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This paper gives sensitivity analyses by two approaches for L and U in the factor- 
ization A = LU for general perturbations in A which are sufficiently small in norm. 
By the matrix-vector equation approach, we derive the condition numbers for the L 
and U factors. By the matrix equation approach we derive corresponding condition 
estimates. We show how partial pivoting and complete pivoting affect the sensitivity 
of the LU factorization. 
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1 I n t r o d u c t i o n .  

The LU factorizat ion is a basic and  effective tool in numerical  l inear algebra: 
given a real n x n mat r ix  A whose first n - 1 leading principal  submatr ices  are 
all nonsingular ,  there exists a unique  uni t  lower t r iangular  mat r ix  L and  unique 
upper  t r iangular  mat r ix  U such tha t  

A =  LU. 

Notice here we require the diagonal  elements of L to be 1. L and U are referred 
to as the LU factors. 

Let AA be a sufficiently small n x n mat r ix  such tha t  the first n - 1 leading 
principal submatr ices  of A + AA are still all nonsingular ;  then A + A A  has a 
unique LU factorizat ion 

A + A A  = (L + A L ) ( U  + AU) .  
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The goal of the sensitivity analysis for the LU factorization is to determine a 
bound on IIALI] (or IALI) and a bound on IIAUII (or IAUI) in terms of (a bound 
on) IlaAll (or IAAI). 

The sensitivity analysis of the LU factorization has been considered by other 
authors. For the case when a bound is given on II~Zll, the first rigorous per- 
turbation bounds on II~Zll and II~UII were presented by Barrlund [1]. Using a 
different approach, Stewart [7] gave first-order perturbation bounds, which were 
recently improved by Stewart [8]. In [8], L was not assumed to be unit lower 
triangular, and a parameter p was used to control how much of the perturbation 
is attached to the diagonals of L and U. For the case when a bound is given on 
I~AI, rigorous perturbation bounds on I~Zl and I~Ut were given by Sun [9]. 

The main purpose of this paper is to establish new first-order bounds, derive 
condition numbers, give new condition estimates, and shed light on the effect of 
partial pivoting and complete pivoting on the sensitivity of the LU factorization 
problem. We deal with the case when a bound is given on II~AII (norm-bounded 
perturbations). Our perturbation bounds and condition estimates for this case 
give improvements on those in [7] and [8], and probably this is the first time the 
actual condition numbers have been delineated in the literature. 

The rest of this paper is organized as follows. In Section 2 we obtain expres- 
sions for L(0) and l)(0) in the LU factorization A + tG = L(t)U(t).  These basic 
sensitivity expressions will be used to obtain our new perturbation bounds in 
Sections 3. In Section 3 we derive perturbation results, first by the so-called 
matrix-vector equation approach, which leads to sharp bounds, then by the so 
called matrix equation approach, which leads to weaker but practical bounds. 
The basic ideas behind these two approaches were discussed in Chang, Paige and 
Stewart [4, 5]; see also Chang [2]. This paper is essentially a rewrite of Chapter 
4 of [2]. 

Throughout the paper, for a nonsingular matrix A, we use the notation 

ap(A) -- IIA-111pNAIIp and condv(A ) -- I] IA-II'I A] lip 

for a consistent matrix norm I]" lip. 

2 R a t e  o f  c h a n g e  o f  L a n d  U.  

To simplify the presentation, for any n • n matrix X = (xij), we define the 
strictly lower triangular matrix and upper triangular matrix 

(2.1) slt(X) ~_ (Sij), 8ij -- I xO if i > j 
0 otherwise ' 

(2.2) u t (X)  = X -  slt(X). 

Here we derive, for later use, the basic results on how L and U change as 
A changes. If A is singular then so is U. To handle this case we introduce a 
nonsingular U in the theorem. 

THEOREM 2.1. Let A E R "• have nonsingular leading k• k principal subma- 
trices for k = 1 , . . . ,  n - l ,  and the LU factorization A = LU, and let AA C R n• 
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satisfy A A = eG. I f  e is small enough such that the first n - 1 leading principal 
submatrices of A + tG are nonsingular ]or all ]t] < e, then A + tG has the unique 
L U ]actorization 

(2.3) A + tG = L(t)U(t) ,  ]t] _< e, 

which leads to 

(2.4) 

(2.5) 
(2.6) 

LU(0) + L(0)U = G, 

L(0) = L s l t (L-1G0-1) ,  

U(0) = ut (L-1GU-1)U,  

with U = U + (a - un~)e,~e T for some a ~ O. In particular, A + A A  has the LU 
factorization 

(2.7) A + A A  = (L + AL) (U  + AU),  

where AL  and AU satisfy 

(2.8) AL -~ e L(0) + O(s 

(2.9) AU = e U(0) + O(e2). 

PROOF. Since the first n - 1 leading principal submatrices of A + tG are 
nonsingular for all [t[ <_ e, A + tG has the unique LU factorization (2.3). Note 
that L(O) = L, L(e) = L + AL,  U(O) = U and U(e) = U + AU. When t = e ,  
(2.3) becomes (2.7). It is easy to observe that  L(t) and U(t) are continuously 
differentiable for It I _< e from a standard algorithm for the LU factorization. If 
we differentiate (2.3) and set t = 0 in the result, we obtain (2.4) which we will 
see is a linear equation uniquely defining the elements of strictly lower triangular 
L(0) and upper triangular U-(0) in terms of the elements of G. Since L(0)en = 0, 
(2.4) may be rewritten as LU(O) + L(0)/J - G, giving 

L-1L(O) + ~] ' (O)U - 1  - L - 1 G C - 1 .  

Note that L-1L(0) is strictly lower triangular and/J(0)U -1 is upper triangular, 
thus we have 

L-1L(0) _- slt(L-1G~--1), U(0)U -1 _- ut(L-1G[~-l) ,  

which give (2.5) and (2.6). Finally the Taylor expansions for L(t) and U(t) 
about t = 0 give (2.8) and (2.9). If A, and so U, is nonsingular, we can replace 

above by U. [] 

3 Main  results .  

The basis for deriving first-order perturbation bounds is the equation (2.4), 
or (2.5) and (2.6). There are two ways to proceed. The matrix-vector equation 
approach (which here is based on (2.4)) will be used to provide sharp bounds, 
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resulting in the condition numbers of the problem, while the matrix equation 
approach (based on (2.5) and (2.6)) can be used to obtain more practical bounds, 

�9 resulting in easily computable upper bounds on the condition numbers�9 
Throughout this section we invoke all the assumptions in Theorem 2.1, so we 

can use its conclusions�9 Also we assume 

(3.1) []AA[]F < c [[A[[E, 

so using AA = eG as in Theorem 2.1 we see 

(3.2) [IG[[F ~ {IAlIF 

(if ~ = 0, all results we will present are obviously true)�9 The one exception to 
(3.1) occurs in Remark 3.3 where we assume []AA[[1,~ < e [[A[]1,~r 

3.1 Matrix-vector equation analysis and condition numbers. 

For any matrix C -- (cij) - [Ca,... ,ca] E R a• denote by c~ i) the vector of 

_(t) the vector of the last i elements of cj. With the first i elements of cj, and by cj 
these, we define ("u" denotes "upper", "sl" denotes "strictly lower") 

vec(C) - 

Cl 

C2 

Ca 

uvec(C) - 

el 1) 
c~ 2) 

c(p 

slvec(C) - 

n - l )  

c~n_2) 
c2---- 

_(i) 
Un--I 

These last two are the vectors formed by stacking the columns of the upper 
triangular part of C into one long vector and by stacking the columns of the 
strictly lower triangular part of C into one long vector, respectively. 

Using this notation we will rewrite (2.4) in the form (3.3) below--the "matrix- 
vector equation" form. With obvious notation (uj for/~j(0), etc.) the j t h  column 
of LU(0) + L(0)U = G, which is (2.4), is 

gj . . . . . .  [ll, 12,. , la]itj + lit, i2, , ialuj = [11, . . . ,  ljjl~(J)j + [il , . .  �9 ij]u~ j) 

I0 ~ = [ll,...,l~]u~ j) + uu I u 2 /  + . . . +  lj" . 

u I 

It follows that  the matrix equation (2.4) can be rearranged as 

(3.3) w [ uvec(U(0)) 
slvec(s ] = vec(a), 

n2 • n(~+1) 
where W =_ [ W L , W u ]  , with W L C R 2 being the n-block by n-block 
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1 
121 

1 
121 1 

: : 

1 
12a 1 

: 

In1 ln2 

"o. 

�9 . .  1 

and Wu E R n2x "<~-') being the n-block by (n - 1)-block 

0 
U l l  

0 
U12 

0 

~l ,n- -1  

0 
?21n 

7211 

7212 

'U,I ,n-- I 

?21n 

"o 

7211 
0 
0 

U22 

721,n-1 

' ,~  

7212 ?222 

0 
0 

722,n-1 

0 
0 

U2n 

".o 

722,n-1 ?2n-l ,n-1 

?21n 722,~ ?2n-l,n 
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It is easy to observe that after appropriate column permutations, [WL, WU] will 
become lower triangular with diagonal elements 

1,Ull ,Ull , . . . ,U11,  l , 1 , U 2 2 , ' " , U 2 2 , ' " , l , 1 , . . . , 1 , U . _ l , = _ ~ , l , 1 , . . . , 1 .  

12 n ~ n 

Since the leading (n - 1) x (n - 1) block of U is nonsingular, W is also, and from 
(3.3) we have 

(3.4) [ uvec(~?(0)) ] W-lvec(G) .  
slvec(L(0)) j = 

If we partition W -1 into two blocks, we have from (3.4) that 

(3.5) W - 1  =- YL ' 

(3.6) slvec(L(0)) = YLVeC(a), uvec(U(0)) = Yvvec(G). 

We see Ilslvec(L(0))l]2 = t]L(0)HF and Huvec(U(0))t]2 = H~r(0)ItF, and by using 
these norms we will be able to obtain tight bounds. Thus taking the 2-norm and 
using IIGIIF <_ IIAIIF we have 

(3.7) 
(3.8) 

JlL(0)IIF _< IIYLII2tlalIF ~ IIYLII211AIIF, 
IIu(0)IIF ~ IIYuIIdlallF ~ IIYuII21tAIIF, 

where individual equalities can be obtained by choosing G such that vec(G) lies 
in the space spanned by the right singular vectors corresponding to the largest 
singular value of either YL or Yu, respectively, and NGIIF = I IAll F-  Thus from the 
Taylor expansions (2.8) and (2.9), we obtain the following individually attainable 
first-order bounds, 

IIALIIF IIYLIIdIAIIF 
(3.9) IILIIF ~ IILIIF e+O(d) ,  

(3.10) II,~UIIF IIYuII211AtlF + o(d). 
IIUIIF -< IIUIIF 

These two sharp bounds imply that the condition numbers for the L factor and 
the U factor defined respectively by 

{ [Iz~L[IF } 
aL(A) = lim sup : A + A A  = (L + AL) (U + AU), IIAAIIF < e tlAilF , 

~-~o AA e ]]LIIF 

rw(A) - lim sup { IlaUlIF 
~-~O~A ~llUlIF : 

are given by 

A + A A  = (L + z~L)(U + AU),  IIAAIIF <_ elIAHF} 

(3.11) aL(A)-  IIYLII211AIIF av(A)-  IIYuI]211AHF 
IILIIF ' IIUIIF 
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3.2 Matrix equation analysis and condition estimates. 
Given a bound on the norm of the change in A, in Section 3.1 we derived 

sharp perturbation bounds for the L factor and U factor, and presented the 
corresponding condition numbers. But it is difficult to estimate these condition 
numbers by using the usual approach. Now we add the matrix equation approach 
to this to derive more practical perturbation bounds. 

First we derive a perturbation bound for the L factor. Let Un-1 denote the 

[ Un-1 u ] then from leading (n - 1) x (n - 1) block of U. If we write U = 0 u~,~ ' 

(2.5), 

L(0) = Lsl t  (L-1G [ Unl-lO -u~l-lU/al/a ] )  = Lsl t  (L-IG [ U~-x 0 ])" 
(3.12) 
Denote by Dn the set of all n x n real positive definite diagonal matrices. Let 
D = diag(51, . . . ,  5n) E Dn. Note that  for any n x n matrix B we have D slt(B) = 
slt(DB), so from (3.12) we obtain 

(3.13) L(0) = LD-lslt(DL-aG [ U~1-1 0 0 0 ] )  
Noting Ilslt(B)ltF _< IIBIIF for any B e R nxn, we have 

IIL(O)IiF _< IILD-~II211DL-~II211U~_IlI211GIIF, 
which with IIGIIF _< I]AIIF in (3.2) gives 

I IL(O)I IF < ~2(LD_I)IIU~II211AIIF 
I ILI IF -- I ILIIF 

Since this is true for all D E Dn, by the Taylor expansion (2.8) we have 

(3.14) II/XLnF 
IILll---'--~ - a~(A)e + O(e 2) 

where 

(3.15) n~(A) - inf n~(A,D), 
DED~ 

(3.16) n~ (A,D) - n2(LD -1) IIU~1111211AlIF 
IILlIF 

Since nL(A) given by (3.11) is the condition number for the L factor, we 
certainly have 

(3.17) nL(A) <_ at(A), 
and as it is reasonably easy to find good approximations to a t (A), we can use 
this as a condition estimate. 
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Also we can obtain a lower bound on aL(A). Let nonzero v E R n-1 be such 
that  Nu~TlvlI2 = IIU~-_llH211vN2. In (3.12), take G = [envT, O], where e~ = 
[0 , . . . ,  0, 1] T C R n. Then it is easy to verify that 

L( O ) : Cn[vT Un..11, 0], 

SO 

I IL(0)I IF = II~TU~--'III2 = IIU~--~111211vl12 --IIU~--~,ll211allF- 
Combining this with the first equality of (3.6), we have for this special G that 

IIU:~_III211GIIF = I I L (0 ) I IF  = I l s l vec (s  = I IYLvee (a ) l l ~  < IIYLII211GIIF, 

which gives the general result 

- 1  (3.18) IlY~ll~ > IIU, L~I I~,  

or with (3.11), 

IIYLN2NAIIF >_ NU[ 1-111211AI]F 
(3.19) ~L(A) =-- NLHF NLNF >_ X,/1 - 1In. 

This last inequality follows from A diag(U~11,0) = [L, 0], where L is the first n - 1  

columns of L, so NLIiF < IIU~-11112 HAllE and IILN~ = NLN~+I >_ n. Taking A = 
diag(In-1,0) makes W in (3.3) a permutation matrix, giving nL (A) = vf i  - -  1/n 
in (3.11), so the overall lower bound is attainable. We would like to point out 
that  (3.18) can also be derived directly from the structure of W in (3.3). 

Now we derive a practical perturbation bound for the U factor. In what follows 
we can replace C (see Theorem 2.1) by U when U is nonsingular. Let D E Dn. 
Notice for any n • n matrix B we have u t (BD)  = ut (B)D,  so from (2.6) we 
obtain 

(f(O) = ut(L-1G~f-I D)D-I(]. 

Thus 

(3.20) N/-)-(O)ilF _< NL-1N2NO-1DN2iID-I(fH2HGNF, 

which with HGNF <_ NANF gives 

i lU (0 ) [ I  F < n2(D-10)IIL-~II211AIIF 

I I U I I F  - I IU I IF  

Since this is true for all D C Dn, by the Taylor expansion (2.9) we have 

(3.21) 

where 
(3.22) 

NauNF 
NuN~ 

- -  _< a ~ ( A ) e  + O(e2), 

n~ (A)  = inf ~(A,D), 
D E D ~  
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(3.23) a ' (A ,  D) = ~2(D-10)IIL-111211AIIF 
IIUIIF 

Note the freedom a in 0 does not affect the result of the optimization. 
Since ~v (A) given by (3.11) is the condition number for the U factor, certainly 

from (3.21) we have 

(3.24) a . (A)  _< a ' (A) .  

Also we can get a lower bound on av(A). Let nonzero v E R n be such that 
IIL-%ll2 = [[L-l[12[ivt[2, and take G = ve T in (2.6) to give 

(f(O) = ut(L-lveT~f-1)~f = L- l ye  T. 

Combining this with the second equality in (3.6) gives here 

IltY(0)llr --IIn-lll211vll2 = [IL-XlI211GIIF ----IlYuvec(a)llF <_ ]IYuII21IGIIF 

and so in general 

(3.25) 

that is, with (3.11), 

(3.26) 

IIYuII2 ~> [IL-1112, 

IIL-~II211AIIF > 1. av(A) >_ 
I[UIIF - 

Taking A = I gives t%(A) = 1, so again this overall lower bound is attainable. 
Like (3.18), (3.25) can also be shown directly from the structure of W in (3.3). 

These results, and the analysis in Section 3.1, can be summarized in our first- 
order perturbation theorem: 

THEOREM 3.1. Suppose all the assumptions of Theorem 2.1 hold and let 
HAAtlF <_ ~IIAIIF, Then A + AA has the unique LU factorization 

A + a A  = (n + A L ) ( U  + z~U), 

where with ~L(A) and av(A) defined in (3.11), we have for the L factor: 

(3.27) II~LIl___! < aL(A)e + 0(~2), 
IILIIF - 

with bounds on aL(A) of 

4 1  1 /n  _< 
ilLNF 

(3.28) 
and for the U factor: 

(3.29) 

with bounds on au(A) of 

(3.30) 1 < 

_< tel (A) < a' L (A) =- 
i - 1  

inf a2(LD -1) II n-IlI2[IAIIF 
D~D~ IlL[IF ' 

I] /~UIIF 

liUitF 
- -  _< a ~ ( A ) c  + 0 ( e 2 ) ,  

[IL-III~IIAIIF < av(A)  < n ' ( A )  - inf a2(D-l(f) []L-111211AHiF 
]iUliF -- -- ~ r , o  ]IUiIF 
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REMARK 3.1. We might consider simplifying M(A, D) and M(A, D). If we 
u s e  

(3.31) IIA]IF <_ IILIIFIIUII2, IIL]I211UIIF, 

then we have from (3.16) and (3.23) 

(3.32) td (A, D) < ,~2(LD-1)IIUII21IU~II[2, 
(3.33) a ' (A ,  D) < a2(L)a2(D-10"). 

But both of the right hand sides of these inequalities can be arbitrarily larger 
than the corresponding left hand sides due to the inequality (3.31). Note there 
can be large cancellation in the product LU = A. 

REMARK 3.2. If we assume A is nonsingular, take 0 = U and D = I in both 
a' (A,D)  and a' (A,D) ,  and use IILII2 < IILIIF, IIUII2 < I]UIIF and IIU~11112 < 
IIU-XlI2, then from (3.16) and (3.23) we have 

(3.34) tc" (A) < a ' (A, I )  < ~2(L)llU~_~ll12 IIAIIF/IILIIF <<_ ILL-1112 IIU-~II2 IIAIIF, 

(3.35) tc'(A) < a'(A,I) < ~2(U)IIL-1112 IIAIIF/IIUIIF <_ IIL-1112 IIU-1[12 IIAIIF. 
Thus  it follows from Theorem 3.1 that 

II~XLIIF (3.36) I[LIIF < IIL-~IF211U-1II211AIIF~' 

(3.37) II/~UIIF < IIL-1II211U-~II211AIIF~. 
IIUIIF ~ 

These perturbation bounds were obtained by Stewart [7]. They are simple, 
but can overestimate the true sensitivity of the problem. By using the scaling 
technology, Stewart [8] obtained significant improvements on the above results. 
In [8], the diagonal elements of L were not assumed to be l's, and the diagonal 
elements of AL may not be O's, and a parameter p was used to control how much 
of the perturbation is attached to the diagonals of L and U. The perturbation 
bounds given in [8] are equivalent to 

II~LIIr 
( 3 . 3 8 )  IILIIF < tc2(LD-1)g2(U)c' 

IIAUIIF < a2(L)a2(D-1U)~. 
(3.39) IIUIIF ~ 

Note a2(L)tc2(D-1U) in the second bound is equivalent to the right hand side 
of (3.33) with nonsingular U, while ~2(LD-1)k2(U) in the first bound can be 
arbitrarily weaker than the right hand side of (3.32). But we have already seen 
those two can be arbitrarily weaker than (3.23) and (3.16), so while (3.38) and 
(3.39) are often useful, they can be unnecessarily weak in some circumstances. 
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REMARK 3.3. If we use the 1- and c~-norms, we can get perturbation bounds 
without involving the scaling matrix D. In fact, suppose ]]AA]I p < ellAilp, 
p = 1, c~ instead of (3.1), then since G = AA/e we have ]lGllp < ]]Allp. From 
(3.12) we have 

[L(0)l--< ILIIL-]IIGi 0 0 ' 

so taking the p-norm (p = 1, oc) gives 

ItL(0)llp _< condp(L-i)llU,_lllp Ilaltp _< cond,(L-I) l lUn-l l l ;  IIAll~. 

Then we have from the Taylor expansion (2.8) 

(3.40) liAL[IP < condp(L-1)[[Unl-t[]pliA[[Pe+o(e2) 
IILltp - IInllp 

< condp(L-1)llU]lpllU~._1111pe + O(~2). 

Similarly from (2.6) (where if U is nonsingular condp(U) = condp(U)), 

(3.41) IIAUIIp < condp(U)llL-1]IP IIAIIp e + O(e2), 
IIUIl  - IIUll  

< np(L)condp(C) ~ + O(e2). 

Note condp(L -1) is invariant under any column scaling of L and condp(C) is 
invariant under any row scaling of/)" (so it is independent of the freedom a in 
5). 

As far as we know, it is expensive to estimate the condition numbers nL (A) and 
nu(A) in (3.11) directly by the usual approach except when A has some special 
structure (for example, A is tridiagonal; see Chang and Paige [3]). Fortunately 
we can estimate the condition estimates n~ (A) and n~ (A) reasonably efficiently. 
By a well-known result of van der Sluis [10], we have 

t~2(nD-[ 1) < vrn inf ~2(LD-1), 
DEDn 

where DL = diag(llL(:,j)]12). This is to say n2(LD -1) will be near its infimum 
when each column of LD -1 has unit 2-norm. Therefore we have 

(3.42) ,~" (A) <_ ,~" (A, DL) <_ y'-n,d (A). 

So in practice we choose D = DL, then use a standard condition estimator and 
a norm estimator to estimate a t (A, DL), which costs O(n 2) flops. Similarly, we 
have 

(3.43) a" (A) <_ ,~" (A, Du) <_ v~,c" (A), 

where Du = diag(llU(i, :)]]2), i.e., each row of D~]/9 has unit 2-norm. So in prac- 
tice we choose D = Du, and use a standard condition estimator and a norm es- 
timator to estimate a"  (A, Dr) ,  which costs O(n 2) flops. Numerical experiments 
(see Section 5) show that ,d(A, DL) and ,d(A,  Du) are good approximations to 
aL(A) and gu(A), respectively. 
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4 Effects of  pivoting on sensitivity. 

It is well known that the standard algorithms for LU factorization without 
pivoting are not numerically stable. In order to repair this shortcoming, partial 
pivoting or complete pivoting should be incorporated in the computation. In 
this section we examine the effects these two pivoting strategies have on the 
sensitivity of the factorization. In other words we want to see how different the 
sensitivity of the LU factorization of A is from that of the LU factorization of 
the new matrix, A, with its rows (and columns) permuted. 

Suppose partial pivoting or complete pivoting is used in the LU factorization 
PAQ = LU, where P and Q are permutation matrices (Q = I if partial pivoting 
is used) and [lij[ <_ 1 for i > j .  It is easy to show that  [(L-1)ij[ _< 2 i - j -1  for 
i > j (see nigham [6, p. 156]). Thus 

(4.1) 1 < ~;2(L) _< [[L[[F[]L-I[[F <_ ~/2n(n + 1)(4 ~ + 6n -- 1)/6. 

Then from (3.28) with D = I we have 

< aL(PAQ) <_ a'L(PAQ ) 
IILIIF 

IIU( _IlI211AIIF (4.2) < v/2n(n + 1)(4~ + 6 n -  1) -1 
- 6 NLIIF ' 

so standard partial pivoting or complete pivoting keeps the condition number of 
L within a factor, only involving n, of its lower bound. But it is possible that  
such pivoting may cause IIU~I_IlI2/IILIIF to become larger (in fact the crucial 

factor is [[U~_11[[2 as vfn <_ IlL[IF _< x/n(n + 1)/2). We cannot say the condition 
number aL (PAQ) is larger or smaller than aL (A). 

For the U factor, when partial pivoting is used, noticing 

1 < []L-iI[2HA[[F/[[U[[F < a2(L) < ~/2n(n + 1)(4 n + 6n - 1)/6, 

we have from (3.30) that  

(4.3) 1 _< au(PA) <_ a~(PA) <_ x/2n(n + 1)(4n + 6n - 1) inf a2(D-1U).  
6 D E D .  

Again from this bound we cannot say whether av(PA) is larger or smaller 
than av(A). But there is an essential difference between these upper bounds 
on av(PA) and aL(PA). The former has a choice of D, which may make 
infDeD~ a2 (D -1 U) not increase much. Furthermore if the ill-conditioning (with 
respect to inversion) of U is mostly due to the bad scaling of its rows, then 
infDeD, a 2 (D- 10 )  will be close to 1. In this case the U factor is not sensi- 
tive. When complete pivoting is used, the elements of U satisfy lui~l > lu~jl 
for all j > i. Then choosing D -- Do = diag(u11,.. .  ,un-l ,n- l ,c~)  and setting 

- Do lC ,  we have 1 = Ifi~il > Ifiijl for all j > i. Thus just as in (4.1), we have 

a 2 ( D o l 0  -) -- a2(U) _< x/2n(n + 1)(4 ~ + 6n - 1)/6, 

IIU _ IlI211AIIF 
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so from (4.3) we obtain the much better result 

1 <_ a~,(PAQ) <_ a~(PAQ) <_ n(n + 1)(4 n + 6n - 1)/18. 

Note the upper bound is only a function of n, which suggests complete pivoting 
can give a significant improvement in a~ (PAQ) over av(A). 

5 Numerical experiments .  

In Section 3 we presented first-order sharp perturbation bounds for the LU 
factors, obtained the corresponding condition numbers teL(A) and toy (A), and 
suggested teL(A) and ~v(A) could be estimated in practice by ~ ( A ,  DL) and 
~ ( A ,  Dr) with D~ = diag(llL(:, j)l12 ) and D~ -- diag(llU(i, :)112)- The condition 
numbers and condition estimates satisfy the following inequalities (see (3.28), 
(3.30), (3.34), (3.35), (3.42), and (3.43)): 

Ilu~-_lall2 IIAIIF/IILIIF <_ t%(A) <_ a~ (A) <_ IIL-~II2 IlU-~ll2 IIAIIF, 
a'(A) <_ a'(A, DL) <_ V~a'L(A), 

Irg-~ll~ ItAIIr/ItUIIF <_ ~ ( A )  < ,~" (A) <_ IIL-~II~ IIU-111~ IIAII~, 
t a~(A) <_ a'(A,D~) <_ vf~a'(A). 

where for the last inequalities in (5.1) and (5.1) we assume A is nonsingular. In 
Section 4 we discussed the effect of partial pivoting and complete pivoting on 
the sensitivity of the LU factorization. 

Now we give some numerical tests to illustrate our theoretical analyses. The 
matrices have the form A = D1BD2, where 

D1 = diag(1, d l , . . . ,  d~ -1), D2 = diag(1, d2, . . .  ,d 2n-1 ) 

and B is an n x n random matrix (produced by the MATLAB function randn). 
The results for n = 10; dl, d2 E {0.2, 1, 2}; and the same matrix B, are shown in 
Table 5.1 without pivoting, in Table 5.2 with partial pivoting, and in Table 5.3 
with complete pivoting, where 

~ -  IIU~-11112 IIAIIr/IILIIF, ~ = IIL-1112 IIAIIF/IIUIIF 

are the lower bounds, and 

/3 ~ IIL-~ll2 IIU-1112 IIAlIF 

is the upper bound in (5.1) and (5.1). 
We give some comments on the results. 

�9 The results confirm that /~ = I]L-1[[2 [[U-11[2 [[A[IF can be much larger 
than tel (A) and tcu(A), especially for the latter, so the first-order bounds 
(3.36) and (3.37) can significantly overestimate the true sensitivities of the 
L and U factors. 
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Table 5.1: Results without pivoting. 

dl d2 fla gL(A) a~(A, DL) flu au(A) a~(A, Du) fl 
0.2 0.2 
0.2 1 
0.2 2 
1 0.2 
1 1 
1 2 
2 0.2 
2 1 
2 2 

2.4e+9 2.4e+9 1.7e+10 3.8e+0 8:7e+0 1.8e+1 1.5e+12 
1.4e+5 1.7e+5 9.7e+05 2.8e+0 2.0e+2 7.3e+2 1.7e+07 
5.3e+6 7.2e+6 3.8e+07 1.2e+0 2.7e+4 1.2e+5 7.9e+08 
2.8e+3 3.4e+4 4.2e+05 4.9e+1 1.1e+2 2.3e+2 1.1e+07 
4.5e+0 2.2e+2 6.7e+02 2.8e+0 1.9e+2 7.3e+2 4.1e+03 
7.9e+2 3.7e+4 1.2e+05 1.5e+0 3.2e+4 1.4e+5 7.2e+05 
2.6e+1 3.4e+4 1.0e+06 3.1e+5 3.2e+5 1.4e+6 2.6e+08 
3.2e+0 3.2e+4 1.3e+05 3.2e+2 3.6e+3 8.2e+4 3.2e+07 
2.7e+2 2.7e+6 1.0e+07 6.7e+1 1.6e+5 6.4e+6 2.7e+09 

Table 5.2: Results with partial  pivoting, A = PA. 

dl d2 flL aL(A) ak(A, DL) flu au(A) ~(A, Du) 
0.2 0.2 
0.2 1 
0.2 2 
1 0.2 
1 1 
1 2 
2 0.2 
2 1 
2 2 

3.5e+9 3.5e+9 8.5e+9 1.6e+0 1.7e+0 3.1e+0 6.6e+11 
2.0e+5 2.4e+5 4.8e+5 1.6e+0 2.2e+1 8.8e+1 7.5e+06 
7.7e+6 1.0e+7 1.9e+7 1.6e+0 3.5e+3 2.1e+4 3.4e+08 
1.1e+5 2.1e+5 6.2e+5 4.7e+0 4.7e+0 6.7e+0 3.9e+06 
7.1e+0 1.3e+1 4.0e+1 2.5e+0 1.2e+1 4.3e+1 8.5e+01 
8.0e+2 1.4e+3 4.5e+3 1.6e+0 1.5e+3 6.0e+3 9.8e+03 
8.2e+6 1.2e+7 2.7e+7 2.1e+0 2.1e+0 3.2e+0 2.6e+08 
4.9e+2 6.3e+2 1.6e+3 1.7e+0 1.8e+1 7.8e+1 5.0e+03 
2.2e+4 2.7e+4 7.4e+4 1.Te+0 2.7e+3 1.4e+4 1.7e+05 

�9 tc ' (A,  DL) and a'(A,D,)  are  good  approx ima t ions  here of aL(A) and 
~v(A) ,  respectively,  no m a t t e r  whether  p ivot ing  is used or not.  This  was 
also the  case in our  o ther  numer ica l  exper iments .  

�9 Both  aL (PA) and a L ( P A Q )  can be much larger  or smal ler  t han  aL (A). So 
pa r t i a l  p ivot ing  and comple te  p ivo t ing  can make  the  L factor  more  sensit ive 
or less sensit ive.  But  from Tables  5.1-5.2 we see t ha t  pa r t i a l  p ivot ing  can 
give a significant improvement  on the  condi t ion  of the  U factor.  In  fact  
here t% (PA) < av (A) for all cases. F rom Table  5.3 we see t ha t  comple te  
p ivot ing  can give a more  significant improvement .  This  s t rongly  suggests  
we use comple te  p ivo t ing  when we want  an accura te ly  compu ted  U using 
finite precision.  

�9 It  can be seen t ha t  for most  cases the  L factor  is more  sensit ive t han  the  
U factor  no m a t t e r  whe ther  p ivo t ing  is used or not.  
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�9 When partial pivoting is used, we see that  a~ is close to its lower bound 
ilL. When complete pivoting is used, we see that  both g~ and a .  are close 
to their lower bounds flL and flu, respectively. 

dl d2 

Table 5.3: Results with complete pivoting, A _= PAQ. 

0.2 0.2 
0.2 1 
0.2 2 
1 0.2 
1 1 
1 2 
2 0.2 
2 1 
2 2 

av(A,D,) fl 
3.5e+9 3.5e+9 8.5e+9 1.6e+0 1.7e+0 3.1e+0 6.6e+11 
1.4e+5 1.4e+5 2.0e+5 1.2e+0 2.5e+0 6.6e+0 5.6e+06 
2.6e+6 2.6e+6 5.8e+6 1.4e+0 1.5e+0 4.4e+0 2.9e+08 
1.1e+5 2.1e+5 6.2e+5 4.7e+0 4.7e+0 6.7e+0 3.9e+06 
2.8e+0 5.0e+0 1.9e+1 3.4e+0 4.9e+0 1.4e+l 6.7e+01 
1.4e+2 3.3e+2 1.2e+3 5.0e+0 7.0e+0 1.6e+l 5.8e+03 
8.2e+6 1.2e+7 2.7e+7 2.1e+0 2.1e+0 3.2e+0 2.6e+08 
3.1e+2 3.4e+2 9.6e+2 1.8e+0 3.0e+0 1.3e+l 3.9e+03 
1.1e+4 1.2e+4 4.4e+4 2.2e+0 3.0e+0 7.5e+0 1.3e+05 

6 S u m m a r y  and  future  work.  

The first-order perturbat ion analyses presented here show what the sensitivity 
of each of L and U is in the LU factorization of A, and in so doing provide their 
condition numbers aL(A) and av(A) (with respect to the measures used, and 
for sufficiently small AA), as well as efficient ways of approximating them. 

As we know, a2 (L) is usually (much) smaller than a2 (U), especially in practice 
when we use partial pivoting in computing the LU factorization. So we can 
expect that  the computed solution of the linear system Lx = b will usually be 
more accurate than that  of the linear system Uy = b. However our analysis 
and numerical experiments suggest that  usually the L factor is more sensitive 
than the U factor in the LU factorization, so we expect U to be more accurate 
than L. This is an interesting phenomenon. Also we see the effect of partial 
pivoting and complete pivoting on the sensitivity of L is uncer ta in- -both  ~L (PA) 
and ~L(PAQ) can be much larger or smaller than aL(A). But partial pivoting 
can usually make U less sensitive, and complete pivoting can give significant 
improvement. 

In the future we would like to investigate the ratios (see (3.28) and (3.30)) 
~L(A)/~(A)  and ~u(A)/a~(A), and extend our analysis to the case where 
IAAI <_ e[A[ and to the case where AA has the equivalent form of backward 
errors resulting from standard algorithms for the LU factorization. 
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