- l ) / k  and (fn-1/2 = 7~(U -I- U n - 1 ) ,  for n > 1. 

Then the Crank-Nicolson scheme for our problem is 

( 4 . 8 )  OtU n n c F h ( ( f  n - 1 / 2 )  - ~ I h / k h U n - 1 / 2  -~ 0,  for n > 1, 

U ~ = Uo(Xj), f o r j e Z .  

For U n-1 given this is a nonlinear equation for U ' .  We shall return later 
to discuss the existence, uniqueness and computation of this solution, but start 
by showing that the discrete analogous of the invariants defined in (2.2) are 
conserved. 

THEOREM 4.3. The ]unctionals Ol,h(U) = (U, 1) and ( I )2 ,h (U)  ---- IlIUll2 are 
conserved for solutions o] (4.8). 

PROOF. By summation by parts we have (~IhAhU, 1) = (Ah~IhU, 1) = 0 
and similarly (Fh(U), 1) = �89 U) + �89 1) = 0. Hence 6tOl,h(U '~) = O. 
Further, multiplying (4.8) by 0 n-1/2 we obtain 

(OtU , ~fn--1/2) (4.9) - n + (Fh(On-i l2) ,  O n-112) -- ([ thAh On- l l2 ,  (7 n-112) = O. 

For any U we have 

(4.10) (Fh(U), U) = ~(Ovl ^ 2, U) -9v I(UOU, U) = __~1 (V2, OV) --[- ~1 (UOU~ U) = O. 

Further 

(4.11) (~IhAhU, U) = - ( A h U ,  ~IhU) = - (U ,  Ahf-IhU) = --(~IhAhU, U). 

Using (4.10) and (4.11) in (4.9) shows Ot~2,h(U n) = 0, completing the proof. [] 
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LEMMA 4.4. For U ~-I  given there exists a solution U ~ of (4.8). 

PROOF. In t e rms  of X = ~-n the equat ion may  be wri t ten 

�9 (X)  = 2 (X - V n - l )  - k H h ~ h X  + k F h ( X )  = O. 

Using (4.10) and (4.11) we find 

( ~ l l ( X ) , X )  : 2 ( X  - u n - l , x )  : 2IIxH 2 - 2 ( u n - I , x )  ~ I lx l l  2 - I l U n - l l l  2, 

and hence ( ~ ( X ) , X )  > 0 for ]]X H = q := (HUn-i l l :  + 1) 1/2, say. The  equat ion 
�9 (X)  = 0 therefore has a solution X E Bq -~ {Y; HY]] ~ q}. In fact, if we assume 
tha t  ff~(Y) r 0 for Y C Bq, then  the mapp ing  A(Y) = - q ~ ( Y ) / I ] ~ ( Y ) ] ] :  B u --+ 
Bq, is continuous, and hence it has a fixed point  X E Bq by Brouwer 's  fixed 
point  theorem.  For this fixed point  we have q2 = [IA(X)H2 = ( A ( X ) , X )  = 
- q ( ~ ( X ) , X ) / H q J ( X ) H  , which contradicts  ( ~ ( X ) , X )  > O. [] 

We pos tpone  the discussion of uniqueness and tu rn  to the error est imate.  For 
this we shall need the following (cf. (2.10)). 

LEMMA 4.5. I f  ux is uniformly bounded we have 

_ 1 U . I(Fh(U) F h ( u ) , U - u ) l  < _ M I I U - u l l  2, w h e r e M =  3N ~[IL~ 

PROOF. Set e = U - u. We have U 2 - u 2 = (2u + e)e = 2ue + e 2, and hence 

(0(U 2 - u2), e) = 2(0(ue),  e) + (0(e2), e). 

Similarly 

Thus  

(uou - ~b~, e) = (e0u, e) + (u0e, e) + (ebe, e). 

(Fh(U) - Fh (u), e) = - 1(abe,  e) + �89 e) + (Fh(e), e). 

Sett ing (Te)j = ej+l  we have e 0e = �89 Te) and hence 

- -  ( U 0 e ,  e )  : - -  1 (U,  0 ( e  T e ) )  : �89 ( O u ,  e 7e) <_ Mile112. 

Since (eOu, e) <_ 2MIHI  ~ and (Fh(e),  e) = 0 by (4.10), the result follows. 

We now show the following error est imate:  

THEOREM 4.6. 
(4.8). Then 

[] 

Let u be a smooth solution of (3.1) and U ~ be a solution of 

Nu ~ - ~ l l  < C~(u)(h  2 + k2), for t,~ <__ T. 

PROOF. Set e n = U n - u n where u n = u(t~).  Then,  since u satisfies (3.1), 

(4.12) Ore ~ -- f f Ihnh ~n-1/2 : - -gh(~f  n-1 /2)  + Fh(~t n - l / 2 )  -- a N, 
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where 

a n = 8~u n + Fh(a  n -1 /2 )  - ~ h A h ~  n-1/2 -- (ut + uu~ -- ~ ) . - ~ / 2 ,  

with u n-1 /2  = U(tn - l k ) .  Here, since both approximations are of second order, 

[lOttL n - -  t$~-1/21) -I- I I F h ( U  n - 1 / 2 )  - -  (tt?2x)n-1/2 H _~ C(u) (h  2 -4- k2), 

and, using also (4.7), 

[ [ ~ I h A h ~ n - 1 / 2  --  ~u~-1/21[ < [[ t Ih(Ahf i  n -1 /2  -- t~-1/2)[[ 

+11Hh(a221/2 - u~21/2)1[ + t[(Hh - - /~)u~l]  ___ C(u)(h  2 + k2), 

so that  Ilan[] < C(u)(h  ~ + k2). 
Multiplication of (4.12) by ~,~-1/2 gives 

(Ste n, ~n-~/2) _ ( .0hAhe.-~/2,  en-1/~) 
= (F~(~n-~/~) _ Fh(On-~/~),  en-~/~) _ ( a  n, e"-~/2).  

By (4.11) and Lemma 4.5 we thus obtain 

ile-ll 2 _ l ie--l it2 

and hence, for small k, 

__ Ckll~"-'/2112 § Cklla"l111~"-1/211 
_< Ck(llenll 2 + {l~n-ll{ ~) + ckl lcn l l  ~, 

llenll 2 < (1 + C k ) t l e " - l l l  ~ + C k ( h  ~ + k~) ~. 

By repeated application we have, since e ~ = 0, 

Ile'~ll 2 <_ eCT}le~ + C n k ( h  2 + k2) 2 _< C T ( h  2 + k2) 2, for tn <_ T, 

which completes the proof. [] 

With U ~-1 given, the nonlinear equation to be solved in (4.8) at time level n 
may be put in the form 

(4.13) W - l k ~ - I h A h  W = g - -  kFh(W),  where F h ( W )  = F h ( l ( w  + un -1 ) ) ,  

with g = U n-1 + l k I - I h A h U n - 1 .  For the solution of this equation we consider 
the iterative scheme 

(4.14) ( I  - � 8 9  j+l  = g - k F ' h ( W J ) ,  for j _> 0, W ~ = Y '~-1. 

Since [ I h A h  is skew-symmetric, the matrix on the left is nonsingular, so that 
this linear problem has a unique solution for given right hand side. The following 
lemma shows the linear convergence of (4.14) for appropriately small k. 
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LEMMA 4.7. For R > 0 given and 7 < 1, let kh -1 < "yR -1 and assume that 
the WJ defined in (4.14) are such that IIWJlI~ < R. Then 

IIWJ+~ - WYll ~ ~rllW j - wJ-~l l ,  for j ~ 1. 

In particular, W j converges to a solution of (4.13). 
PROOF. We first note that since F h ( U ) -  Fh(V) 

+Qh(U - V)OV, 
= QhUS(U - v )  

(4.15) IIFh(U) - Fh(W)ll ~ 2Rh-~IIU - VII, if IIUII~, IlWllo~ ~ R. 

We have for j > 1 

w J +  1 _ W j _ � 8 9  j+l  -- W j )  : - k ( f i ' h ( W  j )  - ~ ' h ( W  j - l ) ) .  

Taking inner products with W j+l  - W  j and using the skew-symmetry of fflhAh, 
we get by (4.15), since 11�89 j + Un-1)ll~ < R, 

(4.15) IlWJ+l - Wil l  < kl lPh(WJ) - Ph(WJ-~) l l  
= k l I F ~ ( I ( w J  + U~- I ) )  _ F~( �89  j -1  + Un- ' ) )H 

< R k h - l [ ] w  j - wJ-IH,  

which implies the convergence stated since Rkh  -1 < 7. [] 

We are now finally in a position to complete the proof that,  for k appropriate, 
our numerical method has a unique solution, which may be obtained by the 
iterative scheme (4.14), and which approximates the exact solution as stated in 
Theorem 4.6. 

THEOREM 4.8. Let u be a smooth solution of (2.1). Given T > 0 and ~f < 1, 
there is a number R = RT such that if h and k are small and k < ~/hR -1, then 
there exists a unique solution of (4.8) such that IIunlloc < R for tn < T,  and 
the conclusion of Theorem 4.6 holds. Further the W j defined in (4.14) satisfy 
IIwJlr~ < R.  

PROOF. Setting B = BT = supt<T Ilu(t)ll~ we shall show the theorem with 
R = B + 2. We first note that by Theorem 4.6, as long as U ~ exists, we have 
since k <_ 7hR  -1, for h small, 

IIU n - unllo~ <_ Ch-1/211Un - unll <_ CT(u)h- I /2(h  2 + k 2) <_ 1, 

so that IIUnll~ < B + 1. 
Assume now that U '~-1 exists, and consider the iterative scheme (4.14) with 

g = U n-1 + �89 n-1. We want to demonstrate that ItWJllcr < R for j > 1 
which then shows, by (4.15), that WJ converges to a solution of (4.13). This 
solution is then unique. In fact, if W and W' were two solutions we would have 

w '  - w - � 8 9  - w )  : - k ( P ~ ( w ' )  - P ~ ( w ) ) .  
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After mult ipl icat ion by W '  - W this shows (cf. (4.16)), IIW' - W H < "YllW' - Wll 
so tha t  W '  = W. 

It follows from (4.16) tha t  IIW j - W~ _< (1 - ~/)-IIIW1 - W~ In order  to 
bound W 1 - W ~ with W ~ = U n - l ,  we note tha t ,  using the equat ions for W 1 
and U n, 

W 1 _ U n _ l k ~ I h i h ( W  1 -- V n) = - k ( F h ( U  ~-1)  - ~ h ( U n ) ) ) .  

Hence, after mult ipl icat ion by W 1 - U n (cf. (4.15)), 

tlW 1 -  Un]l _< CllU '~-  u ~ - l l ]  

< C( i lU  n - ~11  + IIU ~-1  - ~ n - l l l  + I1~ ~ - ~n-~l l )  < C(k + h2). 

This yields 

lIw j - u ~ - l l l  < C ( l l W '  - U~ll + IIV n - v ~ - l l l )  < C(k + h2). 

We conclude tha t  [i Wj  - U ~ - I I [ ~  < C h - 1 / 2 ( k  + h:)  <_ C h  1/2 _< 1 for h small,  
so that  I IWJ I[~ <- [IUn- ] [1~ + 1 < B + 2 = R .  The proof  is now complete.  [] 

5 N u m e r i c a l  i l lustrat ions .  

We have applied our  me thod  to s imulate  the periodic single soliton solution 
(3.3), with L = 15, c = .25. Sample  results are shown in Table 5.1, where the 
/2-norm ]fell and the  m a x i m u m - n o r m  llel]~ of the error are listed at  t -- 10, 100 
for certain combinat ions  of N and k, and where the  second order convergence 
can be observed. For instance,  doubling N and halving k with N : 512, k = .2 
reduces the error by a factor  3.9. Figure 5.1 shows the result  for N = 1024, 
k = .25. 

We have also s imulated the double soliton solution (2.6) of the unres t r ic ted  
Canchy problem (2.1), using its given initial values on an interval ( - L ,  L) as 
initial values for a 2L-periodic problem; numerical  results at  t --= 10, 90, 180 
(t = 90, 180 were employed in [7]) are shown in Table 5.2 for L = 100, cl = 0.3, 
c2 = 0.6, dl = - 3 0 ,  d2 -- - 5 5 .  We note  tha t  in this case the error s tems f rom 
both the approx imat ion  of the  unres t r ic ted initial-value p rob lem by a periodic 
one, and by the numerical  approx imat ion  of the latter.  In this case, in contras t  to 
the single soliton case which is just  a t ranslat ion,  there is interact ion between the 
two solitons. We see t ha t  the error (especially in the  m a x i m u m  norm) is larger 
than the single soliton case; note the phase  error which is evident  in Figure 5.2 
(N : 2048, k = .1). 

We note tha t  the spectral  me thods  used in [7, 8], and [10] need fewer pa ram-  
eters in the spat ial  discretization,  but  use shorter  t ime steps. 

In our calculations we have used the i terat ive scheme (4.14) with a toler- 
ance of 10 -6.  This tolerance was chosen because it was found tha t  decreasing 
the tolerance fur ther  did not  change the error  in the  first four significant dig- 
its. The  number  of i terat ions required are listed in the tables under  I t .  For 
faster convergence we have also considered the ex t rapo la ted  initial approxima-  
tion W ~ = 2U n - ]  - U '~-2, which resulted in a certain reduct ion in the number  of 
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Table 5.1: Periodic single sol i ton (3.3),  w i th  L = 15, c -- .25. 

t g / k  I1 11 I1 11  It  

10 256/0.5 0.713e-4 0.171e-3 5.0 (4.0) 
256/0.25 0.629e-4 0.155e-3 4.0 (3.0) 
512/0.5 0.279e-4 0.608e-4 5.0 (4.0) 
512/0.25 0.181e-4 0.436e-4 4.0 (3.0) 
1024/0.5 0.181e-4 0.358e-4 5.0 (4.0) 
1024/0.25 0.711e-5 0.157e-4 4.0 (3.0) 

100 256/0.5 0.480e-3 0.909e-3 5.0 (4.0) 
256/0.25 0.375e-3 0.730e-3 4.0 (3.0) 
512/0.5 0.227e-3 0.409e-3 5.0 (4.0) 
512/0.25 0.121e-3 0.229e-3 4.0 (3.0) 
1024/0.5 0.164e-3 0.286e-3 5.0 (4.0) 
1024/0.25 0.574e-4 0.104e-3 4.0 (3.0) 

0 . 9 1  p , i , i 
- Exact  N=256 
... Numerical  k=0.25 

o.8 t=O 

0.7 

0.6 

>~ 

0.5 

0.4 

0.3 

0.2 0 I 
- 1 5  - 1  - 5  

I 

0 5 10 

Figure 5.1: Simulat ion of periodic single soliton, wi th  N = 1024, k =- .25. 
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Table 5.2: Double soliton (2.6) with L = 100, cl -- 0.3, c2 = 0.6, 

t N/k I1 11 I1 11oo xt 

10 

dl = -30, d2 = -55. 

90 

512/0.2 0.194e-1 0.158 9.0 (7.0) 
512/0.1 0.190e-1 0.155 6.0 (5.0) 

1024/0.2 0.574e-2 0.470e-1 9.6 (8.0) 
1024/0.1 0.528e-2 0.435e-1 7.0 (5.0) 

2048/0.2 0.203e-2 0.158e-1 10.0 (8.0) 
2048/0.1 0.156e-2 0.121e-1 7.0 (5.0) 

180 

512/0.2 0.624e-1 0.336 7.8 (6.3) 
512/0.1 0.613e-1 0.331 5.5 (4.2) 

1024/0.2 0.182e-1 0.979e-1 8.4 (7.0) 
1024/0.1 0.168e-1 0.912e-1 5.9 (4.5) 

2048/0.2 0.580e-2 0.305e-1 6.6 (5.1) 
2048/0.1 0.480e-2 0.248e-1 4.6 (3.2) 

512/0.2 0.195 1.399 7.9 (6.4) 
512/0.1 0.192 1.377 5.6 (4.2) 
1024/0.2 0.678e-1 0.520 8.6 (7.2) 
1024/0.1 0.617e-1 0.475 6.0 (4.6) 
2048/0.2 0.242e-1 0.188 8.9 (7.3) 
2048/0.1 0.175e-1 0.136 6.2 (4.7) 

caJ = " 

N 

o' 2 ~ 

-100 -80  ~ 0  -40  -20  0 20 40 60 80 100 

Figure 5.2: Simulation of double soliton (2.6), with N -- 2048, k = .1. 
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iterations needed, listed within parentheses under It. For even faster convergence 
one could consider Newton's method. Since straightforward application of this 
method would require the solution of linear systems which are not in convolution 
form and therefore not immediately suitable for the F F T  technique, it is then 
natural  to use a modification proposed by Akrivis, Dougalis and Karakashian 
[2], in which an inner iteration with the matrix in (4.14) would be applied. We 
shall not pursue this here. 
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