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Abstract.

This paper is concerned with the numerical solution of the Cauchy problem for the
Benjamin-Ono equation u; + uuy; — Huer = 0, where H denotes the Hilbert transform.
Our numerical method first approximates this Cauchy problem by an initial-value
problem for a corresponding 2L-periodic problem in the spatial variable, with L large.
This periodic problem is then solved using the Crank-Nicolson approximation in time
and finite difference approximations in space, treating the nonlinear term in a standard
conservative fashion, and the Hilbert transform by a quadrature formula which may
be computed efficiently using the Fast Fourier Transform.
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1 Introduction.

This paper is concerned with the numerical solution of the Cauchy problem
for the Benjamin—Ono equation

(1.1) U + uuy — Huz, =0, forx e R, t >0,

where H denotes the Hilbert transform. This integro-differential equation arises,
e.g., in the study of long internal gravitation waves in deep stratified fluids, see
Benjamin [3] and Ono [9], and models the propagation of nonlinear dispersive
waves in a similar way as in the Korteweg—deVries equation. For mathematical
analysis we refer to Abdelouhab et al. [1], Case [5], and Iério [6].

Because of the nonlocal character of the equation, the numerical method we
propose replaces the pure initial-value problem for (1.1) by the periodic Cauchy
problem with a large spatial period L. This may be justified by the decay of
the solutions of the unrestricted problem as [z| — oo, but as this decay is only
polynomial, in contrast to the exponential decay for the KdV equation, L has to
be taken quite large in order to have a good approximation to the unrestricted
problem. Qur numerical method uses the Crank—Nicolson approximation in
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time and finite difference approximations in the spatial variable, treating the
nonlinear term in a standard conservative fashion, and approximating the Hilbert
transform by a quadrature formula, which may be computed efficiently by the
Fast Fourier Transform (FFT). We show second order error estimates in both
space and time for smooth solutions and also that the first two invariants of
{1.1) are conserved by our numerical method.

Earlier published work on numerical methods for (1.1) include James and
Weideman [7] and Miloh et al. [8]. In both these papers Fourier methods are
used, and in [7] also a method based on rational approximating functions. Good
computational results are reported but no error analyses are given. In recent
work by Pelloni and Dougalis [10], L2-norm error bounds have been shown for
a spectral approximation in the spatial variables, and numerical computations
have been carried out for associated explicit discretizations in time.

2 The Cauchy problem for the Benjamin—Ono equation.

In this section we collect some known background material for the Cauchy
problem for the Benjamin-Ono equation,

(2.1) wu; +uu, — Huz, =0, forz € R, t>0, withu(-,0)=u, inR.
Here H is the Hilbert transform defined by the principal value integral

Hu(z) = PV%/Rg(—a—;y_—y)dy.

We recall (see, e.g., Abdelouhab et al. [1]) that this equation has an infinite
sequence of invariants, the first two of which are

(2.2) Dy (u) :/Rudm, ®y(u) = %/Ru2 dz,

In the first case it follows at once formally by integration of (2.1) over R and
integration by parts that (d/dt)®1(u) = 0, so that ®,(u) is constant in time.
For ®5(u) we multiply (2.1) by u and integrate over R to obtain

3Dl + (e, ) — (Hutgs ) =0, for £ >0,
where =
o) = [ u@e@ids, and ol = (w0

—00

Here the second and third terms vanish because
(2'3) (uuz’u) = (ux7u2) = —(u, (uz)z) = “2(uuzau)7

and, noting that since H is a convolution with an odd function it is skew-
symmetric and commutes with differentiation,

(2.4) (Huzz,u) = ~(ugz, Hu) = —(u, (Ht)zz) = —(Huge, u).
Thus (d/dt)®2(u) = 0, so that ®2(u) = constant.
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Equation (2.1) has soliton solutions, such as, for ¢ arbitrary,

4c

In fact, since H((1 + z?)~!) = z(1 + z?)~!, one finds easily for u defined in
(2.5) that (Hu)(z,t) = 4c*(z — ct) /(14 c%(z — ct)?), from which (2.1) follows by
differentiation. Another family of soliton solutions is given by

derez (el + M2 + (a +e2)Peites e — e2)72)

(0102)\1)\2 - (61 + C2)2(01 - 62)_2)2 + (Cl)\l + C2A2)2’

26)  u(zt) =

where A\; = Aj(z,t) = ¢ —¢jt —d;j, j = 1,2, and ¢1,¢2,d1,d2 are arbitrary
constants.

We have the following existence and uniqueness result from [1]. Here we denote
by H® = H*(R) the Sobolev space defined by

||| = (/R(l +€2)s/2|ﬁ(£)l2d§)1/2_

THEOREM 2.1. Let s > 3/2 and assume ug € H®. Then there ezists a unique
solution u of (2.1) such that u € C*(Ry;H>~2*) for integer k < (s +1)/2.

We are also interested in the behavior of the solution for large |z|. For this we
introduce the weighted Sobolev spaces F* defined by the norms

lluf

We quote the following result from Iério [5]:

THEOREM 2.2. Let ug € F2. Then there is a unique solution u of (2.1) such
that u € C(Ry; F?) and uy € C(R+; Ly).

Let ug € F3 with ®;(ug) = 0. Then there is a unique solution u of (2.1) such
that u € C(Ry; F?) and ®1(u(t)) = 0. The condition ®1(ug) = 0 is necessary
for the existence of a solution in C(R.; F?3).

If u € C([0,T); F*) for some T > 0, then u(t) =0 for t € [0,T).

For smooth initial functions ug which decay rapidly we thus have essentially
u(z,t) = O(|z|~?) as |z| — oo, but even if uy satisfies @ (up) = 0, faster decay
than u(z,t) = O(|z|~?) in the above sense is not possible.

For the Fourier transform of the Hilbert transform we have (see [4])

(2.7) Hu(€) = —isign(£)a(¢), where 4(€) = \/% A e~ "%¢u(r) dr,

with sign(€) = £/|€| for £ # 0, sign(0) = 0. The limit in the decay of the solution
is related to the lack of regularity of T{\u; note that the condition ®;(up) =
J w0 dz = 0 means that d0(0) = 0.

For the purpose of indicating an argument in the subsequent analysis of our
numerical method, we now show that the solutions of (2.1) are stable under
perturbations of the initial data.

o = llull3e +11(1+ 22)*2ull2,.
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THEOREM 2.3. Let uw be a smooth solution of (2.1) with u, uniformly bounded.
Then, if v is any other smooth solution of (2.1), we have

(2.8) [lo(t) —u@®)]] < eMYu(0) —u(0)|], fort>0, where M = {|lu,|...

Proor. We have at once by subtraction
(v—u) +vv, —uu, — Hv —u)y, = 0.
Setting ¢ = v — u and multiplying by e, we obtain
(2.9) (e, e) + (v, — wty,e) — (Hey,, ) = 0.
Here the last term vanishes as in (2.4). For the second term we have
(2.10) (vv, —uug,e) = ((ute)(u,+e,) —uug,e) = (uge,e)+(ue,, e)+ (cep, ).
The last term vanishes as in (2.3) and, using integration by parts,
Hupe,e) + (ue,,e) 1%,
Thus (2.9) implies (d/dt)|e]|? < 2M |Je||? which shows (2.8). O
We remark that since fR 1, ds = 0, cancellations are possible in (u,e,¢), so
that our choice of M could be pessimistic. For instance, if it is known that
both u(x,t) and ¢(x,t) are symmetric in z around some point (1), then so is
e, t), and wu,(x,t) is antisynunetric around #(#), so that (u,e,e) = 0. Thus in

le(t)]] is constant. We also note that by the invariance of the energies,
e()]] is uniformly bounded for ¢ > 0.

= 1%(11_,.(’,,(3)] < 2MI|e

[

this case
e(t)]] < [Ju(0)]] + [[v(0)]|, and thus

3 The periodic problem.

In order to be able to define a finite-dimensional approximation, we shall
consider instead of (2.1) the corresponding 2L-periodic problem and consider
thus functions u(x, t) with u(x + 2L, t) = uw(x, ) and such that

(3.1)  u + v, — flu‘,,,. =0, forzeR, t>0, withu(-,0)=1uy, in R,

where wy is 2L-periodic. Here H is the periodic Hilbert transform (cf. [4])

Hu(r) = PV /L (5
ulr) = — CcOt
1(a 2L,714(

2Ly> w(x —y) dy.

To see formally that this is what Hu reduces to for u periodic, we use the
periodicity of u and transform ((2k — 1)L, (2k + 1)L) into (—L. L) to obtain

/ u(z — y)
Je<jy|<EN+LL y
N I
u(r —y) / 1 1
= —dy + (————{ + — )’1/,(.'1: — ) dy,
'/5<y<l, Y Z Jop NY — 2k L 2k L

k=— N k#0"” ~

dy
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where the second term in the parentheses may be added since the positive and
negative ones cancel. By the Mittag Leffler representation of coty we have

%(()f(iu)——+ Z (l/~2kL+£Z)’ for |y| < L,
L;Z()‘

and taking limits, £ = 0 and N — oc, we obtain the representation claimed.
Also in the periodic case one shows as earlier that

v L
b (u) = / wdr and $u(u) = ;—/ u? di
-

Jo1

are conserved for any solution of (3.1).

The main existence result for (2.1) carries over to the periodic case; with H*
now denoting H*(R/[—L, L]) we have the following (c¢f. [1]).

THEOREM 3.1. Let s > 3/2 and assume ug € H®. Then there exists o unique
solution u of (3.1) such that u € C*(Ry; H =) for integer k < (s +1)/2.

We also note that the formula (2.7) for the Fourier transform of Hu has an
analogue for the Fourier coefficients of 2L-periodic functions Hu, namely (cf.

[4])

= 1 L
(3.2 Hu, = —isign(n)a,, where i, = ﬁ/ eﬂ””/[’u(:r) dz.

The periodic equation (3.1) also has soliton solutions, e.g., for ¢ arbitrary,

2c6° .
(3.3) up(z,t) = € with § = —-.

1—+/1—82cos(co(x - ct))’ cL

This follow easily as earlier from the fact that

H( 1 ) B 7 sin{cdx)
1 —pecos(cdr)) /1= w2 1— peos(cdr)’

We remark that it is easy to see that for L — oo, 1.e., § — 0, this 2L-periodic
soliton solution wuy, tends to the one defined in (2.5).

4 The numerical method.

In order to define our numerical method for the periodic problem (3.1), we need
some preliminaries. We introduce a spatial mesh with mesh-width 2 = L/N,
so that the periodicity interval [—L, L] is divided into 2N mesh-intervals by the
nodal points x; = jh, j € Z. We consider the set Sy, of discrete 2N-periodic
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functions V' = {V;}$2_,, defined on this mesh, thus satisfying V;4on = Vj for
all 7, and introduce for this section the discrete inner product and norm

2N -1

1 L p 2Nl p 2N 1/2
VW)= g5 & V=00 3 Vi, and IVI= (57 X WP)
j=0 j=0 Jj=0

For the purpose of discretizing uu, and Hug, on the mesh, we set

Ui =Uj 5y, = Uiz Ui Uj1 —Uj
R h 2h '

Note that by summation by parts (8U, V) = —(U, V) and (8U, V) = —(U, §V).
For our approximation of uu, we choose, following Zabusky and Kruskal [12]
(cf. also Richtmyer and Morton {11, Section 6.3]),

oU; = , and AU; =

(4.1) Fa(U) = 18(U%) + LUBU = QU AU, (QwU); = (U1 + Uj + Ujpr);

clearly, for u smooth, Fy(u) — uu, = O(h?) as h — 0. To approximate u,, we
use

ARU; = h™1(0 - 0)U; = h2(Ujsa — 2U; + Uj-1),
which is also second order accurate. 5
To define a quadrature formula for the 2L-periodic Hilbert transform H we
assume N even, N = 2M, and divide the periodicity interval (—L, L) into the
N = 2M intervals (zok, Zog+2), k = —M, ..., M —1 of length 2h. We then apply
the midpoint rule on each of these intervals, and set
1 &

1
~ m
(4.2) (HpV); = 2L R 2h COt(ﬁJIZk.{.l)Vj_gk_l.

This may be thought of as a discrete convolution, writing

= h wkh . .
H % cot (2 f kis od
(43) (Hhv)] = Z Ck‘/;-_k, where Ccp = L Y ( 2L )7 1 :.lS (o] d)
0, if k is even.
k=—N
Since ¢; is odd, i.e., c_; = —¢;, Hy, is skew-symmetric. Note also that H,

commutes with translations, so that, in particular, HyARU = AhﬁhU.
We wish to express the operator H}, in terms of a discrete Fourier transform.
For W = {W;};ez € Sy we define the discrete Fourier transform by

N-1
(4.4) Wi= Y We 2rit/N,
k=—N

which also belongs to Sy,. The inverse Fourier transform is then

N-1

_ 1 . 2miik/N
(4.5) Wi = o j;N Wie .
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We note Parseval’s formula
(4.6) W] = V2N|w].

The following lemma shows that our discrete Hilbert transform defined in (4.2)
has inherited the property (3.2) of the Fourier transform; this is, in fact, the
reason for our choice of quadrature formula.

LEMMA 4.1. We have for the operator Hy, defined in (4.2) and %;z €Sy

o 1, ifl<k<N-1,

ﬁth =—i Sign(j)f/j, where sign(j) = € —1, if —-N+1<k<-1,
0, ifj=—N,0.

PROOF. Since with ¢; defined in (4.2),

N—-1 N-1

BV, 33 athae Y o,
k=-—~NIl=—N
we need to show & = —i s/l\gi(]) This is equivalent to showing that if Wj =

—isign(j), then Wy, = c;. But by (4.6)
W. — _LN_l (em‘jk/N _ e——m‘jk/N) -1 NX_:I sin(njk/N)
k 2N N < J
_ {7{7 cot (ﬂ'k/N), if & is odd,

0, if k is even,

which shows the lemma since h = L/N. ]
Together with (4.6) the lemma immediately shows

(4.7) IRV < IV

Since obviously

N-1
BnV; = > (ARV)e ™R = 2872 (cos(mj/N) — 1)V,
—

we have thus ﬁhAth = ujf;} where p; = —2i si/é;l(j)h‘Z(cos(ﬂj/N) ~1). In
our numerical work the evaluation of fIhAhV, for V given, is therefore done
by taking the Fourier transform of V', multiplying by p;, and then taking the
inverse Fourier transform; in practise these operations are done using the FFT.

Although the midpoint rule is of second order accuracy when the integrand is
smooth, it is now applied in (4.2) to a function with a singularity at the origin.
In spite of this, Hpu is a second order approximation to Hu when u is smooth.
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LEMMA 4.2. For u 2L-periodic and smooth we have

Hflhu - ﬁullm < Ch2||u||ca, where ||U||s = max |U;|.
J

PROOF. We may think of (flhu)j as the result of applying the midpoint rule
to

_ L L
fu(e) = 57 [ cot (5pv) s =) ~ule + 1) dy = [ 6asiv) .
where, with (y) = y cot(ry) and w(;y) = (u(z - 9) ~ u(z +3)/y,

(ai0) = 57 cot (gzv) (e — 9) — (o + ) = P wizsv).

By the standard error estimate for the midpoint rule we therefore obtain, since
¢ is smooth (D, = 98/dy),

|(Hyw); ~ Hu(z;)| < CK* max|Dyd(z;y)) < Oh* max|jw(z; ez < CF[lulles,
which completes the proof. O
Let k£ > 0 be a time step and ¢, = nk. With U™ defined for n > 0 we set
U™ = (U™ -U"Y/k and U™ 2=LU"+U""), forn>1.
Then the Crank—Nicolson scheme for our problem is

(4.8) U™ + Fp(U™ V2 = HyA U2 = 0, forn>1,
UJQ ug(z;), forje Z.

fl

For U"~! given this is a nonlinear equation for U™. We shall return later
to discuss the existence, uniqueness and computation of this solution, but start
by showing that the discrete analogous of the invariants defined in (2.2) are
conserved.

THEOREM 4.3. The functionals ®14(U) = (U,1) and ®24(U) = ||U||? are
conserved for solutions of (4.8).

PROOF. By summation by parts we have (fNIhAhU,l) = (AhﬁhU,l) =0
and similarly (F,(U),1) = L(8U,U) + 1(8(U?),1) = 0. Hence 8,%1 4(U™) = 0.
Further, multiplying (4.8) by U/*~1/? we obtain

(4.9) (B U™, U™ Y2 4 (Fp(U™Y/2), 0" 12) — (HyApU™12 0712y = 0.
For any U we have

(4.10) (Fo(U),U) = }QU,U) + L(UBU,U) = -L(U?,6U) + L(UBU,U) = 0.
Further

(4.11)  (HpARU,U) = —=(ApU, HyU) = —(U, Ay HyU) = —(H, AU, U).
Using (4.10) and (4.11) in (4.9) shows §;®2 4(U™) = 0, completing the proof. O
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LEMMA 4.4. For U™! given there exists a solution U™ of (4.8).
PROOF. In terms of X = U™ the equation may be written

¥(X) =2(X — U™ YY) — kHyApX + kFp(X) = 0.
Using (4.10) and (4.11) we find
(T(X), X) =2(X = U1, X) =2 X|* - 2(U™1, X) > [|X|* = (jU~Y|?,

and hence (¥(X),X) > 0 for || X|| = ¢q := (UM Y||* + 1)1/2, say. The equation
¥(X) = 0 therefore has a solution X € B, = {Y;||Y|| < ¢}. In fact, if we assume
that ¥(Y) # 0 for Y € By, then the mapping A(Y) = —q¥(Y)/||¥(Y)| : By =
B,, is continuous, and hence it has a fixed point X € B, by Brouwer’s fixed
point theorem. For this fixed point we have ¢> = ||A(X)|?> = (A(X),X) =
—q(¥(X), X)/||®(X)||, which contradicts (¥(X), X) > 0. a

We postpone the discussion of uniqueness and turn to the error estimate. For
this we shall need the following (cf. (2.10)).

LEMMA 4.5. If u, is uniformly bounded we have

|(Fu(U) = Fa(u),U — )l < M|IU —ull?,  where M = §lucl|z...-

PROOF. Set e = U — u. We have U? — u? = (2u + €)e = 2ue + €2, and hence

~ ~ ~

(O(U? —u?),e) = 2(d(ue),e) + (3(e?), e).

Similarly R R X R R
(UOU — udu, e) = (edu,e) + (ude, e) + (ede, e).

Thus . R
(Fu(U) = Fa(u), ) = —L(ude,e) + L(edu,e) + (Fu(e), o).

Setting (7e); = e;j41 we have e de = 10(eTe) and hence
—(ude,€) = —1(u,8(eTe)) = L(Du,eTe) < Mlle||.

Since (edu, e) < 2MIje||? and (Fi(e),e) = 0 by (4.10), the result follows. 0
We now show the following error estimate:
THEOREM 4.6. Let u be a smooth solution of (3.1) and U™ be a solution of

(4.8). Then
U™ —u™|| < Cr(u)(h® + k%), fort, <T.

PROOF. Set " = U™ — u™ where u™ = u(t,). Then, since u satisfies (3.1),

(412) éten _ ﬁhAhén_1/2 - _Fh(Un—l/Z) + Fh(ﬂn—l/Z) _ Gn,
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where
G" = du™ + Fu(@* %) — HyApa™ /2 = (u + uuy — Hugs)" Y2,

with u"~!/2 = u(t, ~ 1k). Here, since both approximations are of second order,

1Beu™ — g ™2+ (| Fn(@22) = (uu)" 2| < Clu)(B + K),
and, using also (4.7),
| HnAp@" 2 — Hug? || < || Ha(Apa™ ™72 — ag 12|
H| Hn (@5 ? = uf )|+ [(Hr — H)ugal| < C(u)(h? + K2),

so that ||G"|] < C(u)(h? + k?).
Multiplication of (4.12) by &"~1/2 gives

(ate i 1/2) (ﬁhAhén—lﬂ —n—1/2)
(Fh( n— 1/2) (Un 1/2) Sn— 1/2) (Gn,én—1/2)‘
By {4.11) and Lemma 4.5 we thus obtain

(e G

lle < Crlle*?|12 + CRlIG™| len=/?
< Ch(lle™® + [le" ") + CRlIG™I2,
and hence, for small &,

lle™|Z < (1 + Ck)lle™ |2 + Ck(h® + k%)%
By repeated application we have, since €* = 0,

He™I? < e“Tllell” + Cnk(h® + k*)® < CT(h* + k*)?, for t, < T,

which completes the proof. O

With U™~! given, the nonlinear equation to be solved in (4.8) at time level n
may be put in the form

(4.13) W — 1kH,AnW = g — kFn(W), where Fp(W) = Fy(L(W +U™1)),

with g = U™t + %kﬁhAhU »=1. For the solution of this equation we consider
the iterative scheme

(4.14) I — LkH,A)WIT = g — kE(WY), forj >0, WO = U™ 1,
2

Since H,Ap is skew-symmetric, the matrix on the left is nonsingular, so that
this linear problem has a unique solution for given right hand side. The following
lemma, shows the linear convergence of (4.14) for appropriately small k.
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LEMMA 4.7. For R > 0 given and v < 1, let kh™! < yR™! and assume that
the W defined in (4.14) are such that ||Wi||o < R. Then

[WIHE — WY || <~|W7 = WY, forj>1.

In particular, W7 converges to a solution of (4.13).

ProOF.  We first note that since Fi(U) — Fa(V) = QuUBU — V)
+Qn(U — V)V,
(4.15) |1Fw(U) ~ Fa(V)Il < 2RR7HIU = VI, i [Ulo, IV [loo < R

We have for j > 1
Wt _ Wi — LkHyAp(WH — W) = —k(Fa(W) — Fp(W3™1)).

Taking inner products with W3+! — W7 and using the skew-symmetry of Hy Ay,
we get by (4.15), since [|3(W7 + U™ )|l <R,

(4.15) W —W|| < k[[Fa(W7) - Fr(W7H)]|

E|[Fa(GW9 + U™ ) = Fa(3(W7 71+ U™ h)||

< RERTHIWI — W7,

which implies the convergence stated since Rkh™! < . 0

We are now finally in a position to complete the proof that, for k& appropriate,
our numerical method has a unique solution, which may be obtained by the
iterative scheme (4.14), and which approximates the exact solution as stated in
Theorem 4.6.

THEOREM 4.8. Let u be a smooth solution of (2.1). Given T > 0 and v < 1,
there is a number R = Rr such that if h and k are small and k < yhR™1, then
there exists a unique solution of (4.8) such that ||[U"||oc < R for t, < T, and
the conclusion of Theorem 4.6 holds. Further the W7 defined in (4.14) satisfy
Wl < R.

PROOF. Setting B = Br = sup,<r ||[u(t)|l we shall show the theorem with
R = B + 2. We first note that by Theorem 4.6, as long as U™ exists, we have
since k < yhAR™!, for h small,

U™ = u™loo < CAT2|[U™ —u|| < Cr(w)h™ 2 (B? + &%) < 1,

so that [[U"||c < B+ 1.

Assume now that U™ exists, and consider the iterative scheme (4.14) with
g=Ur"14 %kﬁhAhU"‘l. We want to demonstrate that |[W7]|o, < Rforj > 1
which then shows, by (4.15), that W/ converges to a solution of (4.13). This
solution is then unique. In fact, if W and W' were two solutions we would have

W' =W — LkH Ay (W' — W) = ~k(FR(W') — Fy(W)).
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After multiplication by W' — W this shows (cf. (4.16)), ||[W'-W|| < ~||W'-W||
so that W' =W.

It follows from (4.16) that [|W7 — WP°|| < (1 — )7 }|W! — WP?||. In order to
bound W' — WO, with W° = U™, we note that, using the equations for W*
and U™,

W = U™ — LkH A (W = U™) = —k(Fo(U™™!) = Fo(U™))).
Hence, after multiplication by W1l — U™ (cf. (4.15)),

Iw*-um < ot -vr
< O(IU™ =™+ U = w7 Hl + [lu” = w 7)) < Ok + 2?).

This yields
(W7 U< oW —U™| + U™ =U")) < C(k + ).

We conclude that ||[W7 — U™ Y| < Ch™'/2(k + h?) < Ch'/? < 1 for h small,
so that ||W|leo < [[U Y||oo + 1 < B +2 = R. The proof is now complete. 0

5 Numerical illustrations.

We have applied our method to simulate the periodic single soliton solution
(3.3), with L = 15, ¢ = .25. Sample results are shown in Table 5.1, where the
[?-norm ||e|| and the maximum-norm ||e|| Of the error are listed at ¢ = 10, 100
for certain combinations of N and k, and where the second order convergence
can be observed. For instance, doubling N and halving k with N =512, k = .2
reduces the error by a factor 3.9. Figure 5.1 shows the result for N = 1024,
k= .25.

We have also simulated the double soliton solution (2.6) of the unrestricted
Cauchy problem (2.1), using its given initial values on an interval (—L, L) as
initial values for a 2L-periodic problem; numerical results at ¢ = 10,90, 180
(t = 90, 180 were employed in [7]) are shown in Table 5.2 for L = 100, ¢; = 0.3,
cs = 0.6, dy = =30, dy = —55. We note that in this case the error stems from
both the approximation of the unrestricted initial-value problem by a periodic
one, and by the numerical approximation of the latter. In this case, in contrast to
the single soliton case which is just a translation, there is interaction between the
two solitons. We see that the error (especially in the maximum norm) is larger
than the single soliton case; note the phase error which is evident in Figure 5.2
(N =2048, k = .1).

We note that the spectral methods used in [7, 8], and [10] need fewer param-
eters in the spatial discretization, but use shorter time steps.

In our calculations we have used the iterative scheme (4.14) with a toler-
ance of 1075, This tolerance was chosen because it was found that decreasing
the tolerance further did not change the error in the first four significant dig-
its. The number of iterations required are listed in the tables under It. For
faster convergence we have also considered the extrapolated initial approxima-
tion W0 = 2U"~1 —U"~2, which resulted in a certain reduction in the number of
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Table 5.1: Periodic single soliton (3.3), with L = 15, ¢ = .25.

t Nk llell |lelloo It

10 256/0.5 0.713e—4 0.171e-3 5.0
256/0.25 0.629e—4 0.155¢—-3 4.0

(
(
512/0.5  0.27%-4 0.608e~4 5.0 (
(
(
(

512/0.25 0.181e—4 0.436e—-4 4.0
1024/0.5  0.18le—4 0.358¢—4 5.0
1024/0.25 0.71le-5 0.157e—4 4.0
100 256/0.5 0.480e—3 0.909¢-3 5.0
256/0.25  0.375e—3 0.730e—3 4.0

(4.0)
(3.0)
512/0.5  0.227e-3 0.409e—3 5.0 (4.0)
512/0.25  0.121e-3 0.229e-3 4.0 (3.0)
(4.0)
(3.0)

1024/0.5 0.164e—3 0.286e—3 5.0
1024/0.25 0.574e—4 0.104e—-3 4.0

0.9 T T T T T
- Exact N=256

... Numerical k=0.25
08} 0 . 4
07 . 4
0.6t - 1=100 .- t=10 i
g
5
05F . .
0.4 : 4
0.3 : 4
0.2 L 1 L 1 i
=T -10 -5 ] 5 10 15

Figure 5.1: Simulation of periodic single soliton, with N = 1024, k = .25.
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Table 5.2: Double soliton (2.6) with L = 100, c¢1 = 0.3, c2 = 0.6, d1 = —30, d2 = —55.

t N/k lell lelle 1t
10 512/0.2 0.194e—1 0.158 9.0 (7.0)
512/0.1  0.190e—1 0.155 6.0 (5.0)

1024/0.2 0.574e—2 0.470e—1 9.6 (8.0)
1024/0.1 0.528¢—-2 0.435e—1 7.0 (5.0)
2048/0.2 0.203e—2 0.158¢—1 10.0 (8.0)
2048/0.1 0.156e—2 0.12le—1 7.0 (5.0)
90 512/0.2 0.624e—1 0.336 7.8 (6.3)
512/0.1  0.613e—1 0.331 5.5 (4.2)
1024/0.2 0.182—1 0.979e—1 8.4 (7.0)

1024/0.1 0.168e—1 0912e—1 5.9 (4.5)
2048/0.2 0.580e—2 0.305e—1 6.6 (5.1)
2048/0.1 0.480e—2 0.248e—1 4.6 (3.2)
180 512/0.2  0.195 1.399 7.9 (6.4)
512/0.1  0.192 1.377 56 (4.2)
1024/0.2  0.678e—1 0.520 8.6 (7.2)
1024/0.1 0.617e—1 0.475 6.0 (4.6)
2048/0.2 0.242¢e—1 0.188 8.9 (7.3)
2048/0.1 0.175e—1 0.136 6.2 (4.7)

25 ~ Exact T T T T j ' " N=2048

.. Numerical k=01

|

—:00 80 100

Figure 5.2: Simulation of double soliton (2.6), with N = 2048, k = .1.
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iterations needed, listed within parentheses under I't. For even faster convergence
one could consider Newton’s method. Since straightforward application of this
method would require the solution of linear systems which are not in convolution
form and therefore not immediately suitable for the FFT technique, it is then
natural to use a modification proposed by Akrivis, Dougalis and Karakashian
(2], in which an inner iteration with the matrix in (4.14) would be applied. We
shall not pursue this here.
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