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ABSTRACT. The classical Hecke identity gives the Fourier tran#orm of the product of  a homogeneous 
. . . .  1< > 

harmontc polynomtal h ttmes the Gausstan e 1 �9 . A similar formula is valid when the Gaussian is replaced 

by the tempered distribution e ~ <" '> .  It is shown that there is a similar identity when the inner product is 

replaced by an indefinite quadratic form q and h is a ~3-harmonic distribution, where [] is the differential 

operator canonically associated to q. Another generalization is obtained in the context of  representations of  

Jordan algebras, in the spirit of Herz's previous work on matrix spaces. 

1. The Hecke Identity (Positive Definite Case) 

Let E, <, > be a euclidean vector space of dimension N. Let d~ be the associated Lebesgue 
measure. 

Theorem 1. 
Let p be a harmonic polynomial homogeneous of degree k. Then 

f E  . N �9 k -�89 71> p(~)e-�89 e-t<~'O>d~ = (2z r )~ ( - t )  p(rl)e " . 

This is the classical Hecke identity. A variation of this identity can be easily obtained by 
analytic continuation. First, let a be a strictly positive real number. An obvious change of variable 
gives 

f E  S N 11 
- -  , - - '  , 

p(~)e �89 ~> e '<~ ~ = (27r) ZC a-ZC (--i)k a - k p ( r l ) e - ~  <o'~ . 

Both sides make sense when a is replaced by a complex number z, 9tz > 0, and they define 
holomorphic functions in the right half-plane. As they already coincide on ]0, + ~ ) ,  they must 

coincide everywhere. Now, let z tend to - i .  Then the expression p(~)e-�89 z<~'~> converges in 
N 

SI(E) to the tempered distribution p(~)e�89 i<~'~>. On the other hand, the term a-~  (-i)ka -k tends 
1 1 <  > 

to eiN�88 whereas p(rl)e 7 z 0,0 converges to the tempered distribution p(o)e-�89 '<ore>. With a 
little more care, one has the following result. 
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Theorem 2. 
Let p be a harmonic polynomial. The Fourier transform of the tempered distribution 

p(~)e�89 i<~'~> is given by 

fEp(~)e�89 e_i<~,~>d~ N . ~ t. = (2zr)-fe'N:rp(rl)e-~ ~<rl,o> , 

where the equality is to be interpreted in the sense of Fourier transform of tempered distributions. 

It is remarkable that in this version of the Hecke formula, the degree of homogeneity of the 
polynomial p (= the number k) disappears. In some sense, Theorem 2 seems more natural than 
Theorem 1. This remark suggests a possible generalization of Theorem 2. Notice first that if q is any 

non-degenerate quadratic form on E (not necessarily positive definite), then e �89 is still a tempered 
distribution. Recalling moreover that in the positive-definite case, the harmonic polynomials are all 
the harmonic tempered distributions, this suggests there could be a version of the Hecke identity, 
where the inner product is replaced by the symmetric bilinear form associated to q and the harmonic 
polynomials are replaced by tempered distributions p satisfying Op = 0, where [] is the second 
order differential operator with constant coefficients canonically associated to q. This is indeed the 
case, as we will show in the next section. 

2. Hecke Formula for a General Non-Degenerate  Quadratic 
Form 

Let E be a real vector space of dimension N, and let fl be a symmetric, non-degenerate 
bilinear form on E, of signature (p, q), so that N = p + q. Denote by q the associated quadratic 
form defined for ~ E E by q(~) = fl(~, ~). Let d(  be the Lebesgue measure on E, normalized so 
that if {~1, ~2 . . . . .  ~N} is an orthogonal basis of (E, fl) with q(~j) = +1 for any j ,  1 < j < N, then 
the N-tope constructed on the basis {~l, ~2 . . . . .  ~N} has measure 1. 

The non-degenerate form fl induces a canonical isomorphism between E and its dual EP: to any 
vector ~ E E is associated the linear form rl ~-~/~ (~, O). Denote the inverse map by ~. To any element 

in E is associated a frst  order differential operator V~ defined by V~ f ( o )  = (~)t=o f ( 0  + t~). For 
~0 any linear form on E, let 0(~p) = V~-(~), and extend 0 to an algebra isomorphism from the algebra 
79(E) of polynomials on E to the algebra 79(E) of constant coefficients differential operators on E. 
A special case is obtained by considering the quadratic form q, to get the "square" operator 

[] = 3(q). 

Functions f (or distributions) which satisfy [] f = 0 are called D-harmonic. 
For f any function in the Schwartz class S(E), define the (/%normalized) Fourier transform 

.~ fby 

U/~ f (~)  = J 
e-i~(~.o) f (tl)dq . 

By duality, one extends as usual the Fourier transform to tempered distributions. 

Recall the Fourier transform of the distribution e~ q : 

)r./~ (e ~q ) N .rt i = (2zr)Lre~7;(P-q)e-~q . 

i . . i q  
Next observe that any partial derivative of e ~q is a polynomial times the funcUon e ~ . Hence, if ~o is a 

i q  
function in the Schwartz class $(E) ,  then the function e7 f also belongs to S(E) ,  and the mapping 

q9 ~ ~e�89 q is a continuous map from S(E)  into itself. So, using the pairing between S (E)  and 
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8 ' ( E ) ,  if T is any tempered distribution, the product eL qT is a well-defined tempered distribution. 
Transferring this result by the Fourier transform, it is clear that if ~0 e S ( E )  (resp. T e S ' (E) ) ,  then 

~o, e~ q is in S ( E )  (resp. 8 ' (E) ) .  
For t > 0, define 

N ,~ N 
kt = ( 2 = ) -  T e -~ ~ (P-q) t -  r e i �89 q 

As a tempered distribution, its Fourier transform is given by 

.T'# (kt) :" e -~ tq  �9 

Denote by Kt the operator of  convolution with kt. Equivalently, 

It is a continuous operator in S(E) .  

L e m m a  1. 
For s, t > 0, and ~p, ~p 6 S(E) ,  

Kt = .T'~l e-~tq.T# . 

L e m m a  2. 
Let ~o e S (E) .  Then 

The lemma is easily obtained by Fourier transform. 

.T'/~ (r q) = (2:r) ~ e i~;(p-q) e-~q Kilo.  

In fact, by "completing the square," 

E e ~#(~'~) e-i~(~'n) ~O(~ )d~e-~l~(n'n) fE e ~tJ(8-n'~-n)~~ )d~ 

and one recognizes the convolution (up to a constant) of ~0 with the kernel kj. The lemma follows. 
By the standard arguments using the pairing between 8 ( E )  and S ' (E) ,  the operators Kt can 

be extended to tempered distributions, and the preceding results are still valid. 

L e m m a  3. 
Let f e 8 '  (E), such that U f = O. Then 

K t f  = f .  

Let q9 e S ( E ) ,  and consider the function O(t) = (K t f ,  ~o) = ( f ,  Kt~o) defined for t > 0. It is 
a smooth function of t, and its derivative satisfies 

O,(t) = ( f ,  d K t t p )  i i = -~ ( f ,  []Kt~o) = -~ ([2f, Kttp) = O. 

Hence, 0 is a constant function on ]0, oo). As t ~ O, O(t) tends to ( f ,  ~0). Hence, O(t) = ( f ,  tp) for 
any t > 0. Making t = 1 gives the result. 

Combining Lemma  2 (extended to tempered distributions) and Lemma 3 gives the next result. 

Ks+t = Ks o Kt (i) 

fE(Kt~o) gr = fE~O (KtaP) (ii) 

i i i--qg t ~o ( i i i )  d Ktq9 = ~ Kt [] r = 

as t ~ 0 +, Kt tp > ~o in the topology o f  S ( E ) .  
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Theorem 3 ( G e n e r a l i z e d  H e c k e  Formu la ) .  
Let f be a tempered distribution satisfying O f  = O. Then 

iq 
9r/~ ( f  e~q) = (27r)(~)ei~(P-q) f  e -2  . 

R e m a r k .  I wish to thank the referee who suggested the present proof. My original proof was 
more complicated, and less general. In [7] the classical formula of Bochner (=  Fourier transform 
of a radial function times a spherical harmonic) is generalized to the context of indefinite quadratic 
forms. It does not seem obvious, however, how to deduce our Theorem 3 from this result, even for 
homogeneous distributions. [ ]  

3. H e c k e  I d e n t i t y  in  t h e  C o n t e x t  o f  R e p r e s e n t a t i o n s  o f  J o r d a n  
A l g e b r a s  

Most of the results (and definitions) needed in this section can be found in [1]. Let V be a 
simple Jordan algebra over ll~, with identity element e. For any x E V, denote by L(x )  : V ~ V 
the endomorphism y ~-~ x y  and recall that, by assumption B(x,  y) = tr L(xy )  is a non-degenerate 
symmetric bilinear form, for which the operators L(x )  and P(x)  = 2L(x) 2 - L(x 2) are symmetric. 
The norm function is denoted by det (to avoid confusion, we then use Det for the determinant of an 
endomorphism). The norm function is a polynomial, homogeneous of degree r equal to the rank of 
the Jordan algebra V. 

Let E a real vector space of dimension N, with a symmetric bilinear non-degenerate form ft. 
A representation of V on E is a map ep : V > End (E), satisfying the following assumptions: 

dp(xy) = �89 +dp(y)dp(x)) (1) 
~b(e) = Id (2) 

fl(q~(x)~, O) = fl(~, qb(x)o) , (3) 

for al lx,  y e V,~, O ~ E. 
To such a representation one associates a bilinear map H : E x E > V, defined for ~, r /6  E 

by 
Yx E V, ~(tp(x)~, •) = B(x ,  n ( ~ ,  0)) �9 

As a consequence of property (3), H is symmetric. Let Q be the associated quadratic map, defined 
by 

a (~)  --- n (~ ,  ~) 

and for x 6 V, let/~x be the symmetric bilinear form on E defined by 

/~x (~, ,7) = B(H(~, ,7), x) = ~(q~(x)~, 0), 

and let qx be the associated quadratic form, so that qx(~) = ~((p(x)~, ~). Let Sym/~ be the Jordan 

algebra of fl-symmetric endomorphisms of E with the Jordan product S. T = 1 ( S T  + TS) .  Then ~b 
is a Jordan algebra homomorphism from V into Sym : .  This in particular implies the relation 

and as a consequence 

Note the formula 

Vx, y ~ V, dp(P(x)y) = (9(x)dp(y)dp(x) , 

Vx ~ V, V~ ~ E,  Q(dp(x)~) = P ( x ) ( Q ( ~ ) ) .  

'v'x, y E V, qy o ~b(x) = qP(x)y �9 
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Denote by V • the set of invertible elements. I f  x is invertible, then ~ (x) is invertible, and as a 
consequence/Tx is non-degenerate. Using notations from Section 2, we may introduce the mappings 
/~x : E '  ~ E and Ox : 7~(E) .... > S (E ) ,  and let Ox = Ox(qx). 

The following result will be needed later. 

L e m m a  4. 
The dimension of  E is a multiple of  the rank of  V and 

N 
Vx e V Det4~(x) = (de tx )7  . 

For the proof, recall that in a simple Jordan algebra, the inversion x ~ x - !  is a rational 
mapping. More precisely, there exists a V-valued polynomial R (of degree r - 1) such that the 
identity x R ( x )  = det(x)e is satisfied on V. I f x  ~ V • q~(x) and O(x - t )  commute, hence the same 
is true for r  and dp(R(x)). Hence, d~(x)q$(R(x)) = detx Id.  By continuity this is true for all 
x 6 V. Take the determinant of each side, and notice that Det (4b (R (x)) is a polynomial function of 
x, This shows that Det (~ (x)) is a divisor of  (det x) N. But the simplicity of  V implies the absolute 
irreducibility of  the "norm" function det (see [6]). Hence, Det (r  is (up to a constant) a power 
of  det(x). Testing on elements x = te for t ~ R gives the lemma. In the case where V is euclidean, 
a different proof of  this result is given in [1]. 

Let us recall some facts about distributions. For any element D e D(E) ,  and T any distribution, 
recall that D T  is the distribution defined by (DT,  ~o) = (T, D*~o), where D* is the adjoint of  D. 
For p ~ 7~(E), the adjoint of  O(p) is ~(/)), where/~ is the polynomial defined by/~(~) = p ( - ~ ) .  
If  A is a linear isomorphism of E, then T o A is the distribution given by the rule (T o A, ~o) -- 
de t (A) - l (T ,  ~o o A -1)  for tp 6 S (E) .  Finally, the mapping tp ~ D(r o A -1)  o A is a constant 
coefficient differential operator, denoted by D A . For A af l  symmetric invertible operator, note the 
formulae 

( D A ) * = ( D * )  A and ~ ( p ) a = ~ ( p o A - l )  . 

L e m m a  5. 
Let f be a distribution on E. Then the following properties are equivalent: 

Vx E V x, f o dp(x) is [] harmonic (i) 
Vx 6 V, 0 (qx) f = 0 (ii) 

Vx ~ V • O x f  = O. ( i i i)  

Let x be an invertible element of V. Then r  is invertible, and hence we may apply the 
previous formula to A = r  -1 and p = qe, to get 

a (qx 2) = [] ~(x-t) . 

So, if f is a distribution on E, f o ~b(x) is n-harmonic if and only if f is O(qx2)-harmonic. To 
conclude, we need to remark that any element in V is a limit of invertible elements, and that on the 
other hand, the linear combinations of squares generate V. This gives the equivalence between (i) 
and (ii). 

For the other equivalence, let x ~ V • Then, for any ~o ~ E' ,  ~'x(~O) = ~(x-t)(~'(~b)), 
hence ~x(tp) = V~(x-l)~(~ ). Now, for A a E-symmetric automorphism of E and ~ ~ E, VA~ f -~ 

V ~ ( f  o A) o A -1 for all smooth functions f on E, and hence, 

This formula can now be extended to any polynomial on E. In particular, 
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Assume x = y2, with y E V x ; then qx = q o q~(y), and hence 

Ox (qx) f = ( ( 0 ( q ) ( f  o tp (y -2 )  o q~(y))) o ~ ( y - l ) )  o tp (y2) = (0  ( f  o tp ( y - l ) ) )  o tp(y) 

= ~ (q otp ( y - l ) ) f =  0 (qx-,) f. 

So, for any invertible square element x 

Ox = ~ (qx-1) �9 

As already seen in the proof  of  Lemma 4, the inversion is a rational map, so that the right-hand side 
depends rationally on x. For obvious reasons, this is also true for the left-hand side. As they coincide 
on invertible square elements (which form an open set in E), they must coincide on V • This makes 
the equivalence between (ii) and (iii) clear. 

A distribution f on E, which satisfies the equivalent properties of  Lemma  5, is called Q- 
pseudo-harmonic. 

Theorem 4. 
Let f be a Q-pseudo-harmonic tempered distribution. Then, for any x E V • 

fee �89 #(4~(x)~'~) e -i~(~'O) d~ f (~ )  

u .%sg n u ( ( ) ) = (2zr)Ze ~ (qx) I det(x) I -~7 f ~b x -1 0 e-~t~(O(x-l)n'~ , 

where the equality should be interpreted in terms of distributions. 

Let x 6 V • and consider the non-degenerate form/~x, as introduced before. Let dx~ denote 
the normalization of the Lebesgue associated to/3x as explained in Section 2. Then clearly, d~ = 

1 
I Det ~b(x) I-Tdx~. Now, using in particular Lemma 4 the left-hand side can be written as 

fE e~qx(~) e -ir f (~) I det(x) I--~r dx~ I 

By Lemma 5, the distribution f is ~x-harmonic. The result now follows from Theorem 3. 
The result can be specialized to distributions which have some nice transformation law with 

respect to the action of the representation (cf. [3]). Let v ~ C and ~ = 0 or 1. For t a real number 
define It I E v = (sgn (t))~ltl v. A distribution f is said to be cp-homogeneous of degree (v, e) if 

E 

Vx ~ V • f(ep(x)~) = I de tx  I~ f ( ~ )  �9 

Such a distribution is homogeneous of degree v (choose x = te, t > 0), and if f is moreover 
D-harmonic, then f is automatically Q-pseudo-harmonic. 

Theorem 5. 
Let v ~ C, and ~ = 0 or 1. Let f be a O-harmonic distribution, (a-homogeneous of  type (v, E). 

Then, 
( e~qx ) u ~ N i ~'t~ f = (27r)~- ei~;sgn(qx) ldet(x ) 1, r ~ f e-Tqx-1 . 

Except for the phase factor, this result was conjectured in [5]. The formula is the key step in 
constructing explicit intertwining operators in order to decompose the unitary action of the conformal 
group of a (real, simple) Jordan algebra V on L2(V) (cf. [4] where several examples are considered). 
Details will appear elsewhere. 
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