
BIT 37:3 (1997), 559-590. 

TWO IMPROVED ALGORITHMS FOR ENVELOPE 
AND WAVEFRONT REDUCTION * 

GARY KUMFERT 1 and ALEX POTHEN 1'2 t 

1 Department of Computer Science, Old Dominion University, Norfolk 
VA P3529-0162 U.S.A. email: kumfert@cs.odu.edu, pothen@cs.odu.edu 

2 ICASE, NASA Langley Research Center, Hampton 
VA 23681-0001 U.S.A. email: pothen@icase.edu 

A b s t r a c t .  

Two algorithms for reordering sparse, symmetric matrices or undirected graphs to 
reduce envelope and wavefront are considered. The first is a combinatorial algorithm 
introduced by Sloan and further developed by Duff, Reid, and Scott; we describe 
enhancements to the Sloan algorithm that  improve its quality and reduce its run time. 
Our test problems fall into two classes with differing asymptotic behavior of their 
envelope parameters as a function of the weights in the Sloan algorithm. We describe 
an efficient O(n log n + ra) time implementation of the Sloan algorithm, where n is the 
number of rows (vertices), and m is the number of nonzeros (edges). On a collection 
of test problems, the improved Sloan algorithm required, on the average, only twice 
the time required by the simpler RCM algorithm while improving the mean square 
wavefront by a factor of three. The second algorithm is a hybrid that  combines a 
spectral algorithm for envelope and wavefront reduction with a refinement step that  
uses a modified Sloan algorithm. The hybrid algorithm reduces the envelope size and 
mean square wavefront obtained from the Sloan algorithm at the cost of greater running 
times. We illustrate how these reductions translate into tangible benefits for frontal 
Cholesky fa~torization and incomplete factorization preconditioning. 

A M S  subject classification: 65F50, 68R10, 65F10. 

Key words: Envelope reduction, Laplacian matrices, reordering algorithms, spectral 
methods, Sloan Algorithm, sparse matrices, wavefront reduction. 

1 I n t r o d u c t i o n .  

We consider  two a lgor i thms  for reducing the  envelope and wavefront  of sparse,  
symmet r i c  mat r ices  or und i rec ted  graphs.  The  first a lgor i thm was in t roduced  
by Sloan [39], improved  fur ther  by Duff, Reid,  and  Scot t  [11], and  is cur ren t ly  
the  bes t  combina to r i a l  a lgo r i thm for th is  problem.  We descr ibe  enhancements  
to S loan ' s  a lgo r i thm t h a t  (i) reduce the  envelope and wavefront  size further ,  

*Received December 1995. Revised February 1997. 
tThis work was partially supported by the U. S. National Science Foundation grants CCR- 

9412698, DMS-9505110, and ECS-9527169, by U. S. Department of Energy grant DE-FG05- 
94ER25216, and by the National Aeronautics and Space Administration under NASA Contract 
NAS1-19480 while the second author was in residence at the Institute for Computer Applica- 
tions in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA. 



5 6 0  G. KUMFERT AND A. P O T H E N  

and (ii) reduce its asymptotic time complexity and practical execution times. 
The second algorithm is a new hybrid algorithm that combines an algebraic 
(spectral) algorithm for envelope reduction described by Barnard, Pothen, and 
Simon [4] with the Sloan algorithm as a post-processing step. The spectral 
algorithm takes a "global" viewpoint of the problem, but could potentially be 
improved by combining it with a "local" refinement algorithm. The spectral 
algorithm is known to produce envelope and wavefront sizes significantly smaller 
than previous algorithms [4]. The hybrid algorithm further reduces the envelope 
size and wavefronts over the spectral and Sloan algorithms. We present a few 
examples to show that these improved orderings could lead to faster frontal 
solves and more efficient incomplete factorization preconditioners. 

Sloan [39] described an implementation of his algorithm for unweighted graphs. 
The idea of Sloan's algorithm is to number vertices from one endpoint of an 
approximate diameter in the graph, choosing the next vertex to number from 
among the neighbors of currently numbered vertices and their neighbors. A 
vertex of maximum priority is chosen from this eligible subset of vertices; the 
priority of a vertex has a "local" term that  attempts to reduce the incremental 
increase in the wavefront, and a "global" term that  reflects its distance from the 
second endpoint of the approximate diameter. 

Duff, Reid, and Scott [11] have extended this algorithm to weighted graphs 
obtained from finite element meshes, and have used these orderings for frontal 
factorization methods. The weighted implementation is faster for finite element 
meshes when several vertices have common adjacency relationships. They have 
also described variants of the Sloan algorithm that work directly with the ele- 
ments (rather than the nodes of the elements). The Sloan algorithm is a remark- 
able advance over previously available algorithms such as RCM [6], Gibbs-Poole- 
Stockmeyer [18, 29], and Gibbs-King [17] algorithms since it computes smaller 
envelope and wavefront sizes. 

For the most part, we follow Sloan and Duff, Reid, and Scott in our work on 
the Sloan algorithm. Our new contributions are the following: 

We show that the use of a heap instead of an array to maintain the priorities 
of vertices leads to a lower time complexity, and an implementation that  
is about four times faster on our test problems. Sloan had implemented 
both versions, preferring the array over the heap for the smaller problems 
he worked with, and had reported results only for the former. Duff, Reid, 
and Scott had followed Sloan in this choice. 

Our implementation of the Sloan algorithm for vertex-weighted graphs 
mimics what the algorithm would do on the corresponding unweighted 
graph, unlike the Duff, Reid, and Scott implementation. Hence we define 
the key parameters in the algorithm differently, and this results in smaller 
wavefront sizes. 

We examine the weights of the two terms in the priority function to show 
that  our test problems fall into two classes with different asymptotic behav- 
iors of their envelope parameters; by choosing different weights for these 



A L G O R I T H M S  F OR E N V E L O P E  AND W A V E F R O N T  R E D U C T I O N  561 

two classes, we reduce the wavefront sizes obtained from the Sloan algo- 
rithm, on the average, to 60% of the original Sloan algorithm on a set of 
eighteen test problems. 

Together, these enhancements enable the Sloan algorithm to compute small en- 
velope and wavefront sizes fast--the time it needs is in general between two to 
five times that of the simpler RCM algorithm. 

This paper is the third in a series on spectral algorithms for envelope and 
wavefront reduction. We will now summarize the findings in the first two papers 
to put our work on the hybrid algorithm in context. 

Barnard, Pothen, and Simon [4] described a spectral algorithm that associates 
a Laplacian matrix with the given symmetric matrix, computes an eigenvector 
corresponding to the smallest positive Laplacian eigenvalue, and then computes 
the permutation by sorting the components of the eigenvector in monotonically 
increasing or decreasing order. 

Unlike the rest of the algorithms that are combinatorial in nature, the spec- 
tral algorithm is algebraic, and hence its good envelope-reduction properties 
are intriguing. George and Pothen [16] analyzed the algorithm theoretically, by 
considering a related problem called the 2-sum problem. They showed that min- 
imizing the 2-sum over all permutations is equivalent to a quadratic assignment 
problem, in which the trace of a product of matrices is minimized over the set 
of permutation matrices. This problem is NP-comptete; however, lower bounds 
for the 2-sum could be obtained by minimizing over the set of orthogonal and 
doubly stochastic matrices. (Permutation matrices satisfy the additional prop- 
erty that their elements are nonnegative; this property is relaxed to obtain a 
lower bound.) This technique gave tight lower bounds for the 2-sum for many 
finite-element problems, showing that the 2-sums from the spectral ordering 
were nearly optimal (within a few percent typically). They also showed that the 
permutation matrix closest to the orthogonal matrix attaining the lower bound 
is obtained (to first order) by permuting the second Laplacian eigenvector in 
monotonic order. This justifies the spectral algorithm for minimizing the 2-sum. 
These authors also showed that a family of graphs with small (n n) separators 
has small mean square wavefront (at most O(nl+'~)), where n is the number of 
vertices in the graph, and the exponent ~/_> 1/2 determines the separator size. 

The analysis of the spectral algorithm suggests that while spectral orderings 
may also reduce related quantities such as the envelope size and the work in an 
envelope factorization, they might be improved further by post-processing with 
a combinatorial reordering algorithm. We explore this issue further by using 
the second step of the Sloan algorithm in the post-processing step; the resulting 
algorithm is called the hybrid algorithm in the rest of this paper. 

We list some work on related problems. Juvan and Mohar [27, 28] have consid- 
ered spectral methods for minimizing the/)-sum problem (for p _> 1), and Paulino 
et al. [35, 36] have applied spectral orderings to minimize envelope sizes. Addi- 
tionally, spectral methods have been applied successfully in areas such as graph 
partitioning [26, 37, 38], the seriation problem [3], and DNA sequencing [20]. 



562 G. K U M F E R T  A N D  A. P O T H E N  

The rest of this paper is organized as follows. In Section 2, we review back- 
ground information. First we define various envelope parameters, delve into the 
details of the spectral algorithm, and then describe a problem where the spectral 
algorithm performs poorly but where the hybrid algorithm does well. Section 3 
describes the details of a weighted Sloan algorithm; we show how the envelope 
parameters vary as a function of the weights in the priority function. We an- 
alyze the time complexity of our efficient implementation (in the Appendix), 
and show that  it runs about four times faster, on the average, than previous 
implementations. In Section 4, we then describe the hybrid algorithm, which 
refines the spectral ordering by means of the second step of a modified Sloan 
algorithm. In Section 5, we present results from the RCM, Sloan, spectral, and 
hybrid ordering algorithms for a collection of problems. Comparisons are made 
across four envelope parameters (envelope size, bandwidth, maximum wavefront, 
and mean-square wavefront), and running time. Section 6 presents some prelim- 
inary results from using the hybrid ordering in frontal Cholesky and incomplete 
factorization preconditioning. Conclusions and directions for future work are 
included in Section 7. 

2 Background. 

We provide definitions of various envelope parameters in Section 2.1, and re- 
view the spectral algorithm for envelope and wavefront reduction in Section 2.2. 
Then in Section 2.3, we motivate the hybrid algorithm by describing a class 
of problems where a poor spectral ordering is improved by the Sloan post- 
processing step in the hybrid. 

2.1 Definitions and notation. 

Consider a sparse symmetric n • n matrix A = [aij], whose diagonal elements 
are all nonzero. We consider only the lower triangle of A (including the diagonal). 
Let fi (A) denote the column index of the first nonzero element of the i th row. 
The row width of the ith row, rwi(A), is the difference between i and f i (A) ,  or 
equivalently, 

rwi(A) = max { i - j } .  
jDa~j~O 

The envelope of a matrix is defined as 

E n v ( A ) = { ( i , j ) : f i ( A )  < j < i , l  < i < n} .  

The envelope of a symmetric matrix is easily visualized: picture the lower trian- 
gle of the matrix, and remove the diagonal and the leading zero elements in each 
row. The remaining elements (whether nonzero or zero) are in the envelope of the 
matrix. The number of these elements is the envelope size, Esize(A) = IEnv(A)l, 
which can also be expressed as 

n 

Esize(A)-- ~-~ rwi(A). 
i = 1  



A L G O R I T H M S  F O R  E N V E L O P E  AND W A V E F R O N T  R E D U C T I O N  563 

Sloan [39] uses the term profile which denotes the envelope size plus the number 
of elements on the diagonal. 

Another envelope parameter is the bandwidth of a matrix, defined as 

bw(A) = max {rwi(A)}. 
l < i < n  

Consider the ith step of Cholesky factorization where only the lower triangle 
of A is stored. An equation (row) k is active at the ith step if k _> i and there 
exists a column l < i such that akz ~ O. The ith wavefront of A, wfi(A), is the 
set of active equations during the ith step of Cholesky factorization. We can 
describe the ith wavefront in three ways that are more intuitive. It is the set of 
rows that  have nonzeros in the submatrix consisting of the first i columns of A 
and rows i to n. It is also the set of rows in the ith column that are within the 
envelope of the matrix, where the ith row is also included. We can also define 
the ith wavefront in terms of the adjacency graph of A. If X is a set of vertices 
in a graph, then its adjacency set 

In the adjacency graph of A, the ith wavefront consists of the vertex i together 
with the set of vertices adjacent to the vertices numbered from 1 to i. Formally, 
the ith wavefront is 

(2.1) wf4(A) = v4 t2 adj({vl, v2 , . . . ,  vi}). 

The n wavefront sizes (one for each column) can be characterized by the values 
maximum wave front and mean-square wave front 

(2.2) maxwf(A) = max {Iwf~(A)l} 
l < i < n  

n 

mswf(A) = 1 E [ w f 4 ( A ) [ 2 .  
n 

i=1  

The maximum wavefront size measures the maximum storage needed for a frontal 
matrix during a frontal factorization, while the mean square wavefront measures 
the number of floating point operations in the factorization. Duff, Erisman, 
and Reid [9] discuss the application of wavefront reducing orderings to frontal 
factorization. It is easy to verify the identity 

(2.3) ~- '~ . ]wf , (A)]=n+ ~7"~rw4(A) = n - ~ - E s i z e .  

4=1 4=1 

The envelope and wavefront parameters depend on the order in which vertices 
of the graph are numbered and are independent of the numerical values of the 
actual matrix elements. This process of vertex numbering permutes the corre- 
sponding matrix symmetrically by rows and columns. Formally, we construct a 



564 G. KUMFERT AND A. POTHEN 

A 2-D Grid 

12 15 

Matrix of the grid. 
@@@ 
@@ @@ 

@@@@@@@@ 

@@ �9 @@ 
�9 �9 @@ 

@ 0  �9 Q 
I ~  g 1 0  

0 0  �9 
@@ �9 ~ 0  

@@ �9 �9 
O I  �9 �9 

Q@ 1 0  
@@Q 

5 10 15 

(a) (b) 

i fi  rwi wfi 
1 1 0 3 
2 1 1 4 
3 1 2 4 
4 2 2 5 
5 2 3 5 
6 3 3 5 
7 4 3 5 
8 4 4 5 
9 5 4 5 
10 6 4 4 
11 7 4 4 
12 8 4 4 
13 9 4 3 
14 11 3 3 
15 12 3 2 
16 14 2 1 

sum 46 62 

(c) 

Figure 2.1: A two-dimensional mesh and its vertex ordering are shown in (a), 
the structure of the associated matrix is in (b), and a table of pertinent data is 
in (c). 

permutation matrix P for a given ordering and symmetrically permute a matrix 
A such that 

A' = PAP  T. 

The goal is to find a permutation matrix or an ordering of the vertices of the 
adjacency graph to minimize the envelope size or the mean-square-wavefront. 
Minimizing the envelope size and the bandwidth of a matrix are NP-complete 
problems [31]; and related problems such as minimizing the 2-sum are also NP- 
complete [16]. 

Figure 2.1 (a) shows a small two-dimensional grid and Figure 2.1 (b) shows the 
structure of its associated matrix A. Figure 2.1 (c) is a table showing the row- 
widths and wavefronts of the matrix A. From this table, we can compute the 
parameters Esize(A) -- 46, bw(A) = 4, maxwf(A) -- 5, and mswf(A) ~ 16.4. If 
we numbered the vertices in Figure 2.1 in a spiral fashion beginning with vertex 
one and numbering from the outside towards the inside, the permuted matrix 
A' yields Esize(A') -- 59, bw(A') = 11, maxwf(A') = 7, and mswf(A') ~ 24.8. 

The unstructured grid bcss tk30  is the stiffness matrix of an off-shore generator 
platform from the Harwell-Boeing test collection [10]. We show the nonzero 
patterns from the RCM, Sloan, spectral, and hybrid orderings in Figure 2.2. 

2.2 Spectral ordering algorithm. 

Spectral methods associate a Laplacian matrix with the given symmetric ma- 
trix A, 



A L G O R I T H M S  F O R  E N V E L O P E  A N D  W A V E F R O N T  R E D U C T I O N  565 

Figure 2.2: RCM (a), Sloan (b), spectral (c), and hybrid (d) orderings of 
bcsstk30. 

Laplacian(A) = [lij] = 
-1 ,  if i ~ j ,  aij ~ 0; 
0, if i ~ j ,  aij - ~  0; 

~-~i~k Ilikl, if i = j .  

The Laplacian matrix of an undirected graph is defined as the Laplacian ma- 
trix associated with its adjacency matrix. The Laplacian matrix is a singular 
M-matrix. By construction, the Laplacian has row and column sums identi- 
cally zero. Its smallest eigenvalue is zero, and the corresponding eigenvector is 
the vector of all ones. If the given matrix is irreducible, or equivalently, if its 
adjacency graph is connected, zero is a simple eigenvalue. An eigenvector corre- 
sponding to the smallest positive eigenvalue of the Laplacian matrix is called a 
Fiedler vector in recognition of the pioneering work of Miroslav Fiedler on the 
spectral properties of the Laplacian [12, 13]. 



566 G. K U M F E R T  AND A. P O T H E N  

The spectral ordering is obtained by sorting the components of the Fiedler 
vector in monotonically nonincreasing or nondecreasing order. The same per- 
mutation is applied to the original matrix to obtain the spectral ordering. George 
and Pothen [16] show that reversing the ordering will change (improve or deteri- 
orate) the envelope size by a multiplicative factor that  is at most the maximum 
degree of a vertex in the graph. 

We do not need to compute the Fiedler vector very accurately for these ap- 
plications. Since a multilevel algorithm is used to compute the Fiedler vector 
for the large problems that  we consider, the practical implementations of our 
algorithms sometimes work with misconverged Fiedler vectors. Our experience 
is that  these misconverged vectors work quite well in this application. Greater 
reductions in the envelope parameters result from investing in a local refine- 
ment algorithm, such as the Sloan algorithm, than by computing the Fiedler 
vector more accurately. Similar observations have been made when multilevel 
algorithms are used in graph partitioning [24]. 

We find that  on many finite element problems spectral orderings do well in a 
global sense, but often do poorly on a local scale. It is exactly this amenability 
to local refinement that  we seek to exploit with our hybrid algorithm. 

2.3 Counter-examples for spectral envelope reduction. 

The spectral algorithm computes the lowest wavefront and envelope sizes over 
current algorithms for many finite element meshes as the results in Section 5 will 
show. However, there are problems on which the spectral method can perform 
poorly, as can be seen in the results presented in Subsection 5.2. Here we con- 
sider an example due to Guat tery  and Miller [22] where a spectral partitioning 
algorithm fails to find a good cut if the part sizes must be balanced. This turns 
out to be one on which the spectral ordering algorithm does badly as well. We 
show that the hybrid algorithm, in which the spectral ordering is refined by the 
Sloan algorithm in a post-processing step, does well on this problem. 

Figure 2.3 shows an example of the "roach" graph and the ordering computed 
by the hybrid algorithm. The roach graph is a ladder with the top 2/3 of the 
rungs removed. For a given positive integer k, this graph has 6k vertices: 2k 
along each "antenna", and 2k vertices on the ladder. The spectral ordering of 
this graph would begin numbering from the endpoint of one of the antennae, 
march along the outline of the graph, and end at the endpoint of the other 
antenna. This leads to an envelope size of 2k 2, and a mean square wave front 
of k2/18. (Only leading terms are shown.) It can be seen in Figure 2.3 that  
the hybrid algorithm numbers nodes along one antenna, then alternates across 
the rungs of the ladder, and finally numbers the second antenna. This leads 
to an envelope size of 10k, and a mean square wavefront of (2/3)k, an order of 
magnitude decrease in both. 

For the benefit of the reader familiar with graphs constructed from the cross- 
product of a path and double tree, described in [22], we mention that  the pro- 
posed hybrid algorithm exhibits similar behavior. 



ALGORITHMS FOR E N V E L O P E  AND WAVEFRONT REDUCTION 5 6 7  

! .60 
.59 

"G .58 
"'~ .57 

5 56  
6 /55 

7 .54 
6 ,53 

'9 ,52 
'10 ,51 
'I I /50 

'J2 .49 
'13 .48 

�9 14 .47 
'15 .46 

'16 .45 
"17 .44 

'18 .43 
"19 ,42 

"'20 ,41 
'~2t,40 
P-2'23 

N~ 
,o 2'o ;o 4o s'o 6o 

(a) (b) 

Figure 2.3: The hybrid ordering of the roach grid and its associated matrix. 

3 A fast  i m p l e m e n t a t i o n  o f  t h e  Sloan  a l g o r i t h m .  

We describe a variant of the Sloan algorithm applicable to vertex-weighted 
graphs in Section 3.1; we also discuss the behavior of the envelope parameters as 
a function of the weights in the Sloan algorithm. In Section 3.2, we describe an 
efficient implementation of this algorithm. The Appendix contains a complexity 
analysis to demonstrate that the new implementation takes O(n log n) time for 
problems with good separators, whereas earlier implementations require at least 
O(n 3/2) time. 

3.1 The weighted Sloan algorithm. 

In this section we consider a weighted graph on a set of multi-vertices and 
edges, with integer weights on the multi-vertices. We think of the weighted 
graph as being derived from an unweighted graph, and the weight of a multi- 
vertex as the number of vertices of the unweighted graph that  it represents. The 
weighted graphs in our applications are obtained from finite element meshes, 
where neighboring vertices with the same adjacency structures are "condensed" 
together to form multi-vertices. The weighted graph could potentially have fewer 
vertices and many fewer edges than the original unweighted graph in many 
finite element problems. Duff, Reid, and Scott [11] call the weighted graph 
the supervariable connectivity graph. Ashcraft [2] refers to it as the compressed 
graph, and has used it to speed up the minimum-degree algorithm, and Wang [40] 
used it for an efficient nested dissection algorithm. 

A few graph-theoretic concepts are needed to describe Sloan's algorithm. The 
distance between two vertices in a graph is the number of edges in a shortest path 
joining them. The diameter is a path in the graph whose length is the largest 
distance between any two vertices. A pseudo-diameter is an approximation to a 
diameter. 



568 G. K U M F E R T  AND A. P O T H E N  

Sloan's algorithm [39] is a graph traversal algorithm that  has two parts. The 
first part is a heuristic algorithm that selects a start vertex s and an end vertex 
e that  form the endpoints of a pseudo-diameter. The second part then numbers 
the vertices, beginning from s, and chooses the next vertex to number from a 
set of eligible vertices by means of a priority function. Roughly, the priority of 
a vertex has a dynamic and static component: the dynamic component favors 
a vertex that  increases the current wavefront the least, while the static part 
favors vertices at the greatest distance from the end vertex e. The computation- 
intensive part of the algorithm is maintaining the priorities of the eligible vertices 
correctly as vertices are numbered. 

We follow Duff, Reid, and Scott in their efficient scheme to compute the 
pseudo-diameter in the first step of the Sloan algorithm. 

El ig ib le  Ver t ices .  Vertices are in four mutually exclusive states at each step 
of the algorithm. Any vertex that  has already been numbered in the algorithm 
is a numbered vertex. Active vertices are unnumbered vertices that  are adjacent 
to some numbered vertex. Vertices that are adjacent to active vertices but are 
neither active nor numbered are called preactive vertices. All other vertices are 
inactive. Initially all vertices are inactive, except for s, which is preactive. 

At any step k, the sum of the sizes of the active vertices is exactly the size of 
the wavefront at that step for the reordered matrix, wfk(pApT), where P is the 
current permutation. Active and preactive vertices comprise the set of vertices 
eligible to be numbered in future steps. 

An eligible vertex with the maximum priority is chosen to be numbered next. 
The priority function of a vertex i has two components: incr(i), the increase in 
the wavefront size (the number of additional vertices that  enter the wavefront) 
if i were to be numbered next, and dist(i, e), its distance from the end vertex e. 

I n c r e a s e  in W a v e f r o n t  Size. Our implementation of the weighted Sloan 
algorithm on the weighted graph mimics what the Sloan algorithm would do on 
an unweighted graph, and thus we define the degrees of the vertices and incr(i) 
differently from Duff, Reid, and Scott [11]. 

We denote by size(i) the integer weight of a multi-vertex i. The degree of the 
multi-vertex i, deg(i), is the sum of the sizes of its neighboring multi-vertices. 
Let the current degree of a vertex i, cdeg(i), denote the sum of the sizes of 
the neighbors of i among preactive or inactive vertices. It can be computed 
by subtracting from the degree of i the sum of the sizes of its neighbors that 
are numbered or active. When an eligible vertex is assigned the next available 
number, its preactive or inactive neighbors move into the wavefront. Thus 

cdeg(i) -t- size(i), if i is preactive; 
(3.1) incr(i) = [ cdeg(i), if i is active. 

The size(i) term for a preactive vertex i accounts for the inclusion of i into the 
wavefront. (Recall that  the definition of the wavefront includes the diagonal 
element.) Initially, incr(i) is deg(i) + size(i) since nothing is in the wavefront 
yet. 



ALGORITHMS FOR ENVELOPE AND WAVEFRONT REDUCTION 569 

0. 
1. 
2. 
3. 
4. 
5. 

6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 

26. 
27. 
28. 
29. 

f u n c t i o n  Sloan 
b e g i n  

{Initialize: given a ver tex-weighted g raph  G, weights  WI and  W2, 
s t a r t  ver tex s, end  ver tex  e, and  adjacency lists of  vertices} 
n o r m  = [dist(s ,  e ) / A ] ;  
fo r  i ---- 1 t o  n 

status[i]  +- inactive 
P[i] = - W 1  * no rm �9 incr(i) 4- W2 * dist(i ,  e) 

e n d  fo r  
s ta tus[s]  +- preactive 

{Main Loop} 
fo r  k ---- 1 t o  n 

i ---- ver tex  of m a x i m u m  priority (P[.]) a m o n g  all active or preactive vertices 
order[i] +-- k 
f o r a l l  j E adj(i)  d o  

c a s e  (status[i]  = preactive a n d  s t a t u s [ j  I = inactive o r  preactive): 
P[j] +- P[j] § (size(i) + size(j))  * no rm * W1 {j  now active, i numbered}  
s ta tus[ j ]  ~- active 
far_neighbors( j )  
b r e a k  

c a s e  (status[i]  = preactive a n d  s ta tus[ j ]  = active): 
P[j]  +-- P[j]  § size(i) * no rm * W1 {i moves  from preact ive to numbered}  
b r e a k  

c a s e  (status[i]  = active a n d  s ta tus[ j ]  = preactive): 
P[j] +-- P[j] 4- size(j)  * no rm * W~ {j moves  from preact ive to active} 
s ta tus[ j ]  ~-- active 
far _neighbors ( j)  
b r e a k  

e n d  fo r a l l  
s tatus[i]  +- numbered 

e n d  fo r  
e n d  

f u n c t i o n  far_neighbors( j)  
begin 

f o r a l l  g E adj ( j ) (g  ~ i) d o  
i f  (status[g] = inactive) t h e n  s ta tus[ t ]  +- preaetive e n d  i f  
PIg] +- Pig] + size(j)  * no rm * W1 {j now active} 

e n d  fo r a l l  
e n d  

F i g u r e  3 .1 :  T h e  S l o a n  a l g o r i t h m  fo r  a v e r t e x - w e i g h t e d  g r a p h .  



5 7 0  G. K U M F E R T  AND A. P O T H E N  

The second component of the priority function, dist(i, e), measures the dis- 
tance of a vertex i from the end vertex e. This component encourages the 
numbering of vertices that are very far from e even at the expense of a larger 
wavefront at the current step. This component is easily computed for all i by a 
breadth first search rooted at e. 

T h e  P r i o r i t y  Func t i on .  Denote by P(i) the priority of an eligible vertex i 
during a step of the algorithm. The priority function used by Sloan, and Duff, 
Reid and Scott is a linear combination of two components 

P(i) - -  - W  1 , incr(i) + W2 * dist(i, e), 

where W1 and W2 are positive integer weights. At each step, the algorithm 
numbers next an eligible vertex i that maximizes this priority function. 

The value of incr(i) ranges from 0 to (A § 1) (where A is the maximum degree 
of the unweighted graph G), while dist(i, e) ranges from 0 to the diameter of 
the graph G. We felt it desirable for the two terms in the priority function to 
have the same range so that we could work with normalized weights W1 and W2. 
Hence we use the priority function 

(3.2) P(i) -- -W1 * [(dist(s, e)/A)J �9 incr(i) + W2 * dist(i, e). 

If the pseudo-diameter is less than the maximum degree, we set their ratio to 
one. We discuss the choice of the weights later in this section. 

T h e  A l g o r i t h m .  We present in Figure 3.1 our version of the weighted Sloan 
algorithm. This modified Sloan algorithm requires fewer accesses into the data 
structures representing the graph (or matrix) than the original Sloan algorithm. 
The priority updating in the algorithm ensures that incr(j) is correctly main- 
tained as vertices become active or preactive. When a vertex i is numbered, its 
neighbors and possibly their neighbors need to be examined. Vertex i must be 
active or preactive, since it is eligible to be numbered. We illustrate the updating 
of the priorities for only the first case in the algorithm, since the others can be 
obtained similarly. Consider the case when i is preactive and j is inactive or pre- 
active. The multi-vertex i moves from being preactive to numbered, and hence 
moves out of the wavefront, decreasing incr(j) by size(i), and thereby increases 
P(j) by W1 * [(dist(s, e)/A)J �9 size(i). Further, since j becomes active and is 
now included in the wavefront, it does not contribute in the future to incr(j), 
and hence P(j) increases by W1 * [(dist(s, e)/A)J * size(j). 

T h e  Cho ice  of  Weigh t s .  Sloan [39] and Duff, Reid, and Scott [11] recom- 
mend the unnormalized weights W1 -- 2, W2 = 1. We studied the influence of 
the normalized weights W1 and W2 on the envelope parameters, and found, to 
our initial surprise, that the problems we tested fell into two classes. 

The first class is exemplified by the BARTtt5 problem, whose envelope param- 
eters are plotted for various choices of weights in Figure 3.2. The value of each 
envelope parameter is scaled with respect to the value obtained with the unnor- 
malized weights W1 -- 1 and W2 = 2 in the Sloan algorithm. Thus this and ~the 
next figures reveal the improvements obtained by normalizing the weights in the 
Sloan algorithm. 



ALGORITHMS FOR ENVELOPE AND WAVEFRONT REDUCTION 571 

2.5  

esize 
�9 bandwidth 

- -  r naxwf  
- -  r neansqw f  

~ 1 . 5  
O~ 

z 1 ~ . . #  

\ . . . . . . . . . .  

0 .5  \ 
\ 

d i a m e t e r / m a x d e g  = 10 

0 . . . . . .  ': i ': ' 1:2A8 1 :2^7  1:2."'6 1 :2 "5  1:2'*,4 1:2" '3 1 :2 "2  1 2  1 1  2 1  2 "2 :1  2A3:1 2A4:1 

Figure 3.2: Envelope parameters of BARTH5 as a function of the ratio of the 
weights W1 and W2. 

The envelope parameters are plotted at successive points on the x-axis cor- 
responding to changing the weight W1 or W2 by a factor of two. The ratio of 
the pseudo-diameter to maximum degree is 10 for this problem, and here large 
values of W1 lead to the smallest envelope size and wavefront sizes. The nor- 
malized weights W1 = 2 and W2 = 1 suffice to obtain these values; note the 
asymptotic behavior of the envelope parameters. The bandwidth has a contrar- 
ian behavior to the rest of the parameters, and thus high values of W2 lead to 
small bandwidths for these problems. 

The second class is exemplified by the FINANCE512 problem, whose envelope 
parameters are plotted for various choices of weights in Figure 3.3. Again, the 
value of each parameter is scaled by the value obtained by the Sloan algorithm 
with unnormalized weights W1 = 2, W2 -- 1. The ratio of the pseudo-diameter to 
maximum degree is 1. Here high values of 1412 lead to small envelope parameters. 
Note that  the bandwidth follows the same trend as the rest of the envelope 
parameters, unlike the first class. Other problems from Table 5 that belong to 
this class are: FORD1, FORD2, SKIRT, NASARB, BCSSTK30, and FINANCE256. 
All other problems belong to the first class. 

A user needs to experiment with the weights to obtain a near-optimal value 
of an envelope parameter for a new problem, since one does not know a priori 
which of the two classes it belongs to. Fortunately, small integer weights suffice 
to get good results in our experiments, and hence a set of good weights can 
be selected automatically by computing the envelope parameters with a few 
different weights. 



572 G. K U M F E R T  A N D  A. P O T H E N  

20 , , , 

18 
esize 

~__ bandwidth 
16 maxwf  

- meansqwf 

14 

~'.12 

10 

6 

4 

2 

0 i I 1 
1:2^5 1:2A4 1:2^3 1:2^2 1':2 1:1 

- 130 

f ~ 
I 
I / /  

I / / 

I / 
I / 

I / 

.I / / 

I / 

i / 

I . / 

=1 

i { i i i L 
2 1 2^2:1 2A3:1 2A4:1 2A5:1 2A6:1 2^7:1 

Figure 3.3: Envelope parameters of FINANCES12 as a function of the ratio of the 
weights W1 and W2. 

The results tabulated in Section 5 show that  it is possible to reduce the mean 
square wavefront by choosing one normalized set of weights for each problem in 
Class 1, and another for each problem in Class 2, rather than the unnormalized 
weights (W1 = 2, W2 -- 1) used by Sloan and Duff, Reid, and Scott. The weights 
we have used are W1 = 8, W2 -- 1 for Class 1 problems, and W1 -- 1, W2 = 2 
for problems in Class 2. An automatic procedure could compute the envelope 
parameters for a few sets of weights, and then choose the ordering with the 
smaller values. 

There are two limiting cases of the Sloan algorithm. 
When W1 = 0, W2 r 0, then the distance from the end vertex e determines 

the ordering, and the Sloan algorithm behaves almost like RCM. However, this 
limiting case differs from the case when W1 is nonzero and W2 is much larger 
than W1. In the latter case, the first term still plays a role in reducing the 
envelope parameters. For instance, the values of envelope parameters obtained 
when the ratio W2/W1 is 216 are significantly smaller than the values obtained 
when W1 = 0 and W2 r 0. Only neighbors and second-order neighbors of the 
numbered vertices are eligible to be numbered at any step, and among these 
vertices the first term serves to reduce the local increase in the wavefront when 
W1 is nonzero. 

The second limiting case, when W2 -- 0, W1 ~ 0, corresponds to a greedy 
algorithm in which vertices are always numbered to reduce the local increase in 
wavefront. This greedy algorithm does particularly poorly on Class 2 problems. 

The two classes of problems differ in the importance of the first, "local", term 



ALGORITHMS FOR ENVELOPE AND WAVEFRONT REDUCTION 573  

that controls the incremental increase in the wavefront relative to the second, 
"global", term that  emphasizes the numbering of vertices far from the end-vertex. 
When the first term is more important in determining the envelope parameters, 
the problem belongs to Class 1, and when the second term is more important, it 
belongs to Class 2. We have observed that the first class of problems represent 
simpler meshes: e.g., discretization of the space surrounding a body, such as an 
airfoil in the case of BARTH5. The problems in the second class arise from finite 
element meshes of complex three-dimensional geometrical objects, such as auto- 
mobile frames. The FINANCE512 problem is a linear program consisting of several 
subgraphs joined together by a binary tree interconnection. In these problems, 
it is important to explore several "directions" in the graph simultaneously to 
obtain small envelope parameters. 

The bandwidth is smaller when larger weights are given to the second term, for 
both classes of problems. This is to be expected, since to reduce the bandwidth, 
we need to decrease, over all edges, the maximum deviation between the numbers 
of the endpoints of an edge. 

3.2 The accelerated implementation. 

In the Sloan algorithm, the vertices eligible for numbering are kept in a priority 
queue. Sloan [39] implemented the priority queue both as an unordered list in an 
array and as a binary heap, and found that the array implementation was faster 
for his test problems (all with less than 3,000 vertices). Hence he reported results 
from the array implementation only. Duff, Reid, and Scott [11] have followed 
Sloan in using the array implementation for the priority queue in the Harwell 
library routine MC40 [1]. 

We provide a complexity analysis of the worst-case execution time of the two 
implementations in the Appendix, which shows that  the heap implementation 
runs in O(n log n) time, while the array implementation requires O(n 15) time 
for two-dimensional problems, and O(n 5/3) time for three-dimensional problems. 

This difference in running time requirements is experimentally observed as 
well. In Figure 3.4 we compare the times taken by the array and heap imple- 
mentations of the Sloan algorithm relative to our implementation of the RCM 
algorithm. The RCM algorithm uses a fast pseudo-diameter algorithm described 
by Duff, Reid, and Scott [11]. 

For the eighteen matrices in Table 5.1, the mean time of the ArraySloan was 
11.3 times that  of RCM, while the median time was 8.2 that  of RCM. However, 
the mean cost of the HeapSloan was only 2.5 times that of RCM, with the median 
cost only 2.3. The greatest improvements are seen for the problems with greater 
numbers of vertices or with higher average degrees. 

We have also computed the times taken by MC40B to order these problems, 
and found them to be comparable to the times reported here for the ArraySloan 
implementation, in spite of the different programming languages used (Fortran 
for MC40B and and C for ours.) 

We emphasize that  this change in the data structure for the priority queue 
has no significant influence on the quality of the envelope parameters computed 



574 G. K U M F E R T  AND A. P O T H E N  

Figure 3.4: Relative timing performance of RCM, ArraySloan, and HeapSloan 
algorithms. 

by the algorithm. Minor differences might be seen due to different tie-breaking 
strategies. 

4 The hybrid algorithm. 

The hybrid algorithm consists of two steps: first compute the spectral ordering; 
then use a modification of the second part of the Sloan algorithm to refine the 
ordering locally. We shall refer to this modification of the second part as the 
modified Sloan algorithm. This abuse of nomenclature should not cause any 
confusion in the context of the hybrid algorithm. We describe how we modified 
Sloan to refine a given input ordering in Section 4.1. Implementation details are 
presented in Section 4.2. 

4.1 Modifications to the Sloan algorithm. 

To change the Sloan algorithm from one that  computes an ordering from 
scratch to one that  refines a given ordering, we need to modify the selection 
of start and end nodes, and the priority function. We use input ordering in this 
section to describe the ordering of the matrix immediately before the Sloan re- 
finement is performed. In our implementation, this input ordering is the spectral 
ordering, though the refining algorithm can work with any input ordering. 

The Sloan algorithm requires a start node to begin numbering from, and an 
end node to compute the priority function. We choose the start node s to be the 
first node and the end node e to be the last node in the input ordering. Hence 



ALGORITHMS FOR ENVELOPE AND WAVEFRONT REDUCTION 5"/5 

the burden of finding a good set of endpoints is placed on the spectral method. 
Experience suggests that  this is where it should be. The spectral method seems 
to have a broader and more consistent view than the local diameter heuristic. 
This feature alone yields improved envelope parameters  over the Sloan algorithm 
for most of our test problems. 

The priority function is 

(4.1) P(i)  = - W 1  * [(n/A)J �9 incr(i) + W2 * dist(i, e) - W3 * i. 

The first two terms are similar to the priority function of the Sloan algorithm 
(Subsection 3.1), except that  the normalization factor has n, the number of 
vertices in the numerator,  rather than the pseudo-diameter. The latter is not 
computed in this context, and this choice makes the first and third terms range 
from 1 to n. 

This function is sensitive to the initial ordering through the addition of a third 
weight, W3. For W3 > 0, higher priority is given to lower numbered vertices in 
the input ordering. Conversely, for W3 < 0, priority is given to higher numbered 
vertices. This effectively performs the refinement on the reverse input ordering, 
provided s and e are also reversed. There is some redundancy between weighting 
the distance from the end in terms of the number of hops (dist(i, e)) and the 
distance from the end in terms of the input ordering (i). 

Selection of the nodes s and e and the new priority function are the only 
algorithmic modifications made to the Sloan algorithm. The node selection, 
node promotion, and priority updating scheme (see Fig. 3.1), are unchanged. 

The normalization factor in the first term of the priority function makes the 
initial influence of the first and third terms roughly equal in magnitude when W1 
and W3 are both equal to 1. The weight W2 is usually set to one. This makes it 
a very weak parameter  in the whole algorithm, but small improvements result 
when its influence is nonzero. If the component of the Fiedler vector with the 
largest absolute value has the negative sign, we set W3 = - 1  and swap s and 
e. Otherwise, we set W3 = 1 and use the nondecreasing ordering of the Fiedler 
vector. 

For Class 1 problems, higher values of W1 can lead to improvements in the 
envelope parameters  over the choice of W1 = 1, even though it is slight in 
most cases. For Class 2 problems, use of W1 = 1, W2 = W3 = 2 can lead to 
improvements as well. 

4.2 Implementation details. 

All the results presented in the following section were obtained on a Sun 
SPARCstation 20 with 64MB physical main memory and 846MB of swap space, 
running SunOS 4.1.3. The software used includes Matlab 4.2a, Chaco 2.0 [24] 
and a suite of Matlab M-files and MEX-files 1 that  we wrote. All of the MEX-files 
are written in C. A toolbox of M-files written by Gilbert, Miller, and Teng [19] 

1Both M-files and MEX-files are programs in Matlab. M-files are interpreted and are 
analogous to UNIX scripts or DOS batch files. MEX files are compiled C or Fortran codes 
that  are dynamically linked into Matlab. 



576  G. KUMFERT AND A. POTHEN 

Problem I VI I EI Comment 
BARTH 
BARTH4 
BARTH5 
SHUTTLE.EDDY 
COPTER1 
COPTER2 
FORD1 
FORD2 
SKIRT 
NASASRB 
COMMANCHE_DUAL 
TANDEM_VTX 
TANDEM_DUAL 
ONERA_DUAL 
BCSSTK30 
PDS10 
FINANCE256 
FINANCE512 
COMP.SKIRT 
COMP.NASARB 
COMP.BCSSTK30 

6,691 19,748 
6,019 17,473 

15,606 45,878 
10,429 46,585 
17,222 96,921 
55,476 352,238 
18,728 41,424 

100,196 222,246 
45,361 1,268,228 
54,870 1,311,227 

7,920 11,880 
18,454 117,448 
84,069 183,212 
85,567 116,817 
28,924 1,007,284 
16,558 66,550 
37,376 130,560 
74,752 261,120 
14,944 160,461 
24,953 275,796 
9,289 111,442 

2-D CFD problems 

3-D structural problems 

3-D CFD problems 

3-D stiffness matrix 

linear programs 

compressed SKIRT 
compressed NASARB 
compressed BCSSTK30 

Table 5.1: The list of eighteen test problems. For the three problems that 
compressed well, their compressed versions are also shown. 

was used to generate some model problems, visualize results, and test code under 
development. 

Matlab is the main platform on which the experiments were done. Its inter- 
active environment is very flexible to use. M-files allowed for quick prototype 
code generation. However, M-files are interpreted and too slow, in general, for 
matrices of reasonable size. The code was then re-written in C, given a Mat- 
lab wrapper function, and linked as a MEX file into Matlab's dynamic library. 
Chaco was used to obtain the Fiedler vector. 

5 Comp u ta t iona l  results.  

We describe in Section 5.1 how we chose the computational parameters in the 
hybrid algorithm. In Section 5.2 we discuss the relative reductions in envelope 
size and wavefront of eighteen test problems obtained from RCM, Sloan, spectral, 
and hybrid algorithms. 



ALGORITHMS FOR ENVELOPE AND WAVEFRONT REDUCTION 5 7 7  

Problem mswf maxwf Esize bw 

BARTH 
BARTH4 
BARTH5 
SHUTTLE 
COPTER1 
COPTER2 
FORD1 
FORD2 
SKIRT 
NASARB 
COMMANCHE.DUAL 
TANDEM.VERTEX 
TANDEM.DUAL 
ONERA.DUAL 
BCSSTK30 
PDS10 
FINANCE256 
FINANCE512 

Time 
(see.) 

1.26e4 164 7.01e5 199 0.13 
1.61e4 204 7.03e5 218 0.05 
5.08e4 351 3.26e6 373 0.16 
5.84e3 167 7.09e5 238 0.12 
2.84e5 797 8.62e6 932 0.13 
2.26e6 2,447 7.55e7 2,975 0.88 
2.65e4 223 2.90e6 258 0.30 
3.74e5 884 5.72e7 963 1.1 
1.11e6 1,745 4.42e7 2,070 5.0 
1.65e5 840 2.06e7 881 3.3 
6.73e3 150 5.90e5 155 0.07 
8.28e5 1,489 1.53e7 1,847 0.27 
1.96e6 2,008 1.22e8 2,199 1.4 
4.86e6 3,096 1.71e8 3,478 1.2 
1.07e6 1,734 2.66e7 2,826 3.7 
3.66e6 2,996 2.95e7 4,235 0.35 
9.38e5 1,437 3.26e7 2,014 0.51 
5.79e5 879 5.55e7 1,306 1.0 

Table 5.2: Envelope parameters and CPU time on a Sun Sparc-20 workstation 
for the RCM algorithm. 

5.1 Chaco ' s user  parameters .  

We use the SymmLQ/RQI option in Chaco to obtain the Fiedler vector. Chaco 
takes a multilevel approach, coarsening the grid until it has less than some user 
specified number of vertices (1,000 seems to be sufficient). Then it computes 
the Fiedler vector on the coarse grid, orthogonalizing only for eigenvectors cor- 
responding to small eigenvalues. Then the coarse grid is refined back to the 
original grid and the eigenvector is refined using Rayleigh Quotient Iteration 
(RQI). This refinement is the dominant cost of the whole process. During the 
coarsening, we compute generalized eigenvectors of the weighted Laplacians of 
the coarse graphs from the equation A~ = AD~, where D is the diagonal ma- 
trix of vertex weights. This feature, obtained by turning on the parameter 
MAKE_VWGTS, speeds up the eigenvector computation substantially. 

Two other parameters, EIGEN TOLEI~NCE and COARSE_NLEVEL_KQI, control 
how accurately eigenvectors are computed and how many levels of graph refine- 
ment occur before the approximate eigenvector is refined using RQI, respectively. 
We set the value of EIGEN_TOLF_2~NCE to 10 -3, and it was very effective in reduc- 
ing CPU-time. Even in the case where this tolerance induces misconvergences, 
the spectral ordering is still good and the hybrid ordering even better  for most 



578 G. KUMFERT AND A. POTHEN 

Problem SLOAN NSLOAN SPECTRAL HYBRID 
(Class) 

BARTH 
BARTH4 
BARTH5 
SHUTTLE 
COPTER1 
COPTER2 
FORD1 
FORD2 
SKIRT 
NASARB 
COMMANCHE.DUAL 
TANDEM.VTX 
TANDEM.DUAL 
ONERA.DUAL 
BCSSTK30 
PDS10 
FINANCE256 
FINANCE512 
COMP.SKIRT 
COMP.NASARB 
COMP.BCSSTK30 

0.48 0.43 (1) 0.43 0.30 
0.40 0.21 (1) 0.20 0.15 
0.56 0.18 (1) 0.18 0.14 
0.60 0.60 (1) 1.0 0.65 
0.71 0.45 (1) 0.74 0.53 
0.39 0.27 (1) 0.28 0.16 
0.67 0.67 (2) 0.48 0.39 
0.51 0.51 (2) 0.44 0.33 
0.57 0.50 (2) 0.44 0.37 
0.74 0.75 (2) 0.99 0.71 
0.60 0.34 (1) 0.37 0.23 
0.16 0.12 (1) 0.14 0.10 
0.53 0.28 (1) 0.14 0.11 
0.44 0.21 (1) 0.09 0.07 
0.37 0.30 (2) 0.10 0.05 
0.20 0.13 (1) 0.75 0.15 
0.04 0.04 (2) 0.07 0.04 
0.05 0.06 (2) 0.14 0.05 

0.46 (2) 0.51 0.39 
0.68 (2) 1.8 0.75 
0.26 (2) 0.13 0.06 

Table 5.3: Mean square wavefront sizes for various algorithms relative to RCM. 
The numbers in parentheses after the values for the normalized Sloan algorithm 
show the class each problem belongs to (see Section 3). 

problems. The COARSE_NLEVEL_RQI parameter didn't  have much effect, so we 
used the program's default value of 2. 

5.2 Results. 

We consider five ordering algorithms: RCM, Sloan with unnormalized weights 
W1 = 2, W2 = 1, Sloan with normalized weights (W1 = 8, W2 = 1 for problems 
in Class 1, and W1 = 1, W2 = 2 for problems in Class 2), spectral, and hybrid 
(normalized weights W1 -- W2 =- W3 = 1 for Class 1 problems, W1 = 1, W2 = 
W3 -- 2 for Class 2 problems). When we refer to the Sloan algorithm without 
mentioning the weights, we mean the algorithm with normalized weights. We 
have compared the quality and time requirements of these algorithms on eighteen 
problems (see Table 5.1). The problems are chosen to represent a variety of 
application areas: structural analysis, fluid dynamics, and linear programs from 
stochastic optimization and multicommodity flows. The complete set of results 



A L G O R I T H M S  F OR E N V E L O P E  AND W A V E F R O N T  R E D U C T I O N  579 

Problem SLOAN NSLOAN SPECTRAL HYBRID 
BARTH 
BARTH4 
BARTH5 
SHUTTLE 
COPTER1 
COPTER2 
FORD1 
FORD2 
SKIRT 
NASARB 
COMMANCHE.DUAL 
TANDEM.VTX 
TANDEM.DUAL 
ONERA.DUAL 
BCSSTK30 
PDS10 
FINANCE256 
FINANCE512 
COMP.SKIRT 
COMP.NASARB 
COMP.BCSSTK30 

0.66 0.65 0.64 0.53 
0.60 0.42 0.37 0.34 
0.77 0.44 0.42 0.39 
0.85 0.66 1.3 0.67 
0.84 0.58 0.65 0.57 
0.58 0.49 0.43 0.32 
0.86 0.86 0.96 0.78 
0.74 0.78 0.91 0.76 
0.65 0.84 0.65 0.57 
0.73 0.91 1.2 0.86 
0.83 0.55 0.55 0.44 
0.38 0.30 0.29 0.25 
0.72 0.55 0.34 0.30 
0.67 0.45 0.34 0.30 
0.63 0.64 0.38 0.22 
0.48 0.40 1.0 0.28 
0.22 0.22 0.30 0.21 
0.28 0.32 0.85 0.49 

0.67 0.68 0.54 
0.71 2.3 0.78 
0.52 0.40 0.23 

Table 5.4: Maximum wavefront sizes relative to the RCM algorithm. 

for RCM are shown in Table 5.2; for other algorithms, results normalized with 
respect to RCM are presented in Tables 5.3 through 5.7. 

A comparison of the mean performance of the various algorithms is included 
in Table 5.8. The CPU time for only one of the Sloan algorithms is shown 
because the two algorithms have identical running times since they differ only 
in the choice of weights. The values in this table are computed by taking the 
arithmetic mean of the (unnormalized) values of each metric over the problems 
in the test collection. Values normalized with respect to the RCM algorithm 
(reported in Tables 5.3 through 5.7) should not be used to compute the arith- 
metic mean, since the arithmetic mean of normalized data  is inconsistent in the 
sense that  the rankings of the algorithms could depend on the algorithm chosen 
as the reference algorithm. This is because the larger ratios in the normalized 
data strongly influence the arithmetic mean. The reader can compute the un- 
normalized data  from the results for RCM included in Table 5.2 and the tables 
with the normalized data. 

Initially we discuss the results on the uncompressed graphs, since most of 
the graphs in our test collection did not gain much from compression. We 
discuss later in this section the three problems that  exhibited good gains from 



580  G. KUMFERT AND A. POTHEN 

Problem SLOAN NSLOAN SPECTRAL HYBRID 
BARTH 
BARTH4 
BARTH5 
SHUTTLE 
COPTER1 
COPTER2 
FORD1 
FORD2 
SKIRT 
NASARB 
COMMANCHE.DUAL 
TANDEM.VTX 
TANDEM.DUAL 
ONERA.DUAL 
BCSSTK30 
PDS10 
FINANCE256 
FINANCE512 
COMP.SKIRT 
COMP.NASARB 
COMP.BCSSTK30 

0.69 0.66 0.66 0.55 
0.64 0.47 0.46 0.40 
0.75 0.43 0.44 0.39 
0.81 0.82 1.0 0.85 
0.84 0.68 0.89 0.74 
0.63 0.53 0.56 0A3 
0.81 0.80 0.68 0.61 
0.71 0.71 0.65 0.56 
0.77 0.72 0.70 0.63 
0.89 0.88 0.99 0.87 
0.73 0.59 0.61 0.47 
0.42 0.37 0.40 0.34 
0.72 0.54 0.39 0.34 
0.66 0.46 0.31 0.27 
0.60 0.53 0.33 0.25 
0.41 0.34 0.82 0.38 
0.20 0.22 0.28 0.20 
0.21 0.25 0.34 0.20 

0.70 0.74 0.65 
0.86 1.1 0.89 
0.52 0.38 0.26 

Table 5.5: Envelope sizes relative to RCM. 

compression. 
The envelope parameters and times reported in the tables are normalized 

with respect to the values obtained from RCM. For the Sloan algorithm, two 
sets of values are reported: the first is from the unnormalized weights W1 -- 2, 
W2 = 1, and the second from the normalized weights for Class 1 and Class 2 
problems. The normalized Sloan algorithm is labeled by the column NSLOAN 
in Table 5.3, and the number in the parenthesis (i) indicates the class to which 
a problem belongs. The results for the compressed problems are indicated by 
the last three rows. 

The Sloan algorithm with the normalized weights reduces the mean-square 
wavefront on average to 23% of that of RCM; when unnormalized weights are 
used in the Sloan algorithm, the mean square wavefront is 36% of that  of RCM. 
(Henceforth, a performance figure should be interpreted to be the average value 
for the problems in the test collection; we shall not state this explicitly.) The 
hybrid reduces the mean-square wavefront to 14% of that  of RCM, and to 60% 
of that of (normalized) Sloan. The hybrid algorithm computes the smallest 
mean square wavefront for all but three of the eighteen problems. Note that 
even for the problems where the spectral algorithm does poorly relative to the 



ALGORITHMS FOR ENVELOPE AND WAVEFRONT REDUCTION 5 8 1  

Problem SLOAN NSLOAN SPECTRAL HYBRID 
BARTH 
BARTH4 
BARTH5 
SHUTTLE 
COPTER1 
COPTER2 
FORD1 
FORD2 
SKIRT 
NASARB 
COMMANCHE.DUAL 
TANDEM.VTX 
TANDEM.DUAL 
ONERA.DUAL 
BCSSTK30 
PDS10 
FINANCE256 
FINANCEbl2 
COMP.SKIRT 
COMP.NASARB 
COMP.BCSSTK30 

2.93 4.53 1.76 4.15 
5.02 7.04 2.64 7.39 
3.44 8.91 1.96 5.19 
3.50 3.39 2.66 4.05 
3.80 7.34 1.02 7.82 
4.05 11.4 1.89 8.39 
7.67 6.91 12.0 12.0 
7.06 12.1 5.75 8.04 
9.37 3.66 2.13 2.15 
5.82 5.83 4.17 5.57 
9.94 15.9 2.52 8.15 
2.35 3.56 1.39 2.29 
3.55 9.07 2.92 4.72 
8.93 11.3 2.08 3.19 
5.60 5.11 1.91 2.28 
3.59 3.77 1.87 3.58 
4.41 4.11 2.49 2.44 
3.26 2.88 2.84 2.38 

6.07 3.19 3.16 
5.81 6.83 4.72 
4.02 2.05 2.03 

Table 5.6: Bandwidths relative to RCM. 

Sloan algorithm, the post-processing enables the hybrid algorithm to compute 
relatively small wavefronts. In general, the spectral and Sloan algorithms tend 
to vie for second place with RCM finishing fourth. 

These algorithms also yield smaller maximum wavefront sizes than RCM. The 
normalized Sloan algorithm yields values about 52% of RCM, while the hybrid 
computes values about 38% of RCM. Thus these algorithms lead to reduced 
storage requirements for frontal factorization methods. 

The results for the envelope size are similar. The hybrid, on average, reduces 
the envelope size to 37% of that of the RCM ordering, and to 73% of that of the 
normalized Sloan algorithm. 

The Sloan, spectral, and the hybrid algorithms all reduce the wavefront size 
and envelope size at the expense of increased bandwidth. This is expected for 
the Sloan algorithm since Figures 3.2 and 3.3 show that the weights yielding 
small wavefront sizes are quite different from the weights for small bandwidth. 
It is also not surprising for the spectral and the hybrid algorithms since their 
objective functions, 2-sum (for spectral, see [16]) and wavefront size (for the 
hybrid) differ from the bandwidth. 

On these test problems, our efficient implementation of the Sloan algorithm 



5 8 2  G. KUMFERT AND A. P O T H E N  

Problem SLOAN SPECTRAL HYBRID 
BARTH 
BARTH4 
BARTH5 
SHUTTLE 
COPTER1 
COPTER2  
FORD1 
FORD2 
SKIRT 
NASARB 

1.9 10 11 
3.4 18 20 
2.7 19 21 
2.7 15 17 
4.7 25 28 
3.0 18 20 
1.7 12 13 
2.7 19 21 
1.7 3.7 4.5 
2.3 8.5 9.7 
2.1 19 19 
2.7 14 16 
2.2 14 15 
2.3 15 15 
1.7 3.2 4.0 
2.1 36 37 
2.4 16 18 
2.3 17 18 

COMMANCHE,DUAL 
TANDEM.VTX 
TANDEM.DUAL 
ONERA.DUAL 
BCSSTK30 
PDS10 
FINANCE256 
FINANCE512 
COMP.SKIRT 
COMP.NASARB 
COMP.BCSSTK30 

0.33 0.69 0.91 
0,49 1.8 2.3 
0.34 0.56 0.74 

Table 5.7: CPU times relative to the RCM algorithm. 

Metric Units RCM SLOAN NSLOAN SPECTRAL HYBRID 
mswf le5 10 3.7 2.3 3.1 1.4 
maxwf le2 12 7.0 6.2 6.9 4.5 
Esize le7 3.7 2.3 1.9 1.7 1.4 
bw le3 1.5 7.9 10 3.6 6.4 
CPU-t ime sec. 1.1 2.2 10 11 

Table 5.8: Average performance of the algorithms. The arithmetic mean of each 
metric is calculated from the unnormalized values of that  metric for the test 
problems, 



A L G O R I T H M S  F O R  E N V E L O P E  AND W A V E F R O N T  R E D U C T I O N  583 

requires on average only 2.1 times the time taken by the RCM algorithm. The 
hybrid algorithm requires about 5.0 times the time taken by the Sloan algorithm 
on the average. This ratio is always greater than one, since the hybrid algorithm 
uses the second step of the Sloan algorithm (numbering the vertices) to refine 
the spectral ordering, and the eigenvector computation is much more expensive 
than the first step of the Sloan algorithm (the pseudo-diameter computation). 
We believe that these time requirements are small for the applications that we 
consider: preconditioned iterative methods and frontal solvers. 

Gains from Compressed Graphs.  As discussed in Section 3.1, the use 
of the supervariable connectivity graph [11] (called the compressed graph by 
Ashcraft [2]) can lead to further gain in the execution times of the algorithms. 
Only three of the problems, SKIRT, NASARB, BCSSTK30, compressed well. This is 
because many of the multicomponent finite element problems in our test set had 
only one node representing the multiple degrees of freedom at that node. The 
compression feature is an important part of many software packages for solving 
PDE's, since it results in reduced running times and storage overheads, and our 
results also show impressive gains from compression. 

Three problems in our test set compressed well: SKIRT, NASAKB, and BCSSTK30. 
Results for these problems are shown in the last three rows of each table. The 
numbers of multivertices and edges in the compressed graphs are also shown. For 
these three problems, compression speeds up the Sloan algorithm on average by 
a factor of nearly 5, and the hybrid algorithm by a factor of 4.6. 

Compression improves the quality of the Sloan algorithm for these three prob- 
lems, and does not have much impact on the hybrid algorithm. This improved 
quality of the compressed Sloan algorithm follows from our choice of parame- 
ters in the compressed algorithm to correspond exactly to their values in the 
uncompressed graph. However, on NASARB, the spectral envelope parameters de- 
teriorate upon compression. We do not know the reason for this, but it could be 
due to the poorer quality of the eigenvector computed for the weighted problem. 
In any case, the compressed hybrid algorithm recoups most of this deterioration. 

6 Applications.  

This section discusses preliminary evidence demonstrating the applicability of 
the orderings we generated. In Section 6.1 we describe how a reduction in mean 
square wavefront directly translates into a greater reduction in CPU-time in a 
frontal factorization. We also discuss the impact of these orderings on incomplete 
Cholesky (IC) preconditioned iterative solvers in Section 6.2. 

6.1 Frontal methods. 

The work in a frontal Cholesky factorization algorithm is 

1 n 
work(A) = ~ ~-]lwfi(A)l ( Iwfi(A)l + 3). 

i=1  



584 a K U M F E R T  AND A. P O T H E N  

bcss tk30  

skirt 

Initial 
RCM 
Sloan 
Spectral 
Hybrid 
Initial 
RCM 
Sloan 
Spectral 
Hybrid 

Sun SPARC20 
Ordering 

Time 
0 

3.7 
6.1 

11.9 
14.6 

0 
5.0 
8.4 

18.6 
22.6 

Cray-J90 
Frontal Solve 

Time Flops 
1106 8.7e+10 
1649 1.4e§ 
989 7.5e§ 
188 1.1e+10 
205 1.1e§ 

2427 2.1e+11 
2233 1.9e+11 
1754 1.4e+11 
979 7.6e§ 
980 7.3e+10 

Table 6.1: Results of two problems on a CRAY-J90 using MA42. Times reported 
are in seconds. 

Hence a reduction in the mean-square wavefront leads to fewer flops during 
Cholesky factorization. Duff, Reid, and Scott [11] have reported that Sloan or- 
derings lead to faster frontal factorization times than RCM orderings. Barnard, 
Pothen, and Simon [4] have reported similar results when spectral orderings are 
used. 

Two problems were run by Dr. Jennifer Scott on a single processor of a Cray- 
J90 using the Harwell frontal factorization code MA42. The matrix values were 
generated randomly. (The orderings used were obtained earlier than the results 
reported in Section 5; however, these results suffice to show the general trends.) 
The results in Table 6.1 show a general correlation between mean square wave- 
fronts (proportional to flops) and factorization times. The spectral ordering 
enables the factorization to be computed about 5.2 times faster than the Sloan 
ordering for the BCSSTK30 problem; this ratio is 1.8 for the SKIRT problem. The 
hybrid does not improve faztorization times over the spectral ordering for these 
problems. 

6.2 Incomplete Cholesky preconditioning. 

In this section we report preliminary experiments on the influence of our or- 
derings on preconditioned conjugate gradients (CG). We precondition CG with 
an Incomplete Cholesky factorization (IC(k)) that  controls k, the level of the fill 
introduced. 

Since the envelope is small, we confine fill to a limited number of positions, 
and hope to capture more of the character of the problem with fewer levels of fill. 
However, a tighter envelope is only one of the factors that affect convergence. 
For instance, orderings must respect numerical anisotropy for fast convergence. 

Our preliminary results have been mixed. In Table 6.2 we show information 



ALGORITHMS FOR ENVELOPE AND WAVEFRONT REDUCTION 5 8 5  

BODY. Y-5 

IVI = 18,589 
IEI = 5 5 , 1 3 2  

Level 0 

Level 2 

IIRIIF 
nnz(L) 

iteration count 
CPU time 

flops 

IIRIIF 
nnz(L) 

iteration count 
CPU time 

flops 

BCSSTK17 IIRIIF 
iVI = 10,974 nnz(L) 
IEI = 208,838 iteration count 

Level 2 CPU time 
flops 

Ordering 
RCM Sloan Spectral Hybrid 

3,608 2,598 9,166 7,276 
73,721 73,721 73,721 73,721 

756 497 1,203 1,009 
1,103 726 1,715 1,405 

6.8e+08 4.5e+08 1.1e+09 9.1e+08 

1,430 885 988 501 
128,854 126,141 128,121 126,319 

457 231 356 265 
726 376 564 422 

5.1e+08 2.6e+08 4.0e+08 2.9e+08 

6.5e+08 6.5e+08 7.3e+08 1.9e+09 
470,304 473,017 486,524 474,935 

422 323 320 179 
1,131 894 871 503 

1.1e+09 9.5e+08 9.5e+08 5.2e+08 

Table 6.2: Convergence of preconditioned CG on BODY.Y-5 and BCSSTK17. 

pertaining to two problems that  are representative of our data. It is worth 
noting how strongly the norm of the remainder matrix for a given ordering is 
a predictor of iteration counts. The BODY. Y-5 problem shows that  the Sloan 
ordering can be very effective in reducing the iteration count. This problem 
is a two-dimensional mesh with an aspect ratio of 10 -5. In the case of poor 
aspect ratios, a weighted Laplacian should be more appropriate for computing 
the spectral ordering, but we defer this topic for future research. Duff and 
Meurant [8] indicate that ordering becomes more significant when the problem 
becomes more difficult (discontinuous coefficients, anisotropy, etc.). 

Another problem from the Harwell-Boeing collection BCSSTKI7 did not con- 
verge quickly for levels of fill below two, indicating that  it is a difficult problem. 
The rate of convergence at two levels of fill shows that the new ordering reduces 
the iteration count by almost half that of its closest competitor. Since envelope 
reduction concentrates fill, it is possible that the benefits of the hybrid ordering 
are maximized when more than one level of fill is allowed. 



586 G. K U M F E R T  A N D  A. P O T H E N  

7 Conc lus ions .  

We have observed that problems fall into two distinct classes when we examine 
how envelope parameters vary asymptotically as a function of the weights in the 
Sloan algorithm. Small wavefronts are obtained for the first class of problems 
when the the "local" term in the priority function is weighted large relative to 
the "global" term; for the second class of problems, the "global" term should be 
weighted to be more important. The bandwidth behaves contrary to the other 
envelope parameters for the first class, but its behavior is similar to the others 
for the second class. This is understandable since the bandwidth is a global 
property of an ordering of a graph. 

A new normalized scheme for choosing weights according to the problem class 
improves the quality of the orderings computed by the Sloan algorithm. Our 
efficient implementation of the Sloan algorithm on the average required only 2.1 
times the time taken by RCM, while producing mean square wavefronts about 
three times smaller than those obtained from RCM. Since the cost of the RCM 
algorithm is a few breadth-first-searches through the graph, these results imply 
that the Sloan algorithm is an effective combinatorial algorithm for computing 
envelope and wavefront reducing orderings. 

Our modified Sloan algorithm for compressed graphs is very fast on problems 
that exhibit good compression. Since this algorithm mimics the computations 
that would be performed on the original unweighted graph, the faster algorithm 
does not sacrifice the quality of the orderings. 

We have also described a hybrid algorithm that combines a spectral algorithm 
with a refinement step using a modified Sloan algorithm. The hybrid algorithm 
further improves the good envelope and wavefront reducing properties of the 
spectral algorithm. It produces orderings of better quality (about 60% of the 
mean square wavefront of normalized Sloan) but at a cost greater by a factor 
of five than the Sloan algorithm. In applications such as frontal factorization 
schemes, where the time taken to compute an ordering is insignificant relative 
to the subsequent factorization step, or for nonlinear problems where the cost of 
the ordering can be amortized over several linear solves, the hybrid algorithm is 
an attractive choice. However, in other applications where the tradeoff between 
the quality of the ordering versus the time required for computing the ordering 
favors fast ordering algorithms, the Sloan algorithm is attractive. 

In this work we have primarily focused on improving the quality and time 
requirements of the Sloan algorithm. With similar attention to the eigencom- 
putation of the spectral algorithm we believe that the time requirements of the 
spectral algorithm could be reduced, and thereby the hybrid algorithm could be 
made more competitive. An interesting question is whether one can design al- 
gorithms that compute orderings with the same quality as the hybrid but at the 
cost of the Sloan algorithm. Boman and Hendrickson [5] have recently described 
an attempt in this direction, a multilevel algorithm for wavefront reduction. 

Much more work is needed to understand the influence of these orderings .on 
the convergence behavior of preconditioned iterative solvers. 

Our software implementing these algorithms is available with three different 



ALGORITHMS FOR ENVELOPE AND WAVEFRONT REDUCTION 5 8 7  

interfaces: a stand-alone code, a code that can be called within Matlab, and 
another callable within PETSc. These codes are available from us upon request 
by electronic mail. 

Acknowledgments 

We thank Dr. Jennifer A. Scott of the Department of Computation and In- 
formation of Rutherford Appleton Laboratory for testing our orderings on the 
frontal code MA42, and Dr. Bruce Hendrickson of Sandia National Labs for 
modifying some of the Chaco functions to help us obtain accurate timing results. 
We are grateful to Dr. Scott and to Dr. Cleve Ashcraft (Boeing Information 
Services) for two rounds of careful reviews. Thanks also to Dr. Steve Guattery 
(ICASE) for comments on drafts of this paper. 

REFERENCES 

1. Anonymous, Harwell Subroutine Library, A Catalogue of Subroutines (Release 12). 
1995. 

2. C. C. Ashcraft, Compressed graphs and the minimum degree algorithm, SIAM J. 
Sci. Comput., 16 (1995), pp. 1404-1411. 

3. J. E. Atkins, E. G. Boman, and B. Hendrickson, A spectral algorithm for the seri- 
ation problem. Tech. Report, Sandia National Lab, Albuquerque, NM. 

4. S. T. Barnard, A. Pothen, and H. D. Simon, A spectral algorithm for envelope 
reduction of sparse matrices, J. Numerical Linear Algebra with Applications, 2 
(1995), pp. 317-334. A shorter version has appeared in Supercomputing '93, IEEE 
Computer Society Press, pp. 493-502, 1993. 

5. E. G. Boman and B. Hendrickson, A multilevel algorithm for envelope reduction, 
Preprint, Sandia National Labs, Albuquerque, NM, 1996. 

6. E. H. Cuthill and J. McKee, Reducing the bandwidth of sparse symmetric matri- 
ces, in Proceed. 24th Nat. Conf. Assoc. Comput. Mach., ACM Publications, 1969, 
pp. 157-172. 

7. E. F. D'Azevedo, P. A. Forsyth, and W. P. Tang, Ordering methods/or precondi- 
tioned conjugate gradients methods applied to unstructured grid problems, SIAM J. 
Matrix Anal. Appl., 13 (1992), pp. 944-961. 

8. I. Duff and G. Meurant, The effect of ordering on preconditioned conjugate gradi- 
ents, BIT, 29 (1989), pp. 635-657. 

9. I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods/or Sparse Matrices, 
Clarendon Press, Oxford, 1986. 

10. I. S. Duff, R. G. Grimes, and J. G. Lewis, Users' Guide for the Harwell-Boeing 
Sparse Matrix Collection, 1992. 

11. I. S. Duff, J. K. Reid, and J. A. Scott, The use of profile reduction algorithms with 
a frontal code, Internat. J. Numer. Meth. Engrg., 28 (1989), pp. 2555-2568. 

12. M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J., 23 (1973), 
pp. 298-305. 

13. M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and its 
application to graph theory, Czechoslovak Math. J., 25 (1975), pp. 619-633. 

14. A. George, Computer implementation of the finite element method, Tech. Report 
208, Department of Computer Science, Stanford University, Stanford, CA, 1971. 



588 G. KUMFERT AND A. POTHEN 

15. A. George and J. W-H. Liu, The evolution of the minimum degree algorithm, SIAM 
Review, 31 (1989), pp. 1-19. 

16. A. George and A. Pothen, An analysis of spectral envelope-reduction via quadratic 
assignment problems, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 706-732. 

17. N. E. Gibbs, Algorithm 509: A hybrid profile reduction algorithm, ACM Trans. 
Math. Software, 2 (1976), pp. 378-387. 

18. N. E. Gibbs, W. G. Poole, Jr., and P. K. Stockmeyer, An algorithm for reducing 
the bandwidth and profile of a sparse matrix, SIAM J. Num. Anal., 13 (1976), 
pp. 236-249. 

19. J. R. Gilbert, G. L. Miller, and S.-H. Teng, Geometric mesh partitioning: Imple- 
mentation and experiments, Tech. Report CSL-94-13, Xerox Palo Alto Research 
Center, CA, 1994. 

20. D. S. Greenberg and S. C. Istrail, Physical mapping with STS hybridization: oppor- 
tunities and limits, Tech. Report, Sandia National Labs, Albuquerque, NM, 1994. 

21. R. G. Grimes, D. J. Pierce, and H. D. Simon, A new algorithm for finding a pseu- 
doperipheral node in a graph, SIAM J. Math. Anal. Appl., 11 (1990), pp. 323-334. 

22. S. Guattery and G. Miller, On the performance of spectral graph partitioning meth- 
ods, in 6th ACM-SIAM Symposium on Discrete Algorithms, San Francisco, 1995, 
ACM-SIAM, pp. 233-242. 

23. C. Helmberg, B. Mohar, S. Poljak, and F. Rendl, A spectral approach to band- 
width and separator problems in graphs. Preprint, Department of Mathematics, 
University of Ljubljana, Lubljana, Slovenia, 1993. 

24. B. Hendrickson and R. Leland, The Chaco User's Guide, Sandia National Labora- 
tories, Albuquerque, NM, 1993. 

25. B. Hendrickson and R. Leland, A multilevel algorithm for partitioning graphs, Tech. 
Report SAND 93-0074, Sandia National Laboratories, Albuquerque, NM, 1993. 

26. B. Hendrickson and R. Leland, An improved spectral graph partitioning algorithm 
.for mapping parallel computations, SIAM J. Sci. Comput., 16 (1995), pp. 452-469. 

27. M. Juvan and B. Mohar, Laplace eigenvalues and bandwidth-type invariants of 
graphs. Preprint, Department of Mathematics, University of Ljubljana, Ljubljana, 
Slovenia, 1990. 

28. M. Juvan and B. Mohar, Optimal linear labelings and eigenvalues of graphs, Discr. 
Appl. Math., 36 (1992), pp. 153-168. 

29. J. G. Lewis, Implementations of the Gibbs-Poole-Stockmeyer and Gibbs-King algo- 
rithms, ACM Trans. Math. Software, 8 (1982), pp. 180-189. 

30. Y. Lin and J. Yuan, Minimum profile of grid networks in structure analysis. 
Preprint, Department of Mathematics, Zhengzhou University, Zhengzhou, Henan 
450052, People's Republic of China, 1993. 

31. Y. Lin and J. Yuan, Profile minimization problem.for matrices and graphs. Preprint, 
Department of Mathematics, Zhengzhou University, Zhengzhou, Henan 450052, 
People's Republic of China, 1993. 

32. J. W-H. Liu, A generalized envelope method for sparse faetorization by rows, Tech. 
Report CS-88-09, Department of Computer Science, York University, 1988. 

33. J. W-H. Liu and A. H. Sherman, Comparative analysis of the CuthiU-Mekee and 
the reverse Cuthill-Mckee ordering algorithms for sparse matrices, SIAM J. Numer. 
Anal., 13 (1976), pp. 198-213. 



A L G O R I T H M S  F OR E N V E L O P E  AND W A V E F R O N T  R E D U C T I O N  589 

34. G. L. Miller, S. H. Teng, W. Thurston, and S. A. Vavasis, Automatic mesh partition- 
ing, in Graph Theory and Sparse Matrix Computation, A. George, J. R. Gilbert, 
and J. W-H. Liu, eds., The IMA Volumes in Mathematics and its Applications, 56, 
Springer-Verlag, pp. 57-84. 

35. G. H. Paulino, I. F. M. Menezes, M. Gattass, and S. Mukherjee, Node and element 
resequencing using the Laplacian of a finite element graph, Part I, Internat. J. 
Numer. Meth. Engrg., 37 (1994), pp. 1511-1530. 

36. G. H. Paulino, I. F. M. Menezes, M. Gattass, and S. Mukherjee, Node and element 
resequencing using the Laplacian of a finite element graph, Part II, lnternat. J. 
Numer. Meth. Engrg., 37 (1994), pp. 1531-1555. 

37. A. Pothen, H. D. Simon, and K. P. Liou, Partitioning sparse matrices with eigen- 
vectors of graphs, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 430-452. 

38. A. Pothen, H. D. Simon, and L. Wang, Spectral nested dissection, Tech. Report 
CS-92-01, Computer Science, Pennsylvania State University, University Park, PA, 
1992. 

39. S. W. Sloan, An algorithm for profile and wave/ront reduction of sparse matrices, 
Internat. J. Numer. Meth. Engrg., 23 (1986), pp. 239-251. 

40. L. Wang, Spectral Nested Dissection, PhD thesis, The Pennsylvania State Univer- 
sity, 1994. 

A T i m e  C o m p l e x i t y  

In this Appendix we analyze the computational complexity of the two Sloan 
implementations. The analysis has the interesting feature that the time com- 
plexity depends on the maximum wavefront size, a quantity related to the mean 
square wavefront that the algorithm is seeking to reduce. Nevertheless, it is pos- 
sible to get a priori complexity bounds for problems with good separators. The 
results clearly show the overwhelming superiority of the heap implementation; 
an analysis of the complexity of the Sloan algorithm is not available in earlier 
published work. 

The major computational difference lies in the implementation of the priority 
queue (see Section 3.2). We call these two implementations ArraySloan and 
HeapSloan according to the data structure used to implement the queue. 

For the array implementation, the queue operations delete () ,  insert () ,  and 
i n c r e m e n t _ p r i o r i t y ( )  are all O(1) operations, but the m a x _ p r i o r i t y ( )  op- 
eration (finding the vertex with the maximum priority) is O(m), where m is 
the size of the queue. All operations on the binary heap are O(logm) except 
m a x _ p r i o r i t y ( ) ,  which is O(1). 

To continue with our analysis, we will refer to the algorithm as shown in Fig- 
ure 3.1. It is immediately clear that  the function f a r _ n e i g h b o r s ( )  (lines 26- 
29) is O(deg(j)) for ArraySloan. We can bound this by A ---- maxl<i_<n(deg(i)). 
Similarly, f a r  ne ighbors  () for HeapSloan is O ( A .  log m), where m is the max- 
imum size of the priority queue. 

The Sloan function (lines 1-25) has three loops: the initialization loop (lines 
1-4), the outer ordering loop (lines 6-25), and the inner ordering loop (lines 9- 
23). The initialization loop is the same for either implementation, and is easily 
seen to require O(IEI) time. 



590 G. K U M F E R T  AND A. P O T H E N  

Consider now the ArraySloan implementation. For each step of the outermost 
loop starting at line 6, it must find and remove the vertex of maximum priority, 
requiring O(m) time. The inner loop is executed at most A times. The worst case 
for the inner loop is when the priority is incremented and the f a r  neighbors  
routine is called, and this requires O(A) time. Thus the worst case running 
time for the ordering loop is O([V[ * (m + A2)). For the entire algorithm it is 
O([VI * (m + A 2) + IEI). 

For the HeapSloan implementation, at each step of the outermost loop starting 
at line 6, the algorithm must delete the vertex of maximum priority, and then 
rebuild the heap; this takes O(log m) time. The inner loop is executed at most A 
times. The worst case for the inner loop is when the priority is incremented and 
the fa r_ne ighbors  function is called. This time is O(A �9 logm). The worst case 
time complexity for the ordering loop of HeapSloan is thus O(IV I * A 2 * log m). 
For the entire algorithm it is O([V[ �9 A 2 * logm + [El). 

These bounds can be simplified further. The maximum size of the queue can 
be bounded by the smaller of (1) the product of the maximum wavefront of 
the reordered graph and the maximum degree, and (2) the number of vertices n. 
Then the complexity of ArraySloan is O(]V I *A*maxwf), while the complexity of 
HeapSloan is O (I V I* A 2, log(maxwf, A) ). If we consider degree-bounded graphs, 
as finite element or finite difference meshes tend to be, then the ArraySloan 
implementation has time complexity O(IV [ �9 maxwf + IEI), while the HeapSloan 
implementation has O([V[ * log(maxwf) + IE]). 

These bounds have the unsatisfactory property that they depend on the max- 
imum wavefront, a quantity that the algorithm seeks to compute and to reduce. 
However, it is possible to remove this dependence from the bounds for important 
classes of finite element meshes, as we illustrate now. 

The class of d-dimensional overlap graphs (where d _> 2) whose degrees are 
bounded includes finite element graphs with bounded aspect ratios embedded 
in d dimensions and all planar graphs [34]. Overlap graphs have O(n (d-1)/d) 
separators that  split the graph into two parts with the ratio of their sizes at most 
(d + 1)/(d + 2). Hence the maximum wavefront can be bounded by O(n (d-1)/d) 
for a modified nested dissection ordering that orders one part first, then the 
separator, and finally the second part. The Sloan and other envelope-reducing 
algorithms tend to do better than this modified nested dissection ordering, so we 
can assume that  the maximum wavefront for the Sloan algorithm is also bounded 
by this bound. 

With the above assumption, we can conclude that  the HeapSloan implemen- 
tation requires O(nlogn) time while the ArraySloan implementation requires 
O(n (2d-1)/d) time for a d-dimensional overlap graph. For a planar mesh (d = 2), 
the ArraySloan implementation requires O(n 3/2) time, while for a three dimen- 
sional mesh with bounded aspect ratios (d = 3), its time complexity is 0(n5/3). 


