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Abstract.

This paper gives sensitivity analyses by two approaches for L and U in the factor-
ization A = LU for general perturbations in A which are sufficiently small in norm.
By the matrix-vector equation approach, we derive the condition numbers for the L
and U factors. By the matrix equation approach we derive corresponding condition
estimates. We show how partial pivoting and complete pivoting affect the sensitivity
of the LU factorization.
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1 Introduction.

The LU factorization is a basic and effective tool in numerical linear algebra:
given a real n X n matrix A whose first n — 1 leading principal submatrices are
all nonsingular, there exists a unique unit lower triangular matrix L and unique
upper triangular matrix U such that

A=LU.

Notice here we require the diagonal elements of L to be 1. L and U are referred
to as the LU factors.

Let AA be a sufficiently small n x n matrix such that the first n — 1 leading
principal submatrices of A + AA are still all nonsingular; then A + AA has a
unique LU factorization

A+ AA = (L + AL)U + AU).
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The goal of the sensitivity analysis for the LU factorization is to determine a
bound on ||AL}| (or |AL|) and a bound on ||AU|| {or |AU]) in terms of (a bound
on) [|AA]| (or |AA]).

The sensitivity analysis of the LU factorization has been considered by other
authors. For the case when a bound is given on ||AA}|, the first rigorous per-
turbation bounds on ||AL|| and ||AU|| were presented by Barrlund [1]. Using a
different approach, Stewart [7] gave first-order perturbation bounds, which were
recently improved by Stewart [8]. In [8], L was not assumed to be unit lower
triangular, and a parameter p was used to control how much of the perturbation
is attached to the diagonals of L and U. For the case when a bound is given on
|AA|, rigorous perturbation bounds on |AL| and |AU| were given by Sun {9].

The main purpose of this paper is to establish new first-order bounds, derive
condition numbers, give new condition estimates, and shed light on the effect of
partial pivoting and complete pivoting on the sensitivity of the LU factorization
problem. We deal with the case when a bound is given on ||AA|| (norm-bounded
perturbations). Our perturbation bounds and condition estimates for this case
give improvements on those in [7] and [8], and probably this is the first time the
actual condition numbers have been delineated in the literature.

The rest of this paper is organized as follows. In Section 2 we obtain expres-
sions for L(0) and U(0) in the LU factorization A + tG = L(t)U(t). These basic
sensitivity expressions will be used to obtain our new perturbation bounds in
Sections 3. In Section 3 we derive perturbation results, first by the so-called
matrix-vector equation approach, which leads to sharp bounds, then by the so
called matrix equation approach, which leads to weaker but practical bounds.
The basic ideas behind these two approaches were discussed in Chang, Paige and
Stewart [4, 5]; see also Chang [2]. This paper is essentially a rewrite of Chapter
4 of [2).

Throughout the paper, for a nonsingular matrix A, we use the notation

kp(4) = [A7 [lpllAll, and condp(4) = [[|A™H]-|A] [l

for a consistent matrix norm || - ||,.

2 Rate of change of L and U.

To simplify the presentation, for any n x n matrix X = (z;;), we define the
strictly lower triangular matrix and upper triangular matrix

if§ > j

otherwise ’

(2.1) slt(X) = (si5), sijz{ i
(22) ub(X) = X —slt(X).

Il

Here we derive, for later use, the basic results on how L and U change as
A changes. If A is singular then so is U. To handle this case we introduce a
nonsingular U in the theorem.

THEOREM 2.1. Let A € R™*" have nonsingular leading k x k principal subma-
trices fork =1,...,n—1, and the LU factorization A = LU, and let AA € R**"
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satisfy AA = €G. If € is small enough such that the first n — 1 leading principal
submatrices of A+1G are nonsingular for all |t| < €, then A+tG has the unique
LU factorization

(2.3) A+1G = LOU®), |t <e,

which leads to

(2.4) LU(0) + L(O)U = G,
(2.5) L(0) = Lsit(L~1GUY),
(2.6) U(0) = ut(L'GU1)T,

with U = U + (@ — Unn)enel for some a # 0. In particular, A+ AA has the LU
factorization
(2.7 A+ AA=(L+ AL)(U + AU),

where AL and AU satisfy

(2.8) AL = e L(0) + O(e?),
(2.9) AU = eU(0) + O(e?).

PRrROOF. Since the first n — 1 leading principal submatrices of A + tG are
nonsingular for all |t| < ¢, A + ¢tG has the unique LU factorization (2.3). Note
that L(0) = L, L(e) = L+ AL, U(0) = U and U(e) = U + AU. When t = ¢,
(2.3) becomes (2.7). It is easy to observe that L(t) and U(t) are continuously
differentiable for |t| < € from a standard algorithm for the LU factorization. If
we differentiate (2.3) and set t = 0 in the result, we obtain (2.4) which we will
see is a linear equation uniquely defining the elements of strictly lower triangular
L(0) and upper triangular U (0) in terms of the elements of G. Since L(0)e, =0,
(2.4) may be rewritten as LU (0) + L(0)U = G, giving

LY+ U0 = L7GU L.

Note that L~!L(0) is strictly lower triangular and U(0)U~! is upper triangular,
thus we have

L7YL0) =st(L7IGU™Y,  U©0)T! =ut(L7*GU™Y),

which give (2.5) and (2.6). Finally the Taylor expansions for L(¢) and U(%)
about ¢ = 0 give (2.8) and (2.9). If A, and so U, is nonsingular, we can replace
U above by U. O

3 Main results.

The basis for deriving first-order perturbation bounds is the equation (2.4),
or (2.5) and (2.6). There are two ways to proceed. The matrix-vector equation
approach (which here is based on (2.4)) will be used to provide sharp bounds,
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resulting in the condition numbers of the problem, while the matrix equation
approach (based on (2.5) and (2.6)) can be used to obtain more practical bounds,
-resulting in easily computable upper bounds on the condition numbers.

Throughout this section we invoke all the assumptions in Theorem 2.1, so we
can use its conclusions. Also we assume

(3.1) |AAllF < €]|AllF,
so using AA = €G as in Theorem 2.1 we see
(3.2) IGllF < [|AllF

(if € = 0, all results we will present are obviously true). The one exception to
(3.1) occurs in Remark 3.3 where we assume ||AAl|1,00 < €{|A]]1,00-

3.1 Matriz-vector equation analysis and condition numbers.
For any matrix C = (¢;;) = [e1,...,¢n] € R™™™, denote by cy) the vector of

the first ¢ elements of ¢;, and by cg»l) the vector of the last ¢ elements of ¢;. With
these, we define (“u” denotes “upper”, “sl” denotes “strictly lower”)

(1) (n-1)

C1 ¢ !

C2 652) cg"—_—ﬁ)
vee(C)Y=| . |, uvec(C) = ) , slvec(C) = )

Cn CSL") ey

n—1

These last two are the vectors formed by stacking the columns of the upper
triangular part of C into one long vector and by stacking the columns of the
strictly lower triangular part of C into one long vector, respectively.

Using this notation we will rewrite (2.4) in the form (3.3) below—the “matrix-
vector equation” form. With obvious notation (u; for 4;(0), etc.) the jth column
of LU(0) + L(0)U = G, which is (2.4), is

gi = [ll,lg,...,ln]d]’ + [il,ig,...,[n]Uj = [ll,,lj]ugj) + [il,... ,ij]u(j)

0 .
= [l,.... ;)6 +[ 0 ]li——)n_l T R S N R s
UUI J
’U.sz

It follows that the matrix equation (2.4) can be rearranged as

(3.3) [ uvec(U(0))

stvec(L(0)) ] = vec(G),

n(n+1)

where W = [Wr, Wy], with Wy, € R* ™7 being the n-block by n-block
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M1
I
lnl
1
l21 1
lnl ln?
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1
121 1
ln—l,l ln—1,2 1
L lnl ln2 ln,n—l 1 J
and Wy € R*** being the n-block by (n — 1)-block
( 0
U1
U11
U1
0 0
Ui2 0
U2 U22
U2 U2
0 0
Ul n—1 0
Up,n—1 U2,n—1
Ul n—-1 Uz n—1 Up_1,n-1
0 0
Uin 0
Uin U2n
i Uln Uzp Up—1,n
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It is easy to observe that after appropriate column permutations, [W, Wy] will
become lower triangular with diagonal elements

5 .
-

1,u11,u11,...,u11,1,1,u22,---,uzg,'-',l 1, ..,l,u,._l‘,,_l,l,l,...,l.
~ s~ - ~ D S

" v

n n n n

Since the leading (n — 1) x (n — 1) block of U is nonsingular, W is also, and from
(3.3) we have

uvec(U(0)) 1 _ 11
(3.4) [ stvec(L(0)) | ~ W™ vec(G).
If we partition W~! into two blocks, we have from (3.4) that
| Yo
a5 wo =[],
(3.6) slvec(L(0)) = Yrvec(G),  uvec(U(0)) = Yyvec(G).

We see ||slvec(L(0))]lz = |L(0)||# and |juvec(TU(0))|l2 = |U(0)||F, and by using
these norms we will be able to obtain tight bounds. Thus taking the 2-norm and
using ||Gl|¥ < ||A||F we have

(3.7) ”.L(O)”F <|IYill2lIGllr < IYLll2)|AllF,
(3.8) NWUO)Ir < IYullllGllr < IYullzllAllF,

where individual equalities can be obtained by choosing G such that vec(G) lies
in the space spanned by the right singular vectors corresponding to the largest
singular value of either Y7, or Yy, respectively, and ||G||r = ||A||r. Thus from the
Taylor expansions (2.8) and (2.9), we obtain the following individually attainable
first-order bounds,

1ALl _ YalbllAll, | 2
3.9 e < jzle <o)

1AULe _ [¥olelAllr_ 2
(3.10) e = ol <o)

These two sharp bounds imply that the condition numbers for the L factor and
the U factor defined respectively by

k. (A) = lim sup { ALE 4 Ag = (L+ AL)U + AD), [|AA]lF < € ||A[|F} ,
e—=0 A g EHLHF

ke (A) = lim sup { AUNE . 4\ Ag = (L + AL)U + AU), [|A4]lF <€ ||A||F}
=0 a4 | €||Ul|F
are given by
IYLll2l|AllF 1Yo ll2l|All
3.11 ko (4) = WE2UANE gy Ul ANE
(3.11) «A = o= o
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3.2 Matriz equation analysis and condition estimates.

Given a bound on the norm of the change in A, in Section 3.1 we derived
sharp perturbation bounds for the L factor and U factor, and presented the
corresponding condition numbers. But it is difficult to estimate these condition
numbers by using the usual approach. Now we add the matrix equation approach
to this to derive more practical perturbation bounds.

First we derive a perturbation bound for the L factor. Let U,_; denote the

leading (n — 1) x (n — 1) block of U. If we write U = [ U'(l)_l uu
(2.5),

Lo Ul -Uufe | _ s U 0
L(O)-let( G[ 0 1o ]>_let(L G o ol )
(3.12)
Denote by D, the set of all n x n real positive definite diagonal matrices. Let

D = diag(é1,-..,d,) € D,. Note that for any n x n matrix B we have Dslt(B) =
slt(DB), so from (3.12) we obtain

J , then from

f -1 -1 U__11 0
(3.13) L) =Lp 'sit( DLTIG | nt (1)
Noting ||slt(B)||r < ||B||r for any B € R"*™, we have
1Ll < ILD DL U212 NIGll e,
which with ||G||r < [|A||F in (3.2) gives

ILO)lr _ U el Al
17 R 77 P

Since this is true for all D € D, by the Taylor expansion (2.8) we have

(3'14) ”AL”F <n (A) +O(62)
IZlls
where
/ =
(3.15) K,(4) = inf K, (4,D),
U124
(3.16) k. (A, D) = ,;2(LD—1)M|_2|_|M.
IL|| 7

Since k.(A) given by (3.11) is the condition number for the L factor, we
certainly have

(3.17) £.(A) < k(A),

and as it is reasonably easy to find good approximations to ! (A), we can use
this as a condition estimate.
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Also we can obtain a lower bound on «.(A4). Let nonzero v € R"! be such
that [|U; 5ol = U4 20v]l2- In (3.12), take G = [e,vT,0], where e, =
[0,...,0,1]T € R™. Then it is easy to verify that

L(0) = e, [vTU 1., 0],

80
ILO)IF = T U212 = 102 ll2llvll = (U2 (121Gl e-

Combining this with the first equality of (3.6), we have for this special G that
U2 20Glle = [1L(O)]|F = [Istvec(L(O))]l2 = [IYzvec(@D)llz < IYLl2(IG]IF,
which gives the general result

(3.18) 1¥zll2 > 10242,

or with (3.11),

A
(319) IiL(A) = ”YL||2||A”F > ” 1“2” ”F \/1__1_/1;
ILl| IL]|7

This last inequality follows from A diag(U,;},,0) = [L, 0], where L is the first n—1
columns of L, so ||L{|r < [|JU2, Iz ||Al|F and ||L||F IL||%+1 > n. Taking A =

diag(l,,—1,0) makes W in (3.3) a permutation matrix, giving £, (4) = /1 —1/n
in (3.11), so the overall lower bound is attainable. We would like to point out
that (3.18) can also be derived directly from the structure of W in (3.3).

Now we derive a practical perturbation bound for the U factor. In what follows
we can replace U (see Theorem 2.1) by U when U is nonsingular. Let D € D,,.
Notice for any n x n matrix B we have ut(BD) = ut(B)D, so from (2.6) we
obtain

U(0) = uwt(L"'GU-'D)D~'U.

Thus
(3.20) 1TO) | < IZ7HT ™ DIl UG F,
which with ||G||r < ||4||F gives

[TO)llr

1Ll lAfl
101l

1Ullr

Since this is true for all D € D,,, by the Taylor expansion (2.9) we have

1AU|}r
IUIF

< k2(D70)

(3.21) < Kkl (A)e + O(e),
where
(3.22) Kk, (A) = Diéllg,, Ky, (A, D),

U
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L2l AllF
UlIF
Note the freedom a in U does not affect the result of the optimization.

Since ky (A) given by {3.11) is the condition number for the U factor, certainly
from (3.21) we have

(3.24) Ko (A) < Ky (A).

!
K/U
Also we can get a lower bound on &, (A). Let nonzero v € R™ be such that
IL= v||2 = ||IL~"}|2||vl|2, and take G = vel in (2.6) to give

(3.23) Kk (A, D) = ko(DT)

U(0) = ut(L™velTHT = L™ wel.
Combining this with the second equality in (3.6) gives here
ITO)F = 1L l2llolls = IL7H20IGllF = [Yuvec(G)llF < IYulllIGllr

and so in general

(3.25) IYullz > 1L,

that is, with (3.11),
-1

(3.26) ku(A) > I (lAlle > L
IUIlr

Taking A = I gives ky(A) = 1, so again this overall lower bound is attainable.
Like (3.18), (3.25) can also be shown directly from the structure of W in (3.3).

These results, and the analysis in Section 3.1, can be summarized in our first-
order perturbation theorem:

THEOREM 3.1. Suppose all the assumptions of Theorem 2.1 hold and let
|AA|lF < €||Allr. Then A+ AA has the unique LU factorization

A+ AA=(L+ AL)(U + AU),
where with k. (A) and x,(A) defined in (3.11), we have for the L factor:

IAL|lr
ILliF

(3.27) < K (A)e + O(€?),
with bounds on k. (A) of

-1 A . A
\/l_l/nSM—“—F<HL(A)<I€I (A)E inf KQ(L.D_l)”Un_llhll ”F’

ILlle ~ - DeD, 1Ll
(3.28)
and for the U factor:
(3.29) a1 < ky(A)e + O(€?),
IUlI#

with bounds on k,(A) of

1L~ 2Nl AllF

JZ 04l
Ul

3.30) 1 <
(3:30) 1 < e

< ky(A) <k, (A) = Dicfllt;n ke (D1D)



ON THE SENSITIVITY OF THE LU FACTORIZATION 495

REMARK 3.1. We might consider simplifying &} (A4, D) and (A, D). If we
use

(3.31) lAlle < ILIANU2, LIV F,
then we have from (3.16) and (3.23)

(3.32) k(4 D) < k2 (LD U N2NUZ4 2,
(3.33) k1, (A, D) < ka(L)ko(D1U).
But both of the right hand sides of these inequalities can be arbitrarily larger

than the corresponding left hand sides due to the inequality (3.31). Note there
can be large cancellation in the product LU = A.

REMARK 3.2. If we assume A is nonsingular, take U = U and D = I in both
x, (4, D) and ;,(A, D), and use ||L|l2 < [|L||r, [IU]lz < |Ullr and [UZ2 ]|z <
[[U~1]|2, then from (3.16) and (3.23) we have

(3.34),,(4) < w,(A, 1) < ma( DIV 2 1ANR/ILIF < 2712 1T 12 14l P,

(3.35) iy, (A) < k(A1) < ma (L2 AN/ NU N < ILT 2 1Tz 1Al e
Thus it follows from Theorem 3.1 that

AL _ -
(3.36) e T [ L M P
i
AU _ -
(3.37) LT S L™ U oAl e
F

These perturbation bounds were obtained by Stewart [7]. They are simple,
but can overestimate the true sensitivity of the problem. By using the scaling
technology, Stewart [8] obtained significant improvements on the above results.
In [8], the diagonal elements of L were not assumed to be 1’s, and the diagonal
elements of AL may not be 0’s, and a parameter p was used to control how much
of the perturbation is attached to the diagonals of L and U. The perturbation
bounds given in [8] are equivalent to

AL

(3.38) %wysmwnﬂ@wm
AU

(3.39) ”||U|||,|VF < Kka(L)ka (D70 ).

Note k2(L)kz(D~1U) in the second bound is equivalent to the right hand side
of (3.33) with nonsingular U, while k2(LD~1)ka(U) in the first bound can be
arbitrarily weaker than the right hand side of (3.32). But we have already seen
those two can be arbitrarily weaker than (3.23) and (3.16), so while (3.38) and
(3.39) are often useful, they can be unnecessarily weak in some circumstances.
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REMARK 3.3. If we use the 1- and co-norms, we can get perturbation bounds
without involving the scaling matrix D. In fact, suppose ||AAl, < €|4|lp,
p = 1,00 instead of (3.1), then since G = AA/e we have ||G||, < ||A|lp. From
(3.12) we have

1£0)] < |ZIIZ G [ (UnZa] 0 ] ,

0 0
so taking the p-norm (p = 1, 00) gives

L)l < condp(L™ ) Un-1llp IGllp < condp (L™ |Un-1llp 1 All,-

Then we have from the Taylor expansion (2.8)

U211 1Al
1Ll
Condp(L_l)”U”p ”Un_—ll llpe+ O(€).

(3.40)

IA

ond, (L") €+ O(e?)

AN

Similarly from (2.6) (where if U is nonsingular cond,(U) = cond,(U)),

R L T
(3.41) iR < cond,(U) T + O(e*),
< Kp(L)cond,(T) € + O(€?).

Note cond,(L™!) is invariant under any column scaling of L and cond,(U) is
invariant under any row scaling of U (so it is independent of the freedom « in
U).

As far as we know, it is expensive to estimate the condition numbers &, (A) and
ky(A) in (3.11) directly by the usual approach except when A has some special
structure (for example, A is tridiagonal; see Chang and Paige [3]). Fortunately
we can estimate the condition estimates « (A) and «},(A) reasonably efficiently.
By a well-known result of van der Sluis [10], we have

ra(LD7Y) <V inf ry(LD7Y),

where D, = diag(||L(:,§)||2). This is to say xk2(LD~!) will be near its infimum
when each column of LD~! has unit 2-norm. Therefore we have

(3.42) k. (A) < K, (A,D1) < vk, (A).

So in practice we choose D = D,, then use a standard condition estimator and
a norm estimator to estimate k', (A4, D, ), which costs O(n?) flops. Similarly, we
have

(3.43) Ky (A) < Ky (4, Dy) < Vnky(A),

where D, = diag(||U (3, :)||2), i-e., each row of D;;*U has unit 2-norm. So in prac-
tice we choose D = D,,, and use a standard condition estimator and a norm es-
timator to estimate &!,(A4, Dy ), which costs O(n?) flops. Numerical experiments
(see Section 5) show that ' (4, D;) and k|, (A, D) are good approximations to
k.(A) and K, (A), respectively.
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4 Effects of pivoting on sensitivity.

It is well known that the standard algorithms for LU factorization without
pivoting are not numerically stable. In order to repair this shortcoming, partial
pivoting or complete pivoting should be incorporated in the computation. In
this section we examine the effects these two pivoting strategies have on the
sensitivity of the factorization. In other words we want to see how different the
sensitivity of the LU factorization of A is from that of the LU factorization of
the new matrix, A, with its rows (and columns) permuted.

Suppose partial pivoting or complete pivoting is used in the LU factorization
PAQ = LU, where P and @ are permutation matrices (¢) = I if partial pivoting
is used) and |l;;] < 1 for ¢ > j. It is easy to show that |(L~1);;| < 2¢79-1 for
i > j (see Higham [6, p. 156]). Thus

(A1) 1<m(L) < IEIFILIr < v/20(n + D@ + 6n = 1)/6.
Then from (3.28) with D = I we have

U2 [l2l1Allr
ILlir

IA

k. (PAQ) < K, (PAQ)

V2nin + DA + 6n - 1) [|U 221 AllF
- 6 LIz

(4.2)

so standard partial pivoting or complete pivoting keeps the condition number of
L within a factor, only involvmg n, of its lower bound. But it is possible that
such plvotlng may cause ||U; % |2/IIL||F to become larger (in fact the crucial
factor is ||U, 2, |12 as v/n < ||L|lr < v/n(n + 1)/2). We cannot say the condition
number NL(PAQ) is larger or smaller than nL(A)

For the U factor, when partial pivoting is used, noticing

1< LN ANR/ U < 82(L) < v/2n(n +1)(4" + 6n — 1)/6,
we have from (3.30) that

\/Qn(n + 1" +6n—1) inf ky(DT).

(4.3) 1< ky(PA) <k, (PA) < . nf

Again from this bound we cannot say whether k,(PA) is larger or smaller
than k,(A). But there is an essential difference between these upper bounds
on ky(PA) and k,(PA). The former has a choice of D, which may make
inf pep,, £2(D~1U) not increase much. Furthermore if the ill-conditioning (with
respect to inversion) of U is mostly due to the bad scaling of its rows, then
inf pep, k2(D~1U) will be close to 1. In this case the U factor is not sensi-
tive. When complete pivoting is used, the elements of U satisfy |ui| > |us;]
for all j > i. Then choosing D = Dy = diag(ui1,-..,%n—1,n—1,@) and setting
U = Dy'U, we have 1 = |iy;| > |iy;| for all j > 4. Thus just as in (4.1), we have

ka(DG0) = k2 (U) < /2n(n +1)(4" + 6n — 1)/6,
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so from (4.3) we obtain the much better result
1< ky (PAQ) < K., (PAQ) < n(n + 1)(4"™ + 6n — 1)/18.

Note the upper bound is only a function of n, which suggests complete pivoting
can give a significant improvement in , (PAQ) over k,(A).

5 Numerical experiments.

In Section 3 we presented first-order sharp perturbation bounds for the LU
factors, obtained the corresponding condition numbers k.(A) and xy,(A), and
suggested k. (A) and Ky (A) could be estimated in practice by &’ (4,D,) and
k4, (A, Dy) with D, = diag(||L(:, j)||2) and Dy, = diag(||U(4,:)||]2). The condition
numbers and condition estimates satisfy the following inequalities (see (3.28),
(3.30), (3.34), (3.35), (3.42), and (3.43)):

N0 2 NANE/LN e < k(A) < 6, (A) < LY 1Tz | AllF,
K (A4) <k (A, D) < vk (4)
Ll IIAIIF/HUHF < ku(4) < Ky(4) < HL‘lllz U=z 1Al 7,
k!, (A) < K, (4, Dy) < vk, (A

where for the last inequalities in (5.1) and (5.1) we assume A is nonsingular. In
Section 4 we discussed the effect of partial pivoting and complete pivoting on
the sensitivity of the LU factorization.

Now we give some numerical tests to illustrate our theoretical analyses. The
matrices have the form A = DyBD,, where

D, = diag(1,dy,...,d}™"), D, =diag(l,ds,...,dy™ ")

and B is an n x n random matrix (produced by the MATLAB function randn).
The results for n = 10; d;, d2 € {0.2,1,2}; and the same matrix B, are shown in
Table 5.1 without pivoting, in Table 5.2 with partial pivoting, and in Table 5.3
with complete pivoting, where

Be= U NANF/ILNF, Bo =L 2 IAIR/IUNF

are the lower bounds, and
B=IL7 01U 2 Al

is the upper bound in (5.1) and (5.1).
We give some comments on the results.

e The results confirm that 3 = ||L7Y|2 ||[U7"]|2 ||Al|r can be much larger
than k., (A) and k. (A), especially for the latter, so the first-order bounds
(3.36) and (3.37) can significantly overestimate the true sensitivities of the
L and U factors.
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Table 5.1: Results without pivoting.

dz B k(4) k(A D) B ku(A) ky(A, Dy) B

0.2
0.2
0.2

DN BN DN = e

0.2 | 2.4e+9 2.4e+9 1.7e+10 3.8e4+0 8:.7e+0 1.8e+1 1.5e+12
1 | 14e+5 1.7e4+5 9.7e+05 2.8e4+0 2.0e+2 7.3e+2 1.7e407
2 | 5.3e+6 7.2e+6 3.8e+07 1.2e4+0 2.7e+4 1.2e+5 7.9e4+08

0.2 | 2.8¢+3 3J.de+4 4.2e+05 4.9e+1 1.le+2 2.3e+2 1.1e+07
1 | 45e+0 2.2e4+2 6.7e+02 2.8e+0 1.9e+2 7.3e+2 4.1e4-03
2 | 7.9e+2 3.7e+4 1.2e4+05 1.5e+0 3.2e+4 1.4e+5 7.2e+05

0.2 | 2.6e+1 3.4e+4 1.0e4+06 3.1e+5 3.2e4+5 1.4e+6 2.6e+-08
1 | 3.2e+0 3.2e+4 1.3e+05 3.2e+2 3.6e+3 8.2e+4  3.2e+07
2 | 2.7e+2 2.7e+6 1.0e4+07 6.7e+1 1.6e+5 6.4e4-6 2.7e4-09

Table 5.2: Results with partial pivoting, A= PA.

d;

da B KL (A) fi’L (A, DL) Bu Ku (A) K‘IU(Aa DU) B

0.2
0.2
0.2

B BN DN b= et

0.2 | 3.5e+9 3.5e+9 8.5e+9 1.6e+0 1.7e+0 3.1e+0 6.6e+11
1 2.0e+5 2.4e+5  4.8e+H 1.6e+0 2.2e+1 8.8e+1 7.5e+06
2 | 7.7e+6 1.0e+7 1.9e+7 1.6e+0 3.5e+3 2.1e+4 3.4e+08

0.2 | 1.le+5 2.1le+5 6.2e+5 4.7e+0 4.7e+0 6.7e+0 3.9e+06
1 7.le+0 1.3e+1 4.0e+1 2.5e+0 1.2e+1 4.3e+1 8.5e+01
2 8.0e+2 1.4e+3 4.5e+3 1.6e+0 1.5e+3 6.0e+3 9.8e+03

0.2 | 8.2e+6 1.2e47 2.7e+7 2.1e+0 2.1e+0 3.2e+0 2.6e+08
1 | 49e+2 6.3e+2 1.6e+3 1.7e40 1.8e+1 7.8e+1 5.0e+03
2 2.2e+4 2.7e+4 7.4e+4 1.7e40 2.7e+3 1.4e+4 1.7e+05

k' (A,D.) and (A, Dy) are good approximations here of &, (A) and
£y (A), respectively, no matter whether pivoting is used or not. This was
also the case in our other numerical experiments.

Both k. (PA) and k. {PAQ) can be much larger or smaller than &,(4). So
partial pivoting and complete pivoting can make the L factor more sensitive
or less sensitive. But from Tables 5.1-5.2 we see that partial pivoting can
give a significant improvement on the condition of the U factor. In fact
here k,(PA) < ky(A) for all cases. From Table 5.3 we see that complete
pivoting can give a more significant improvement. This strongly suggests
we use complete pivoting when we want an accurately computed U using
finite precision.

It can be seen that for most cases the L factor is more sensitive than the
U factor no matter whether pivoting is used or not.
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e When partial pivoting is used, we see that &, is close to its lower bound
B.. When complete pivoting is used, we see that both ., and k. are close
to their lower bounds 3, and 8y, respectively.

Table 5.3: Results with complete pivoting, A = PAQ.

di  do B, k.(A) K (A, D) B xu(A) ry(A,Dy) 8

0.2 0.2 3.5e+9 3.5e+9 8.5e+9 1.6e+0 1.7e+0 3.1e+0 6.6e+11
0.2 1 1.4e+5 1.4e+5 2.0e+5 1.2e+0 2.5e+0 6.6e+0 5.6e+06
0.2 2 2.6e+6 2.6e+6 5.8e+6 1.4e+0 1.5e+0 4.4e+0 2.9e+08
0.2 | 1.le+5 2.le+4b 6.2e+5 4.7e4+0 4.7e+0 6.7e+0 3.9¢+06
1 2.8¢+0 5.0e+0 1.9e+1 3.4e+0  4.9e+0 1.4e+1 6.7e+01
1.4e+2 3.3e+2 1.2e+3 5.0e4+0 7.0e+0 1.6e+1 5.8e+03
0.2 | 8.2e+6 1.2e+47 2.7e+7 2.1le+0  2.1e+0 3.2e+0 2.6e+08
1 3.1e+2 3.4e+2 9.6e+2 1.8¢+0  3.0e+0 1.3e+1 3.9e+03
2 l.le+4 1.2e+4 4.4e+4 2.2e+0 3.0e+0 7.5e+0 1.3e+05

LSO R R

6 Summary and future work.

The first-order perturbation analyses presented here show what the sensitivity
of each of L and U is in the LU factorization of A, and in so doing provide their
condition numbers x;(A) and x,(A) (with respect to the measures used, and
for sufficiently small AA), as well as efficient ways of approximating them.

As we know, ky(L) is usually (much) smaller than &2 (U), especially in practice
when we use partial pivoting in computing the LU factorization. So we can
expect that the computed solution of the linear system Lz = b will usually be
more accurate than that of the linear system Uy = b. However our analysis
and numerical experiments suggest that usually the L factor is more sensitive
than the U factor in the LU factorization, so we expect U to be more accurate
than L. This is an interesting phenomenon. Also we see the effect of partial
pivoting and complete pivoting on the sensitivity of L is uncertain—both k. (P A)
and k., (PAQ) can be much larger or smaller than k.(A). But partial pivoting
can usually make U less sensitive, and complete pivoting can give significant
improvement.

In the future we would like to investigate the ratios (see (3.28) and (3.30))
kr(A)/k, (A) and ky(A)/k},(A), and extend our analysis to the case where
[AA] < ¢|A| and to the case where AA has the equivalent form of backward
errors resulting from standard algorithms for the LU factorization.
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