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A b s t r a c t .  

Usually the straightforward generalization of explicit Runge-Kutta methods for or- 
dinary differential equations to half-explicit methods for differential-algebraic systems 
of index 2 results in methods of order q _< 2. The construction of higher order meth- 
ods is simplified substantially by a slight modification of the method combined with 
an improved strategy for the computation of the algebraic solution components. We 
give order conditions up to order q = 5 and study the convergence of these methods. 
Based on the fifth order method of Dormand and Prince the fifth order half-explicit 
Runge-Kutta method HEDOP5 is constructed that requires the solution of 6 systems 
of nonlinear equations per step of integration. 
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1 I n t r o d u c t i o n .  

The numerical solution of differential-algebraic systems requires the solution 
of nonlinear equations. That  is why implicit discretization methods (implicit 
Runge-Kut ta  methods, BDF) are very popular for the integration of differential- 
algebraic systems. However, for non-stiff systems the numerical effort can be 
substantially decreased if only the algebraic part  is discretized implicitly (e.g., 
[9, 13, 3, 17, 2, 15], see also the survey in Section VII.6 of the monograph [12]). 

In the present paper  we study the solution of the initial value problem 

(1.1) y'(t)o == g(y(t))f(Y(t)'z(t)) } , t e [to,te], y(to) = Yo, z(to) = Zo 

by half-explicit Runge-Kut ta  methods. We suppose that  (1.1) has a solution 
y : [to, te] _+~n~, z : [to, t~] ~ ~t n~ and that  f and g are sufficiently differen- 
tiable and satisfy the index-2 condition 

(1.2) [gvfz](~], ~) non-singular 
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in a neighbourhood of the trajectory {(y(t), z(t)) : t E [to, te]}. The initial values 
y0, z0 are assumed to be consistent: 

g(Y0) = 0 ,  [gyfl(Y0,Z0) = 0. 

Because of (1.2) the differential-algebraic system (1.1) is of (differential and 
perturbation) index 2 (see [10, p. 3if]). Systems of the form (1.1) arise in various 
applications, e.g., as index-2 formulation of model equations for constrained 
mechanical systems and in the integration of systems of ordinary differential 
equations (ODEs) with invariants (see Section 4 and [6]). 

Half-explicit Runge-Kutta  methods for (1.1) were introduced by Hairer et al. 
in [10]. They compute the differential solution components y similar to explicit 
Runge-Kutta methods for ODEs. The algebraic solution components z are 
defined such that all stage values Yni remain in the manifold { ~ : g(~) = 0 } that  
is given by the algebraic constraints in (1.1). In contrast to implicit Runge-Kutta  
methods and BDF that require the solution of systems of >_ ny + nz nonlinear 
equations the systems of nonlinear equations that have to be solved in half- 
explicit Runge-Kutta  methods are of dimension nz, only. This approach is 
studied in detail in [3, 4, 5]. The code HEM5 [3] that is based on a fifth order half- 
explicit method is successfully used in the dynamical simulation of constrained 
mechanical systems. 

A drawback of these half-explicit Runge-Kutta  methods (we call them Type A 
methods) is a severe order reduction: for traditional higher order explicit Runge- 
Kutta methods the order usually drops down to q = 2. I.e., to handle the alge- 
braic part of (1.1) Type A methods lose efficiency in the integration of the 
differential part. In the present paper we modify the approach of [10] in the 
first Runge-Kutta stage (Type B methods). This modification is closely related 
to the work of Murua [15], who introduced independently but approximately at 
the same time the class of partitioned half-explicit Runge-Kutta  methods. 

We prove for a wide class of methods up to classical order p = 5 that Type B 
methods do not suffer from order reduction in the differential components pro- 
vided that the approximation of the algebraic components is sufficiently good. 
For methods with p = s < 4 and for the fifth order method of Dormand and 
Prince [8], [11, p. 178ff], this approximation is obtained by at most one addi- 
tional stage of the half-explicit method. We compared HEDOP5--a  fifth order 
Type B method based on the explicit Runge-Kutta  method of Dormand and 
Prince--with the fifth order Type A method HEM5 [3] and with the fifth order 
partitioned half-explicit Runge-Kutta  method PHEM56 [15]. Both HEDOP5 
and PHEM56 are very efficient integrators for non-stiff index-2 systems; they 
are clearly superior to the Type A method HEM5. If the integrators are applied 
to the model equations of constrained mechanical systems then HEDOP5 is a 
little bit faster than PHEM56 since HEDOP5 needs less function evaluations per 
step of integration. 

In Section 2 we define Type B methods and prove convergence. In Section 3 
we analyse the local error, give order conditions up to order q = 5 and construct 
methods of order q <_ 4 and the fifth order method HEDOP5. Details of the 
implementation and results of numerical tests are discussed in Section 4. 
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2 T yp e  B methods:  Def in i t ion and convergence.  

One step of an s-stage half-explicit Runge-Kut ta  method for (1.1) is given by 
[10, p. 20if] 

(2.1) 

i--1 

Y,~i = Yn + h E aijf(Ynj,  Znj) 
j=l , ( i = i o ( 1 ) ~ + l ) ,  

J 0 = g(Yni) 

(2.2) 

with 

$ 

Yn+lo =: g(YnT1)Yn -~ h j:IE bJf(gnJ' Znj) } 

Ynl := Y,~, i0 := 2 ,  ~ := s (Type A method). 

The aij, bj denote the coefficients of the method with aij :-- 0 i f j  _> i. Through- 
out the paper we set 

as+l,j := bj, (j = l(1)s) , Cl := 0 , ci := E j  aij , (i = 2(1)~ + 1). 

For simplicity we restrict ourselves to autonomous systems (1.1) but the results 
can be carried over to the non-autonomous case adding the auxiliary equation 
t' = 1 to (1.1). If ai,i-1 ~ 0, (i = 2(1)s), b~ ~ 0, then the method is well-defined 
[10, Theorem 4.10]: in the i-th stage Z~,i-1 is computed as solution ~ of the 
system of nonlinear equations 

(2.3) 
i--2 

O: Oi(~) :-~ g(Yn -~-h E aijf(YnJ' ZnJ)-~- hai'i-lf(Yn'i-l' ~)) j-=l 
that is locally uniquely solvable if h is sufficiently small and Yn is close to y(tn) 
(because of (1.2) the Implicit function Theorem is applicable here). The method 
defines an approximation Y~+I to y(tn + h). Hairer et al. [10] suggest to use 
methods (2.1)-(2.2) with c8 = 1 such that z~+l := Z~8 gives an approximation 
to z(t  + h). 

REMARK 2.1. 
(a) As in the ODE case the final stage y~+l should give a high order approxima- 
tion to y(t,~ + h) but the first stage vector Y,~2 gives only a poor approximation 
to y(t,~ + c2h). If an explicit Runge-Kut ta  method is applied with y~ := y(t,~) 
to the ODE y' = ~o(y) then 

Y,~2 = yn + c2h~o(yn) = y(tn) + c2hy'(t,~) = y(tn + c2h) + O(h 2) 

and ~(Yn2) is therefore a poor approximation to y~(tn + c2h). In higher order 
methods the influence of Y,~2 on the final stage vector Yn+l is usually kept small 
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y'(t~) _ _  

y~ = y ( t , ) ~ _ . _  

.f (Y~i, Z~i) 

Yn2 

{ u : g(u) = 0 } 

' t  Figure 2.1: Difference between f(Y~l, Z~I) and y (~). 

setting b2 := 0. In the fifth order method of Dormand and Prince [11, p. 178i] 
we even have for i = 2 

(2.4) b, = O, E j  bjaji = O, E j  bjcjaji = o, E j , k  bjajkak, = O.  

(b) In contrast to the ODE case f(Yni, Zni) is not only for i = 2 a poor ap- 
proximation to y'(t,~ + c~h) but also for i = 1 (even if y,~ := y(t~)): the Taylor 
expansion of [10, p. 68ff] proves 

I(Ynl, Zn~) = I (y( t , ) ,  z(t,~)) + L(y(t,~), z(tn))(Znl - Z(tn)) + O(h 2) 
c2h 1 

= y'(tn) + --~-[ fz(-gyfz)-  gyy(f,f)](y(tn),Z(tn)) + O(h2), 

i.e., if the algebraic constraints g are nonlinear (gy # const) then 

f (Ynl ,  Z,~i) - y'(t~) = O(h).  

Figure 2.1 illustrates that the large difference between f(Ynl, Z~I) and y'(tn) 
is caused by the condition g(Yn2) = 0. If Yni = y(tn) then y'(tn) lies in the 
tangential plane of the manifold { ~} : g(~) = 0 } at y(t~) since 

On the other hand 

d 
g~(y(t,))y'(t~) = ~g(y(t))lt=tn = O. 

] 
/ ( r n i ,  Z n l )  : - - L  (Y~2 - y ( t n ) ) ,  

c2n 

i.e. f(Y~l,  Zni) is parallel to the vector that  joins the points y(tn), Yn2 of this 
manifold. 

REMARK 2.2. 
(a) Brasey and Hairer [4, 3] reduce the influence of f (Ynl ,  Z~i) on the final stage 
setting 

bl = b2 = O ~_, bjajl  = ~ ,  bjaj2 = O 
' j J 

for a method of order q = 4 and (2.4) for i = 1, 2, 3 for a method of order q = 5. 
The resulting methods have 5 and 8 stages, respectively, i.e. more stages than 
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in the ODE case (there are explicit Runge-Kut ta  methods for ODEs of order 
p -- 4 with s = 4 and of order p = 5 with s = 6 stages). Another possibility 
to eliminate the large error term in / (Yn l ,  Znl) are extrapolation methods [10, 
p. 49]. 

(b) Figure 2.1 suggests an alternative definition of half-explicit Runge-Kutta  
methods: for higher order methods it is in general important that f(Ynl,  Znl) 
approximates y'(tn); it might be less important that Yn2 lies in the manifold 
{ ~/ : g(~/) = 0 ). We therefore define 

Z n l  :-- Zn , Yn2 : :  Yn "~ c2h/(yn, zn) 

and need as z~ a sufficiently good approximation of z(tn). In the first step of 
integration zn is available from the (consistent) initial values, approximations 
for the subsequent steps are obtained adding new stages at the end of each step 
of integration. 

DEFINITION 2.1. An ~-stage hal]-explicit Runge-Kutta method o] Type B is 
given by 

Yn] := Y,~, Z n l  := Zn, Yn2 :~" Y~ + c2hf(yn, z~) 

and (2.1)-(2.2) with io = 3, ~ > s, 

Zn+l : ~  E d i Z n i  �9 
i=1 

Here dl , . . .  ,d~ and aij, (i : 2(1)~ + 1, j = 1(1)i - 1), are parameters o] the 
method with 

as+l,j :---- bj, (j = l (1)s) ,  Cs+ 1 :----  1, ai,i-1 • 0, (i = 2(1)~ + 1). 

We form a lower triangular matrix 

a21 / 
2~ a31 a32 

" .  

a~+l,1 a~+l,2 "'" a~+l,~ 

that contains on and below the main diagonal the non-vanishing parameters aij. 
With the assumptions of Definition 2.1 matrix A is non-singular; the elements 
of the inverse W = .~-1 are denoted by wij. 

In contrast to Type A methods the stage vectors Yni and Yn+] depend now 
on Zn, i.e. during integration errors are propagated not only in the differential 
components y but also in the algebraic components z. More precisely: consider 
vectors Yn, zn, ]~,~i, Z,i ,  ~n+l, ~ + ] ,  that satisfy 
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(2.5)  

]?nl := 1)n , Znl := s  ]Yn2 := ~ln + c2hf(~ln, zn) + h52 , 

i--t 

?o~ = ~+hZ~J(~,2~)+h~ } 
j= ,  , (i = 3(1)~ + 1), 

o~ = g ( ? ~ )  

Yn+l :---- Yn,s+l , Zn+l :-~ E i d i 2 n i .  

It holds (see also [10, Theorem 4.2]) 

THEOREM 2.1. Let (Yn, zn), (gn, zn) be given with 

tly~ - y( tn) i l  + ilzn -- z ( t~ ) i i  = O(h), i l ~  - ~ ( t~) l l  + l i ~  - Z(tn)ll  = V(h) 

and 

I Ig (~ , , ) l l+ l l g (~ , , ) l l - -  O ( h b ,  I1~11 := max II~ill = O ( h ) ,  IlOtl := ma x IlOill = O(h2). 

Then there are vectors (Yni, Zni), (Yni, Zni) with (2.1), (2.5) and 

IIY,.~ - y(t , , ) t l  + llZ,.~ - z ( t , , ) l l  = O ( h ) ,  II1~,. - y(tn)ll + 112,,~ - Z(tn)l] = O(h) 

if the stepsize h >_ 0 is suj~iciently small. These vectors satisfy the estimates 

(2.6) I17,. - Y,~II < (1 + C h ) l l P ( t n ) ( ? , .  - :~;~)11 + Cl le i l l ,  ( i  = 3(1),~ + 1), 

(2.7)  l i P ( t , , ) ( ? , .  - Y , . ) I I  < c(115,,  - y,.ll + h211~,, - z,,ll + hllSII + I lell) ,  

(i = 2(1)~ + 1), 

112,,~ - z ~  - c 2 w i l ( Z  n - -  z,,) l l  < C ( ~ l l g y ( y ( t ~ ) ) ( ~ n  - y,,) l l  + 
(2.8)  

+ I1~,, - y,,l l + hll~,, - z,,ll + 11611 + -~11011), ( i  = 1(1).~) 
with a constant C that is independent of h, 5 and O. Here P denotes the projector 

P(t) := I - [fz(gufz)-l  gy](y(t), z(t)) 

that represents a projection into the tangential plane of the manifold {~ : g(~]) = 
0}, ([10, p. 35, p. 68]). 

PROOF. Theorem 2.1 is the counterpart  to Theorems 4.1 and 4.2 in [10]. We 
prove that  there are such vectors (Yni, Zni), (Yni, Zni) in an O(h)-neighbourhood 
of the analytical solution (part (a) of the proof) and tha t  these vectors satisfy 
estimates (2.6)-(2.8) (part (b)). 

(a) In (2.1) the vectors Z,u, (i _> io - 1) are defined implicitly as solutions s r 
of (2.3): Oi(Zn,i-1) = 0. With  the assumptions of the theorem we prove by 
induction tha t  there is a constant C (independent of h) such tha t  

(~___~ )))--1 (~__~ )))--1 1 
�9 ~(z(t~ ~(z(t~)) <__ Ch, ~(z(t~ < C . ~ ,  

--~2~(z(t~)) < Ch 
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is satisfied for all sufficiently small h > 0. Therefore  the (locally) unique solv- 
ability of (2.3) is guaranteed by the Theorem of Newton-Kantorovich  and we 
have IIZ~,i_l - z(t,~)l I = O(h), [16]. Using Z~,i-1 the vector Yni can be com- 
puted explicitly from (2.1). Going on stage by stage we obtain all stage vectors 
(Y~i, Zni) (this proof  was originally given by Brasey and Hairer [4]). In a similar 
way the existence of vectors (Y,~/, 2,~i) can be shown. 

(b) Est imate  (2.6) is a consequence of 

9~(y( tn) ) (?~  - Y~)  

= fo 1 (gy(y(t,~))(Y,~i- Y ~ i ) -  d g ( y ~  g ( ? n i ) - g ( Y ~ i )  

/oo ( 2 . 9 )  : 

with Y,~ := Yni + O(Yni - Yni) since 

JJY~ - Yn, ll <_ [[P(t,~)(17~ - Y,u)ll + I](I - P(t,~))(?, .  - Y,~)[] 

< I}P(t,~)(Y~i - Yni)[] q- C ( h l l Y n i  - Yn i i l  --~ Ilo~ll) 

To prove (2.7) and (2.8) we t ransform (2.1) and (2.5) to 

?~, - v ~  = ~ .  - y~ + h ~ j  ~,j ( ( I$  + v(h))(?n5 - y~,) 
(2.10) 

(.9( h ) )( Znj 
\ 

+ ( f ?  + - z ~ ) )  + hhi 

where the upper  index "n" indicates tha t  the Jacobians ]y, ]~, gu are evaluated 
at (y(tn), z(tn)). With  the notat ions 

y T y T "IT Z :-:  ( Z n  T ,  T T Y := ( me, �9 �9 �9 n,~+l] ~ " �9 " ' Z~,~) . . .  

we thus obtain 

h( (d  | [g~/~]) + O(h) ) (2  - Z) = - ( 1  | g~)(yn - yn) 
(2.11) 

- -  n ^ + O(h)IIY Y[I + ( I |  Y)  + (9(h11511) 

with 1 := ( 1 , . . . ,  1) T and the Kronecker  product  | Because of 

g(Y~i) = O , g(?ni) = Oi , (i>_3) 

the term ( I  | g~)(1~ - Y) can be expressed as (see (2.9)) 

~.~ ^ 
([ | 9y ) (Y  - Y )  = O(JJO]]) + O(h)JJY - V i i + e l |  gy n . (]~n2 -- Yn2) 

with e l  := ( 1 , 0 , . . . , 0 )  T and 

9'~.(Y,~z-V,~2) = 9'~.(gn-y,~)+czh[g'~ f ~ l ( 2 n -  zn)+O(h)(Hg,~-y,~li+hlls �9 
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So we get in (2.11) 

( (4  | [g;Sz~]) + O ( h ) ) ( Z  - Z - c 2 W e l  . (~o - z~))  
w 

(2.12) = O(~)[]g~.  (~n - Y,~)]] + O(1) ( ] ]~  - y,~]l + ][1~ - Vii) 

+ O ( h ) l i ~  - z~ll)  + O(1)11511 + O(~) l l0 l l  �9 

Because of (1.2) the matr ix  A | [gyfz ~] is non-singular. Hence, the est imates 
(2.7), (2.8) follow from (2.12) and (2.10). Note, tha t  

P(t)fz(y(t),z(t)) -~ 0 and P( tn ) ( /~  + O(h)) = O(h ) .  

Theorem 2.1 is the essential par t  of the convergence analysis for Type  B meth-  
ods that  bounds the global discretization error  in terms of the local error: 

DEFINITION 2.2. Let Yn+l, Zn+l be defined by (2.5) with 6i = O, Oi = O, 
(i = 2(1)~ + 1) and the analytical solution of (1.1) at time tn as ~)n, ~n: Yn := 
y(t~), ~ := z(tn).  Then 

5yh(tn) := Yn+l -- y(t~ + h), 5Zh(tn) := Zn+l - -  Z(tn ~- h) 

are called the local discretization errors in the dii~erential and algebraic part, 
respectively. 

THEOREM 2.2. Suppose that in (2.1) ai,i-1 ~ 0, (i = 2(1)~ + 1), that the local 
discretization errors are of size 

5yh(t~) = (9(hq), P(t~)Syh(t,~) = O(hq+l) ,  5zh(t~) = O(h q- l )  

with some q > 2 and that the contract ivi ty  condition 

(2.13) Ic2dTWell < 1 

is satisfied. Then the method is convergent with orders q and q - 1, respectively: 

]lYre - y(tm)l] + hllzm - z(tm)H = (9(h q) ]or tm = to + m h  e [to,t~]. 

Here d denotes the vector of coefficients d := ( d l , . . .  ,d~) T, i.e. 

c 2 d T W e l  = c2 E j  djWjl  �9 

PROOF. (a) As in (2.6) we get 

IlYm - y(tm)ll ~_ (1 + O(h) ) l lP( tm) (y  m - y(tm))ll  

since g(Ym) = g(y( tm))  = 0. I.e. if I lP(tm)(ym - y(tm))ll = O(h  q) then conver- 
gence with order  q in the differential components  is guaranteed.  
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(b) Let Yn+l, Zn+l be defined as in Definition 2.2. Then 

P(tn+l)(Yn+l - y(tn+l))  : g(tn+l)(Yn+l - ~)n+l) + P( tn+i )Syh( t , ) ,  

h(Zn+l - z(tn+l)) = h(zn+l - zn+l) + O ( h  q) 

and 
P(tn+l)Syh(tn)  = P(tn)~yh(tn)  + O(h)Syh(tn) = O(hq+l).  

In contrast to Type A methods errors are not only propagated in the func- 
tion values yn ~ y ( t , )  of the differential components but also in the derivatives 
f (Yn,  zn) ~ yt(t,~). This is similar to the error propagation in Rosenbrock meth- 
ods that are applied to differential-algebraic equations B(y )y  ~ = ~(y) of index 1 
[14]. The statement of the theorem can be proved following the proof of [14, 
Theorem 4.1] using the inequality 

(2.14) (IIP(tn+I)Ayn+IIII  < ( l + O ( h )  O(h) "~ f l lP( tn)AYnl l~  
\ hllaz.+~ll - o ( 1 )  p+O(h)) k hllaz.II ) 

with 
Ayn := ~)n - Yn , AZn := Zn - Zn and p :=- Ic2dTWell  

that  has to be read componentwise. Estimate (2.14) is obtained straightfor- 
wardly from Theorem 2.1 since 

IlYn - Y(tn)ll <_ (1 + O(h))l lP(tn)(y~ - y(t,~))ll 

(see (2.6)) and P(t,~+l) = P(tn)  + O(h). [] 

REMARK 2.3. 
(a) As in [14] the restriction to fixed stepsizes is not essential. 

(b) In contrast to Type A methods we need consistent initial values for differen- 
tial and algebraic solution components, the statement of Theorem 2.2 remains 
valid if z0 = z(to) is substituted by zo = z(to) + O(hq-1).  

(c) The contractivity condition Ic2dTWell  < 1 is important. If Ic2dTWell  > 1 
then the numerical solution in general diverges, if Ic2dTWell  = 1 then order 
reduction may occur. 

(d) The solution of (1.1) satisfies 

d 
0 = -~g(y(t))  = g~(y(t))y '( t)  = [g~f](y(t), z ( t ) ) .  

Hence, a numerical solution ~ for the algebraic components z(t~) can be obtained 
as solution of Igor] (y~, ~) = 0 if a high order approximation y~ to the differential 
components y(t,~) has been computed before [4]. Thus [3, 4] do not focus on a 
high order of convergence for the algebraic components z; the methods HEM4 
and HEM5 that converge in the differential components y with order q = 4 and 
q = 5, respectively, have order q - 2 for z. As a by-product of our approach 
Type B methods give a better approximation for the algebraic components z: 
a method of order q (in y) has a global error of order O(h q-l) in z. 
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3 Type B methods  of  order q _~ 5. 

Estimates for the local error are obtained by Taylor expansion using a gen- 
eralization of Butcher's tree model to differential-algebraic systems of index 2 
that was developed by Hairer et al. in [10, Section 5]. For Type A methods this 
analysis is carried out in detail in [10, p. 68ff] (see also [3, 4]). The way in that  
order conditions are obtained is similar to ODE theory [7] but it needs a lot 
of additional notations. Deriving the order conditions for Type B methods we 
therefore follow the analysis in [10] as far as possible. The essential difference 
to Type A methods is in the first stage where we do not have g(Yn2) = 0 but 

Yn2 = y(tn) + c2hy'(t~), Z~I = z(t,O 

provided that  (Yn, Zn) = (y(tn), z(tn)). The order conditions can be obtained as 
in [10] if formula (5.34b), that  reads in our notation 

1 
Zni(O) : -2 E j , k ,  I wijaj+l,kaj+l,l'(--gYfz)-] gYY(f ' f )+ E j  aiJ'(--gYfz)-l gYfYf ' 

is substituted by 

1 
Zni(O) = -~ Ej ,k , t  wij&j+l,kdj+l,t'(--g,fz)-l gy~(f, f )+ E j  aij'(--gyfz)-l gyfyf  

with 
0 i f j  = 1 

a j + l , k  : =  ~ ' aj+l,k, i f j  > 1. 

In the higher order terms dhp dp Zni h=0 similar modifications are necessary for the 

coefficients of all elementary differentials of the form 

( - - g y f z ) - l  g y y ( f  , f )  , ( - - g y . f z ) - l  g y y y ( f  , f , f )  , ( - - g y f z ) - l  g y y y y ( f  , f , f , f )  , . . .  

that correspond to the so-called bushy trees with fat root: 

(,.1) V, 'V, 
(These trees contain exactly one fat ve r tex- - the  root vertex; all other vertices 
are meagre and lie directly above the fat root vertex.) 

Table 3.1 summarizes the order conditions for Type B methods up to order 
q~ = 3 for the differential components and up to order qz = 1 for the algebraic 
components. Here and in the following we use the notation 

i - -1  

5 i : = E h i j ,  ( i = 1 ( 1 ) ~ + 1 ) ,  
j----1 

i.e. cl = c2 = 0 and ci = ci, (i _> 3). 
The order conditions in Table 3.1 correspond to the given trees and can be 

obtained by the following algorithm (this algorithm is very similar to the one 
for Type A methods [4]): 
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n o .  

ly 

2u 

3u 

4y 

5u 

6u 

tree order order condition 

1 
W..~ T_ 

1 �9 L ~ i  = 

1 
V 3 E = 

~ .  3 E biaijcj _ 1 

%V ~ 3 E bieiwij~2+l _ 2 

3 ^2 2̂ _ 4 E biwijCj+lWikCk+l 3 

lz V 1 ~ diwijc2+l : 2 

2~ ~ 1 ~ diwijaj+l,kC k = 1 

Table 3.1: Order conditions for Type B methods (qy < 3, q~ < 1). 

ALGORITHM 3.1. Attach to each vertex of a given rooted tree T one summa- 
tion index i, j ,  . . . .  If the root of T is a fat vertex then attach an additional 
summation index k to this tree. The sub-graph of T that  contains a vertex "i" 
and all vertices lying above "i" is denoted by sub t r ee ( " i " ) ,  i.e. "i" is the root 
vertex of sub t r ee ( " i " ) .  
With these notations the left hand side of the order condition is a sum over all 
indices of a product with factors 

bi if "i" is the index of the root vertex and this root is meagre; 
dkWki if "i" is the index of the root vertex and this root is fat (here 

"k" denotes the additional index that  was attached to the tree); 
aij if the meagre vertex "j" lies directly above the meagre vertex "i"; 
wij if the fat vertex "j" lies directly above the meagre vertex "i"; 
5i+l,j if the meagre vertex "j" lies directly above the fat vertex "i" and 

s u b t r e e ( " i " )  is a bushy tree; 
ai+l,j if the meagre vertex "j" lies directly above the fat vertex "i" and 

s u b t r e e ( " i " )  is not a bushy tree. 

As for Type A methods [4, p. 541ff] the right hand side of the order condition 
is a rational number which is the product over all indices of the factor 

1/r if the vertex "i" is meagre; 
r + 1 if the vertex "i" is fat. 

Here r denotes the order of s ub t r ee ( " i " ) ,  i.e. the difference of the number of 
meagre and the number of fat vertices in sub t r ee ( " i " ) .  

Trees that  have only meagre vertices correspond to classical order conditions 
for the underlying explicit Runge-Kut ta  method (see Table 3.1 and [7]). 
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Taking into account W = ,~-1 some order conditions may be substantially 
simplified, e.g., condition 2z of Table 3.1 is transformed to 

with the Kronecker delta 5 i j .  

Formally the order conditions for Type B methods are a little bit more compli- 
cated than the ones for Type A methods. But this slight difference in the order 
conditions simplifies the construction of higher order half-explicit Runge-Kutta  
methods essentially: 

An underlying explicit Runge-Kutta  method that satisfies the simplifying con- 
dition 

i--1 
1 2 (i 3(1)~+1) C(2)  : E a i j c J  = ~ c i ,  = 

j = l  

implies for Type B methods (note that W = ~-1)  

i 
^2 C(2)R : E w i j c j +  1 = 2ci ,  (i = 1(1)~). 

j = l  

These r e c i p r o q u e  c o n d i t i o n s  are substantially simpler than that for Type A meth- 
ods [3] and guarantee that  the order condition corresponding to the tree T1 of 
Figure 3.1 is satisfied whenever the order condition corresponding to tree T2 
is satisfied. Here T denotes an arbitrary trunk. In Table 3.1 identical order 
conditions are obtained from trees 3y, 5y, and 6~ if C(2) is satisfied. 

- T  / T T j T 

Figure 3.1: Trees illustrating the simplification of order conditions by conditions 
C(2) and C(3). 

Furthermore, the order condition corresponding to the tree T3 in Figure 3.1 is 
satisfied if the order condition corresponding to the tree T4 is satisfied and the 
coefficients of the underlying explicit Runge-Kutta  method fulfill the simplifying 
condition 

i--1 
1 cl+l C(3) : E a i j c ~ = ~  i , 

j = l  

(i = 3(1)~ + 1, I = 1,2) ,  

since C(3) implies the reciproque conditions 

C(3)R : 
i 

E ~  ~1+1 = ( l+  1)c~, w i j c j 4 - 1  
j = l  

(i = 1(1)~, 1 = 1,2). 
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(Note that C(3) implies C(2) and C(3)R implies C(2)R). Constructing higher 
order half-explicit methods we restrict ourselves in the present paper to methods 
up to order qy = 5 and make use of the simplifying conditions C(2), C(3) and 

D(1) : ~ bjaji = bi(1 - ci), (i = l (1)s) .  
j=i-{-1 

THEOREM 3.1. An  explicit Runge-Kut ta  method of order p with 2 < p < 5 
yields a Type B method with local discretization error 5yh(t) = O(h  p+l) if the 
simplifying conditions 

�9 C(2) i f p  = 3, 

�9 C(2) and D(1) i f p  = 4, 

�9 C(3) and D(1) / fp  = 5 

are satisfied. 
PROOF. p < 3: If p = 2 or p = 3 and C(2) is satisfied then all order conditions 

of order qy _< p in Table 3.1 are satisfied (see also condition C(2)R). 

p = 4: If p = 4 and C(2) is satisfied then b2 = 0 since 

1 1 = 0  

and c2 = a21 • 0. We now have to check all order conditions that result from 
Algorithm 3.1 applied to trees T of order < 4 that have a meagre root vertex. 
Compared with the ODE case the only additional order condition for a Type B 
method satisfying C(2) is 

(3.2) 

Because of W = A-1 we have 

E ^3 _ 3 i,j b ic iwi jc j+  l -- ~ " 

E i , j , k  b iai jWjk~3+l  • E i , k  bi(~i,k+l~3+l = E i > 2  bic3 _ 1 - - u  

and 
E ^ E ^z z = 1  i,j biwijc3+l ~ j (~sjc3+l : Cs+l = Cs+l 

such that condition D(1) implies (3.2). 

p = 5: If condition C(3) is satisfied then the number of order conditions is re- 
duced substantially because of the reciproque condition C(3)R and because of 
the identity 

E j ,  k w i jCj+la j+l ' kCk  E 1 E j  WijC3h-1 1 .3C 2. = WijCj+laj+l ,kCk = ~ = 
j,k 
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Trees T that  contain one of the trees 

('.') V 
do not give additional order conditions. Therefore the statement for p = 5 can 
be proved as in the case p = 4. [] 

The order of the local error in the differential components y is completely de- 
fined by the parameters  of the underlying s stage explicit Runge Kut t a  method 
since Yn+l is identical with the stage vector Yn,s+l. The Type B method has 
additional parameters  di, (i -- 1(1)~)and-- i f  ~ > s, i.e. if new stages are added - -  
additional parameters  aij, ( i  ---- S -I- 2(1)~ + 1, j = 1(1)i - 1). They are defined 
such that  the contractivity condition (2.13) and the order conditions for the alge- 
braic components z are satisfied. The order conditions are obtained if Algorithm 
3.1 is applied to the trees U with a fat root vertex. 

As for the differential components the number of independent order conditions 
is reduced drastically using simplifying conditions: 

THEOREM 3.2. The local error in the algebraic components is of size 

5zh(t) = (9(h ~+1) with O < r < 3 

if the coefficients of the method satisfy the simplifying condition C(r) (/] r > 1) 
and 

(3.4) E d i c ~ = l '  ( l = 0 ( 1 ) r ) ,  
i = 1  

(3.5) r + 1 ~ ~i'r 1 = 1, 
i,j=l 

d2 = 0  (if r >2)  and 

(3.6) 
E dial2 ~- E diwi jc j+laj+l ,2  = 0 (i f  r = 3). 
i = 1  i,j=l 

PROOF. The order conditions (3.4) correspond to the "one-leg" trees with fat 
root and a "bushy" tree of order < r + 1 as branch. See, e.g., the tree U1 of 
Figure 3.2 that  corresponds to 

1 =  E i , j , k  diwijaj+"kc2 = E i , k  diSikc~ = E i  dic2" 

o" u 

Figure 3.2: Trees illustrating the proof of Theorem 3.2. 
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The "bushy" trees with a fat root (see (3.1)) give order conditions 

E d " ~/+1 ---- l-~- 1 (l -- l (1 ) r )  i'tviJ j+ l  
i , j= l  

(see, e.g., condition lz in Table 3.1). For l = l ( 1 ) r - 1  these conditions are 
equivalent to (3.4) if C(r) (and hence also C(r)R) is satisfied. For 1 = r we 
obtain condition (3.5). 

The conditions (3.6) guarantee that up to order r the order conditions for trees 
of the form U2 are satisfied whenever (3.4) and the simplifying assumption C(r) 
is satisfied: e.g., the tree [;3 of Figure 3.2 gives (r > 2) 

i ( 12) 121 E i , j d i a o c j  = : E id ic~+Ei>_3d i  E j a i j c j - ~ c i  -:d,c, = : Eidic~ - i 

All the remaining trees contain at a branch leaving a meagre vertex one of the 
trees of (3.3). As for the differential components these trees do not give new 
order conditions if the simplifying condition C(r) is satisfied. [] 

In Example 3.1 we construct Type B methods up to order q = 5 (in the differ- 
ential components). Table 3.2 summarizes the essential numerical effort of these 
methods per one step of integration. Note that (in contrast to Type A methods) 
the first stage of a Type B method is explicit and does not require the solution of 
a system (2.3) of nonlinear equations. For a Type B method of order q the order 
of convergence for the algebraic components equals q - 1. Order and contrac- 
tivity conditions result in systems of equations that have to be solved w.r.t, the 
parameters. In Example 3.1 we transform at first these conditions into systems 
of linear equations that are finally solved using MATHEMATICA [20]. 

q = 2  q = 3  q = 4  q = 5  
# of stages (ODE) 2 3 4 6 
# of stages (Type A) 2 3 5 8 
# of stages (Type B) 2 3 5 7 
# of systems (2.3) (Type B) 1 2 4 6 

Table 3.2: Numerical effort of explicit Runge-Kutta methods and 
half-explicit methods of Type A and B. 

EXAMPLE 3.1. 
(a) q = 2. An explicit Runge-Kut ta  method with p = s = 2 yields a Type B 
method of order q = 2 if ~ := s = 2, di := bi, (i = 1, 2) since 

E i d i = E i b ~ = l  and c2dTWel = c2 E i d i w i :  = c2 E biwil = c2521= O. 

(b) q = 3. The (classical) order conditions for an explicit Runge-Kut ta  method 
with p = s = 3 are 

E i  bic - -  _ 1 ~ - / + 1 ' -  1 (l = 0, 1, 2) , b 3 a 3 2 c 2  - ~ .  
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Straightforward t ransformat ions  show tha t  a me thod  satisfying the simplifying 
condition C(2) has parameters  

2 
1 b2 = 0 b3 : 3 c3 _ 2 b l  ---- ~ , , , g , a32  : - -  , 

9 c2  

the parameter  c2 ~ 0 remaining free [11, Section II.1]. If  we apply Theorem 3.2 
with r --- q - 2 = 1 then conditions (3.5) and (3.4) with 1 = 1 coincide since con- 
dition C(2) and therefore also condition C(2)R is satisfied. The unknown pa- 
rameters dl, d2, d3 are determined by the order conditions and by the equation 
c 2 d r W e l  = 0 tha t  guarantees  tha t  the contract ivi ty  condition (2.13) is satisfied. 
We end up with a system of 3 linear equations in the unknowns d l ,  d2 ,  d 3 ,  tha t  
has the unique solution 

1 1 
dl = - 2  + - - ,  d2 = - - - - ,  d3 = 3. 

C2 C2 

With these parameters  the half-explicit method  has order q -- 3, (~ = s = 3). 

(c) q = 4. An explicit R u n g e - K u t t a  method  with p = s = 4 satisfies condition 
D(1) and thus Ca = 1 (since b4(1 - c4) = ~ bjaj4 = 0). The methods  tha t  fulfill 
the simplifying condition C(2) form a family with the free parameter  c2 and have 
coefficients with 

_1 b2 = bjaj2 : 0 , C3 -- 
J 

[11, p. 138]. If  ~ = s = 4 then the order conditions (3.4), (3.5) for r = q - 2 = 2 
and the reciproque condition C(2)R imply 

4 4 4 
E E 1 E  ~2 (3.7) 7i = 1 , �89 7i5i+1 = 1 , g "/ici+ 1 = 1 
i : 1  i : 1  i : 1  

with 
7i :-- E d j w j i c i + l ,  (i = 1(1)4),  

J 

where the first equation in (3.7) follows from 

E i  wjici+l ---- E i , k  wjiai+l,k = E k  (~jk = 1 .  

The solutions of (3.7) are 

71----1,  7 2 = - 4 ,  7 3 - t - ' ) ' 4 : 4  

(note tha t  c4 = c5 = 1). Because of 71 = c 2 d T W e l  a method  with 

= s = 4 ,  P ( t ) S y h ( t )  = O(hS) , 5zh( t )  = O ( h  3) 

can therefore not satisfy the contract ivi ty condition (2.13). Wi th  the same ar- 
guments it is proved tha t  the assumptions of Theorem 2.2 with q = 4 cannot  
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be satisfied adding a 5th stage with c6 = ~-~-i a6i = 1. Thus we add a stage with 
c6 ~ 1 and define 

z ~ + l : = Z n h ,  i.e. d i : - - 0 ,  ( i = 1 ( 1 ) 4 ) ,  d h : = l .  

With this definition of zn+l conditions (3.4), (3.6) are trivial and the last call of f 
in time step tn --+ t~+l is identical with the first call of f in time step t~+~ ~ t~+2 
("first same as last technique" (FSAL) f (Yn,s+l ,  Zn,8+a) = f (yn+l ,  z~+l)). We 
choose the parameters a6i such that (see C(2) and (3.5)) 

(3.8) E a6jc~ = 1 c l+l  ( / = 0 , 1 )  1 E  ^3 j l - ~  6 , , "~ J WhjCj+ 1 = 1 ,  W~I = 0 ,  

then the method is convergent with order q = 4 (because of c 2 d T W e l  = c2w51 
and w51 = 0 Theorem 2.2 is applicable). Equations (3.8) have a solution with 

1 1 a65 ~ 0 whenever c6 • {0, ~, }; free parameters are a62 and c6. 

We choose c6 such that parameters a6j with large la651 are obtained. This is 
motivated by the system (2.3) of nonlinear equations that has a Jacobian of the 
form ha i , i - l [gy f z ] (y ( tn ) , z ( t~ ) )+  (9(h). For simplicity we assume a 6 2  = b2 = 0 
and get 

i a o 3 - 1  
a 6 1  - -  6 198 , - -  ~ - -  , a 6 4  : - -  , a 6 5  : - 

(d) q = 5. An explicit Runge-Kut ta  method of order p = 5 has s > 6 stages, 
17 order conditions have to be satisfied. We therefore restrict ourselves to the 
5th order method of Dormand and Prince that is known to be a very efficient 
method for ODEs [8], [11, p. 178ff]. This method has s = 6 stages and satisfies 
the simplifying conditions C(3), D(1). The parameters aij, (i = 2(1)6, j = 
1(1)i - 1) and bj, (j  = 1(1)6) are given in Table II.5.2 of [11]. 

To get a half-explicit method of order q = 5 the local error in the algebraic 
components has to be of order 5Zh (t) = (_9(h4), i.e. the coefficients di, (i = 1 (1)~) 
have to satisfy the 8 order conditions (3.4), (3.5), (3.6) for r = 3, that are linear 
in di. Straightforward computation shows that these 8 conditions cannot be 
fulfilled simultaneously if ~ = s = 6, (at least) one new stage has to be added. 
As for the 4th order method we use the FSAL-technique, set 

Zn+ 1 := Z n , s +  1 = Z n 7  

and define parameters asi, (i = 1(1)7) by the simplifying condition C(3), by the 
order conditions 

(3.9) ~-'~j w 7 j c j + l a j + l ,  2 : 0 ,  ~1 E j  W T j C 4 + l  : 1 

and by 0 = d T W e l  = w71. The first 6 rows of A contain only parameters of the 
underlying explicit Runge-Kut ta  method. Because of the lower triangular struc- 
ture of A the elements wij,  (i <_ 6) are independent of the additional coefficients 
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a8i, (i = 1(1)7) and we have (note, that  .4W = I)  

7 6 6 

a87w7i = Z asiw~j - ~ asiwij = - ~ a8~wij , (j = 1(1)6) 
i = 1  i = 1  i = 1  

and a87w77 = 1.  Multiplying w71 = 0 and the equations in (3.9) by a87 we 
thus get an equivalent set of conditions that  are linear in asi, (i = 1(1)7). For 
any given parameters  887, c8 with c8 # 1 these conditions determine uniquely 
parameters as1, as2, . . . ,  as6. In numerical tests we found it useful to choose 887 
and c8 such that  la81 I, . . . ,  la871 and 1/las71 are not too large and the coefficients 
in the leading error term of 5zh(t) are small. With 

C8 __-- 19 3 2 8 0  
2 0  ~ 8 8 7  ~ - - 7 5 4 1 3  

we get the parameters  

1 8 6 1 1 5 0 6 0 4 5 8 6 1  5 9 3 3 2 5 2 9  2 5 0 9 4 4 1 5 9 8 6 2 7  
a 8 1  = 1 9 7 3 8 1 7 6 3 0 7 2 0 0  , a 8 2  - - - -  1 4 4 7 9 2 9 6  , a 8 3  ~- 8 9 3 9 0 4 2 2 4 8 5 0  

2 7 6 3 5 2 3 2 0 4 1 5 9  4 1 2 6 2 8 6 9 5 8 8 9 1 3  4 6 3 1 0 2 0 5 8 2 1  
a 8 4  - -  3 2 8 9 6 9 6 0 5 1 2 0 0  , 8 8 5  - -  1 1 6 2 3 5 9 2 7 1 4 2 4 0 0  ~ 8 8 6  - -  2 8 7 8 4 8 4 0 4 4 8 0  

that axe used in the half-explicit integrator HEDOP5 (see Section 4). 
Type B methods that  are based on the 5th order method of Dormand and 

Prince are especially advantageous because of the bound 

(3.10) I l y m - y ( t m ) l l  = ( 9 ( 1 ) ( m .  m a x  115yh(tn)ll + h r m a x  115zh(t~)N) 
O<n<rn O<_n<m 

that is satisfied for all t m =  to + m h  C [t0,te] with r = 2, 5yh(tn) = O(h 6) and 
5zh(tn) = O(h4). Est imate (3.10) with r = 1 could be obtained with the tech- 
niques that  are used in the proof of Theorem 2.2. However, to prove (3.10) with 
r = 2 the error propagation has to be studied much more in detail [1, Corol- 
lary 3]. Est imate (3.10) with r = 2 shows that  for HEDOP5 the influence of the 
local error 5zh(tn) on the global error Ym - y( tm)  is in general negligible since 
h2115zh(tn)ll = (.9(h 6) and IlYm - y(tm)ll = (-O(hh). 

4 Stepsize control, implementation and numerical tests. 

In the present paper  we concentrate on the convergence analysis of Type B 
methods, the details of an efficient implementation will be discussed somewhere 
else. The 5th order Type B method with 7 stages that  was constructed in Exam- 
ple 3.1 (d) has been implemented as integrator HEDOP5 for non-stiff constrained 
mechanical systems (Half-Explici t  integrator based on the 5th order method of 
DOrmand  and Prince) 1. Implementing HEDOP5 we could use many parts  of 
the code MHERK5 by Simeon. MHERK5 is readily available in the software li- 
brary MBSPACK [18], it is an implementation of the 5th order Type A method 
HEM5 [3]. 

1 A v a i l a b l e  o n  t h e  I n t e r n e t  a t  

ftp ://ftp .mathemat ik. th-darmstadt, de/pub/department / s oftware/mbspack/hedop5, f . 
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In this section we consider the problem of stepsize control in HEDOP5 and 
the application to constrained mechanical systems. Results of a numerical test 
prove the efficiency of half-explicit methods with an explicit stage. 

4.i Stepsize control. 

In the 5th order explicit Runge-Kut ta  method of Dormand and Prince an 
embedded 4th order method is used to control the stepsize. In the notation 
of (2.1) a vector ~)n+l is defined by 

6 

(4.1) ~)n+l :-- Y,~ + E [JJf(Y'~J' Znj) + hbTf(y,+,, Z,+l) 
j = l  

such that z)~+l -Yn+l  approximates the local error in the time step tn --+ tn+l 
(the coefficients bj are given in [11, Table II.5.2]). Following an idea of Murua 

[15] the same coefficients bj are used to define the vector 

(4 .2)  Yn+l  : :  Yn+l  - [fz(gyfz)-l](l], ~)" g(Ynq-1) 

in the stepsize control algorithm of HEDOP5. In (4.2) we have ~1,~+1 from (4.1) 
and vectors ~, ( with II~/- ynll = O(h), II( - z~ll = (9(h). In (4.1) the function 
value f(Y~7, ZnT) of the 7th stage of HEDOP5 is re-used as f(Y~+l, Z~+l) (see 
Example 3.1 (d). 

Using the tree model the order of Y,~+I and/]n+l is analysed. In contrast to 
the ODE case Yn+l gives only a 3rd order approximation to y(t ,+l) but with 
Y,~+I from (4.2) we get again a 4th order approximation to y(t~+l) such that  
~n+l - Y,~+I can be used as approximation to 6yh(t~). With this approximation 
standard stepsize control strategies from ODE-theory can be carried over to the 
Type B method HEDOP5 because the influence of 6Zh (t~) on the global error in y 
is negligible (see Example 3.1 (d). The stepsize control in HEDOP5 is similar to 
the one that is proposed for the ODE-method DOPRI5 in the Appendix of [11]. 
Just as other integrators for index-2 systems HEDOP5 does not consider the 
global error in z in the stepsize control algorithm. 

4.2 Application to constrained mechanical systems. 

Half-explicit methods are expected to be much more efficient than fully implicit 
methods if a non-stiff differential-algebraic system (1.1) is of the special form 
(y = (qT, U T, wT)T, Z = (a T, AT)T), 

(4.3) 

q'( t )  = u ( t ) ,  

u ' ( t )  = a ( t ) ,  

w ' ( t )  = M ( q ( t ) ) a ( t )  - ] ( q ( t ) , u ( t ) )  + GT(q ( t ) ) )~ ( t ) ,  

o = w ( t ) ,  

o = G ( q ( t ) ) u ( t ) ,  
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since Equations (2.3) are linear in this case [3]. Systems of the form (4.3) arise 
as model equations of constrained mechanical systems if the original holonomic 
constraints ~(q) = 0 are substituted by the equations 

d 0 t 
0 = ~[7(q(t)) = ~q[7(q)q (t) = G(q)u 

(index-2 formulation [12, p. 463ff]). Here q and u denote position and velocity 
coordinates, the Lagrangian multipliers )~ couple the constraints to the dynamical 
equations, the Jacobian G(q) := ~q~(q) is supposed to have full rank. j (q,u)  
are the applied forces and M(q) the (symmetric) positive semi-definite mass 
matrix. In (4.3) the accelerations a(t) and the artificial variables w(t) =_ 0 could 
be eliminated straightforwardly. They have been introduced to keep the semi- 
explicit structure of (1.1). With the notations of (4.3) the index-2 condition 
(1.2) reads 

( M(q)G(q) GT(q) is non-singular. 

It is satisfied iff G(q)~ = 0 and ~ ~ 0 implies ~TM(q)~ > O. 

In the numerical tests we compare four half-explicit integrators that  are tai- 
lored to the simulation of constrained mechanical systems: 

H E M 5  (Brasey [3]). The most efficient Type A method from the literature. 

H E D O P 5 .  The new integrator based on the Type B method of Example 3.1 (d). 

M D O P 5  (Simeon [18]). The application of the 5th order ODE-method of Dor- 
mand and Prince ([11, Appendix]) to the index-1 formulation of the model equa- 
tions that is obtained from (4.3) if 0 = d[7(q) = G(q)u is substituted by 

d 2 
0 = -d~O(q(t)) = [~qq(q(t))(u(t), u(t)) + G(q(t))a(t) 

([12, p. 465]). 
P H E M 5 6  (Murua [15]). A partitioned half-explicit Runge-Kut ta  (PHERK) 
method for (4.3) that  is also based on the 5th order method of Dormand and 
Prince. PHERK methods like PHEM56 can be interpreted as generalizations of 
Type B methods; they are given by (2.1)-(2.2) with i0 = 3, ~ _> s if in (2.1) the 
equations g(Yui) = 0 are substituted by 

(4.4) g(~/~) = 0 with 
i - -1 

j = l  

Type B methods satisfy (4.4) with Yni = Yni and ~/ij = aij. Compared with this 
special case there are additional free parameters ~/ij in general PHERK methods. 
This fact results in additional degrees of freedom in the order conditions that 
could be used to reduce the number of stages or the size of the leading error 
term in 5yh(t) or 5Zh(t). 
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However, in the application to constrained mechanical systems most of these 
benefits are lost because of the very special structure of (4.3): in the notation 
of (1.1) and (4.3) the matrix G(q) is part of the constraints g(y) = 0 and GT(q) 
is part of f(y, z). In Type B methods both f(y, z) and g(y) are evaluated for 
the stage vectors ~ i ,  Zni such that some evaluations of G T can be saved in the 
computational process. These savings axe not possible for PHERK methods of 
the general form (4.4) such that  PHEM56 needs (compared with HEDOP5) four 
additional evaluations of G per step of integration. 

integrator 
HEM5 
HEDOP5 
MDOP5 
PHEM56 

calls of order 
f G [~qq DEC i n y  i n z  

0 8 
0 6 
6 6 
0 6 

8 8 
6 8 
6 6 
6 12 

SOL 
8 5 3 
7 5 4 
6 5 5 
7 5 4 

Table 4.1: Numerical effort of half-explicit integrators (per step of integration); 
DEC: matrix decompositions, SOL: number of systems (2.3) of linear 
equations that are to be solved. 

In the numerical tests we used codes from the package MBSPACK ([18]): 
MDOP5 for the index-1 formulation and various modifications of MHERK5 for 
the index-2 formulation (implementing HEM5, HEDOP5, and PHEM56). Com- 
mon features of all four half-explicit integrators include a dense output option 
and projection steps to avoid a drift off the manifold { q : ~(q) -- 0 } [18]. In 
Table 4.1 we compare the essential numerical effort of the integrators (including 
the additional effort for stepsize control; cf. (4.2)). 

4.3 Numerical tests. 

The half-explicit integrators were compared for various non-stiff benchmark 
problems from the literature. Typically all methods of Table 4.1 are substantially 
faster than a fully implicit code like DASSL [6]. The 3 integrators that are based 
on the method of Dormand and Prince (HEDOP5, MDOP5, PHEM56) reach 
the robustness and the high efficiency that is characteristic of the ODE-method 
DOPRI5. They need up to 40% less CPU-time than HEM5 to compute a solution 
of the same accuracy. 

The differences between HEDOP5, MDOP5, and PHEM56 are smaller and 
depend on the problem that is to be solved. If the evaluation of ~qq is time- 
consuming then HEDOP5 and PHEM56 are superior, otherwise MDOP5 is the 
fastest integrator. The savings in the evaluation of G T make the Type B method 
HEDOP5 typically 5-10% faster than the PHERK method PHEM56. 

The results for a typical benchmark problem are summarized in Figure 4.1. In 
this benchmark a wheel suspension is described by nq = 14 position coordinates 
that  have to satisfy nx -- 12 holonomic constraints ~ = 0 (for details see [19]). 
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We applied the integrators with various tolerances using RTOL = 10 -4 - j / s ,  
(j = 0, 1 , . . . ,  56) as bound for the relative error and ATOL = 0.1 RTOL as bound 
for the absolute error. Figure 4.1 shows in double logarithmic scale the CPU- 
time on a SUN Sparc5 workstation versus the obtained accuracy. The markers 
indicate the results for the "integer tolerances" 10 • 1 0 - 5 , . . . .  The results for 
the integrators that use the index-2 formulation (4.3) of the model equations are 
summarized in the upper plots. The lower plots show the results for HEDOP5, 
MDOP5, and for DASSL, that  was applied to the Gear-Gupta-Leimkuhler  for- 
mulation of the model equations [12, p. 465]. 

10 2 
Z 
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. m  
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t3 

101 

Position coordinates 
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E 
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e~  
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~ : : :  HEM5 .2 ~ 

10 -5 10 -10 
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Position coordinates 

+ ... HEDOP5 
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Lagrangian multipliers 
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global error at T = 0.6 

Figure 4.1: Work-precision diagrams for the benchmark "Wheel suspension" [19]. 
Upper plots: HEM5, HEDOP5, PHEM56; lower plots: HEDOP5, 
MDOP5, DASSL. 

It is well known that  the evaluation of ~qq is very expensive in this benchmark 
problem. Therefore HEDOP5 is the most efficient code for this example. The 
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differences between MDOP5 and PHEM56 are negligible, all three codes are 
faster than HEM5. Finally, the larger CPU-times for DASSL underline once 
again the benefits of half-explicit integrators for non-stiff problems. 

5 Summary. 

We constructed a new class of half-explicit methods ("Type B methods") for 
differential-algebraic systems of index 2 that is based on the half-explicit Runge- 
Kut ta  methods of Hairer et al. [10] "Type A methods" and differs from these 
methods in the substitution of the first stage by an explicit Runge-Kut ta  stage. 
With this modification well known high order explicit Runge-Kut ta  methods 
for ODEs can be extended to half-explicit methods for differential-algebraic sys- 
tems without any order reduction. Furthermore the construction of higher order 
methods is simplified since most of the order conditions coincide with classical 
order conditions for the underlying explicit Runge-Kut ta  method. 

In view of the recent development of half-explicit methods the Type B meth- 
ods can be seen as a class of partitioned half-explicit Runge-Kut ta  methods [15] 
that  has special advantages in the application to constrained mechanical sys- 
tems. Type B methods are convergent with the same order as the underlying 
explicit Runge Kut ta  method if the local discretization error in the algebraic 
components is sufficiently small and a contractivity condition is satisfied. For 
the approximation of the algebraic components the methods can be extended by 
additional stages. 

Based on explicit Runge-Kut ta  methods from the literature Type B methods 
up to order q = 5 are constructed. Currently, there are two half-explicit Runge- 
Kut ta  methods with an explicit first stage, that are based on the 5th order 
explicit Runge-Kut ta  method of Dormand and Prince: PHEM56 of Murua [15] 
and the Type B method HEDOP5. Both methods are seen to be very efficient: 
they have 7 stages and require the solution of 6 systems (2.3) of nz nonlinear 
equations per step of integration. In numerical tests for the index-2 formu- 
lation of model equations for constrained mechanical systems both HEDOP5 
and PHEM56 are superior to the most efficient Type A method that  is known 
from the literature (HEM5). There are minor differences between HEDOP5 and 
PHEM56 making HEDOP5 a little bit more efficient in most of the applications. 
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