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ABSTRACT. Let f be a Junction in a Euclidean plane with compact support in a half disc H. The problem 

of reconstruction ~)f the.function.f?om the data ~[" its integrals over half circles A C H with centers at the 

diameter ~f H is studied. An explicit.fi)rmula and a microlocal analysis of  stability of  the reconstruction are 

given. 

1. Introduct ion 

Let E+ be an open halfplane in a Euclidean plane E and ,4+ be the family of all circular arcs 
A C E+ that are orthogonal to the boundary 8E+. For a function f in E+ we call arc mean the 
integral 

My(A)  "-- JA f ds 

over an arc A e .4+ against the Euclidean line density ds. The function M f  will be referred to 
as arc mean transform of f .  Let H C E+ be a half disc centered at a boundary point of E+. We 
study the problem of reconstruction of the original f from its arc means transform known only for 
the subfamily -4 C -4+ of arcs A C H. We call it a local arc problem. The local arc problem is of 
practical importance in the following contexts: 

�9 In seismic tomography the arc mean operator M is a linearization of the travel time mapping for 
the family of geodesics A of the Riemannian metric dcr = c-  lds, where c stands for the velocity of 
elastic waves. Here f is a perturbation of the slowness c -  1 and M f  is the residual of the travel time. 
See [ 18], [ 19], [7] for surveys and more bibliography. If the daylight surface is supposed to be a plane 
and a background velocity field v of a medium is a linear function of depth, the geodesics are arcs 
of circles orthogonal to the plane V parallel to daylight surface, where the extended field v vanishes. 
Hence, the three-dimensional case is reduced to the family of Euclidean planes E orthogonal to 
V and for each E the arc mean operator M is equal the linearization of the travel time mapping. 
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The linearized inverse kinematic problem is reduced to a version of the arc problem. However, this 
linearization is reasonable only for some restricted regions of the earth surface. Therefore the local 
approach to the arc problem is more realistic comparing with the global version. 

�9 A reconstruction of a ground reflectivity coefficient of electromagnetic waves by the method of 
synthetic aperture radar image processing can be also reduced to the local arc mean transform [8], 
[9]. 

A relation between a function and its spherical means in a Euclidean space E has been studied 
in [4] (unicity theorem). John [ 10] has given a reconstruction of a function from the family of spheres 
centered in a hyperplane E p C E. See [17], [18], [6], [9] for other approaches to the same problem. 
Note that this family of spheres is invariant with respect to a non-trivial translation group G of E, 
whereas the local sampling .4 as above admits no invariance group. Therefore, no straightforward 
harmonic analysis is applicable to the local arc problem. An original with compact support in H is 
uniquely determined from the local data of arc means [4], but the reconstruction is unstable. Our 
objective is to evaluate the stability; and hence, the reliability of reconstruction in the local arc 
problem. This is a very special case of the general problem of resolution and accuracy in the seismic 
tomography, which is considered as "the fundamental question" [20]. 

In Section 2 we reduce the local arc problem to the limited angle problem for the Euclidean 
Radon transform. In Sections 3 and 4 we give explicit formulae for a reconstruction and state in 
Section 5 a Plancherel-type identity that equalizes a weighted L2-norm of the original f (we call it 
energy) with a Sobolev-type norm of its transform M f .  In Sections 6 through 8 we give a microlocal 
estimate of energy in terms of the arc mean transform. 

If no a priori information is accessible, the energy of the original is assumed to be spread 
uniformly over the cotangent bundle T* (H). Take a curve A C H and consider the conormal bundle 
N*(A) C T*(H) of this curve. Denote by N*(.A) the union of sets N*(A),  A ~ .A. This is a 
subset of T*(H), whose fibers N~(.A), p ~ H are cones. We call this subset the audible zone. 
We show that the part of the energy of the original contained in the audible zone can be reasonably 
estimated by a norm of its arc mean transform. The complementary part of the energy in the silent 
zone T*(H) \ N'G4) can be estimated with an appropriate weight. This weight is a function in the 
cotangent bundle that exponentially decreases, when the point moves away from the audible zone. It 
can be shown that an exponentially decreasing weight is in fact indispensable, hence our estimate in 
the silent zone cannot be essentially improved. In other words, the reconstruction of the function f 
is stable and reliable in the audible zone for all frequencies and in the silent zone for low frequencies; 
no method can give a stable reconstruction for high frequency in the silent zone. 

Similar qualitative arguments for the limited data X-ray transform are due to Quinto [16]. He 
emphasized, in particular, the microlocal character of relations between smoothness of an original 
and its transform. 

We do not discuss here the practical problem, how to improve stability of a reconstruction 
algorithm from the local data of arc means. This problem deserves another look. 

2. Geometry of the Audible Zone 

For an arbitrary point p ~ H the fiber N~ (.,4) of N* (..4) is the union of conormal lines to arcs 
A ~ .4 through p. This set has a simple geometrical description: 

Proposition 1. 
For an arbitrary point p E H denote by S r the circle arc through the point p and the ends 

of diameter D of H. The cone N~ (.4) is the union of alternate angles of magnitude Jr - rad(Sp), 
where rad means the radian measure. The line through p and the center Op of Sp is the bisectrix of 
these angles. 
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The proof is elementary. The magnitude of N~ (.4) is close to 2zr when the point p is close to 
a point of diameter D (except for its ends). For a point p at the arc OH \ D the cone Np(.4) shrinks 
to the line orthogonal to this arc, see Figure 1. 

FIGURE 1 

3. Reduction to the Radon Transform 

We apply some classical mappings in the Euclidean plane to reduce the arc mean transform to 
the plane Radon transform. Similar methods were used earlier for the spherical Radon transform [3], 
for projective mappings [ 14] in Euclidean space and for the Radon transform in hyperbolic spaces [1], 
[2]. 

Let X1, X2 be Riemannian manifolds and 3; be a family of k-dimensional submanifolds of X 1, 
0 < k < dimX1. A smooth mapping F : X1 --+ X2 possesses thefactorization property [15] for 
the family 32 if the following equation holds for any Y e 3; and any x e Y: 

dV2(F(x),  F(Y))  
= jF(X)JF(Y) (3.1) 

dVl (x, Y) 

with some functions jF in X1 and JF in y ,  where dVi denotes k-dimensional volume form in Xi, i = 
1, 2. These functions will be referred to as Jacobian factors. In particular, any conformal mapping 
F possesses the factorization property for the family of all submanifolds of arbitrary dimension k 
with the Jacobian factor JF = 1. 

Any projective transformation P of a Euclidean space E possesses the factorization property 
for the family y of affine subspaces of arbitrary dimension [14]. 

If  the factorization property holds for a family 3; and a diffeomorphism F and a smooth 
mapping G : X2 --+ X3 possesses this property for the family F ( y )  = {F(Y), Y ~ Y}, then the 
composition GF : Xl  --+ X3 has the factorization property for the family y with the Jacobian 
factors jGF(X) = jG(F(x))jF(X),  JGF(Y) = JG(F(Y))JF(Y) .  

Choose conformal coordinates x, y in E such that E+ = {y > 0} and half disc H is given in 
E+ by x 2 + y2 < 1. Let DK, DB be unit discs in the complex planes, W = {(u, v) : u 2 > 0 2 + 1} 
be the domain bounded by a hyperbola, and U = W N {u > 0} be a convex component of W. We 
endow all these domains with the standard Euclidean metrics. 
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Proposition 2. 
There is a sequence of diffeomorphisms 

e+ L DK De L w 

such that 
(i) the mapping F possesses the factorization property for the family .A+; 
(ii) the mapping G possesses the factorization property for the family F ( A+ ) of circles orthogonal 
to ODK; 
(iii) the mapping P possesses the factorization property for the family G( F (.A+ ) ) of all chords; 
(iv) the image of H in W is equal to U and the image of the family .4+ is the family of aU chords in 
U. The image of ~4 is the family of proper chords. 

P r o o f .  The mappings F and G coincide with the classical isomorphisms between models of  the 
Lobachewski plane, if the domains E+, DK, De are considered as the Poincar6, Klein, and Beltrami 
models, respectively (in spite of we do use no hyperbolic metric). Introduce complex coordinates 
z = x q- ty, z! = xi + tyi, wi = ui Jr- tvl in H, DK, DB, respectively. Put 

I - - Z  
Zl = F(Z) -- 

tq-z  

This is a conformal mapping from H to DK; hence, it satisfies Equation (3.1) with the factors 

2 
iF(Z) -- It + zl ----------~' JF =- 1 

For any A 6 , 4  the image F(A) is a circular arc orthogonal to the boundary ODK and F(H) is the 
right half of  the disc DK. The second mapping is that of  Klein: 

2zl 
wt = G ( Z l ) - -  12 

1 q- lz l  

This mapping possesses the factorization property for the family of  arcs A' = F (A) with the Jacobian 
factors 

jG (Zl) -- 2 (1 -- IZl 12) JG(A') = 41 + r-------~2, (3.2) 

(1 -t-IZ112) 2,  r 

where r is the radius of  an arc A. The image L = G(F(A)) of this arc is a chord in DB. To 
prove (3.2) we choose a unit tangent vector t to an arc A' at a point zl E DK. Its image s = dw(t) is 
a tangent vector to the chord L with the length Isl = 2It - iz21(1 + Iz112) -2.  It is easy to check that 

= ' e ,  

This implies (3.2). The image of the unit arc a H \ D is the vertical diameter of  the disc Do and the 
set G(F(H)) is again the right half disc. 

The last mapping P is the projective transformation: 

1 vl 
( u , v ) = P ( U l , V l ) :  u = - - ,  v = - -  

Ul Ul 

The vertical diameter is going to infinity and the unit circle is transformed to the hyperbola v 2 + 1 = 

u~. The disc DB maps onto the set W = {v~ + 1 < ul 2} and the half disc G(F(//)) to the right 
component U of this set. The image of an arbitrary chord L C Dn is a chord in U, since P is a 
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projective transformation. If  L is contained in the right half disc, the chord P(L)  is proper i.e., of  
finite length. This mapping possesses the factorization property with the factors 

jp  (Ul, Vl) = lUl I _2 , Jp (L)  = ~/p(L) 2 q- sin ~(L)  2 , (3.3) 

where p(L)  is the distance from the origin to the chord L and (cos ~b (L), sin 4~ (L)) is its normal 
vector. [ ]  

Corollary 1. 
The composition S = PG F is a diffeomorphism from H to U that transforms the family .4 

to the family L of proper chords in U and possesses the factorization property with the Jacobian 
factors 

js(z)  = jp(G(F(z)) ) jG(F(z)) jF(Z) ,  Js(A) = Jp (G(F(A) ) ) JG(F(A) )JF(A) ,  

hence the following equation holds for an arbitrary arc A: 

f s  fwdsw  = Js(A) ] f w  -- f / j s ,  
f 

fds, 
(A) JA 

where dsw is the Euclidean metric in W. 

Now we calculate the Jacobian factors. By (3.2) we find 

jG(F(z)) = 2yl, 4- zl 2 (1 4- IZ12) -2 

(3.4) 

For an arbitrary arc A e -4 we denote by [a, b] C D its diameter; - 1  < a < b < 1. Denote by 
t~,/3, ?, the angles of the triangle (a, b, t). We have a = - cotot, b = cot/3. The arc A'  :=  F(A)  
joins the points F(a) = - exp(2tot) and F(b) = - exp(-2t/3)  and is orthogonal to the unit circle. 
The radius of the arc A' is equal r = tan y, hence JG (A') = csc y according to (3.2). The chord 
L :=  G(A') has the same ends, hence p(L) = - cos(a + /3)  = cos F; 4~(L) = ot - ft. By (3.3) 
we conclude that 

jp (G(F(z) ) )  = Xl = - - I z l  2 

and 

Jp(L) = ~/cos 2 y + sin2(ce - / 3 )  = x/l  - sin 2t~ sin 213 

Taking in account (3.5) and (3.3), we get 

js(z) - 4y Js(A) = ~/1 - sin 2or sin2/3 
( 1  - Iz12) 2 '  sin I/ 

We need to express the second factor in terms of the chord L = S(A). Write the explicit formulae 
for the mapping S: 

S ( x , y ) =  (1+x2+___y2 2x ) ( v  ~ / u 2 - v 2 - 1 )  
- -x2  - y2' l - x2 - y2 ' S - t (u '  v) = u + l '  "u'71 

If  the arc A is leaned on the diameter [ -  cot or, cot/3], the chord L has the ends S(a) = ( -  sec 2el, tan 
2o0, S(b) = ( -  sec 2/3, - tan 2/3). The vector (cos y, sin(/3 - oe)) is orthogonal to L. We have 
I sin(/3 - ot)l < cos y,  whence the angle ~ of this vector ranges in the interval ( - z r /4 ,  zr/4). The 

(3.5)  
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angle r and the parameter q 6 R (the distance to L from the origin) are coordinates on the variety 
Yl of  chords: L = L(q, r  These coordinates relate to the parameters of  arc as follows 

a + b cos(or - / 3 )  1 - ab 
t a n r  l + a b '  q =  ~ / 1 -  sin 2ot sin 2/3 --  ~/( l+ab)2+(a+b)2 (3.6) 

The Jacobian factor Js can be written as a function of r and q: 

Js(A) = ~/1 - sin 2or sin 2fl = 1 (3.7) 
sin y ~/q2 _ cos 2 r  

Note that the quantity q2 _ cos 2 r  vanishes simultaneously with the chord L(q, r 

4. Interpolation and Reconstruction 

From (3.4) and (3.7) we know the integral of  the function fw(u, v) = (4y ) - l ( 1  - x 2 - 

yZ)Zf(x, y) along an arbitrary proper chord L against the Euclidean line element dsw. This is 
a continuous function with compact support in W. By the projection theorem we have for any 
- 7 r / 4  < r < zr/4 and any t e 

fw( tcosr162 = f exp(-tqt) f fwdsw 
aL(q,~) 

= - -  J e x p ( - t q t )  Mf(a(q,  r  dq, (4.1) 
~ q  2 __ COS 2 r  

Thus, the Fourier transform of the function fw is known in the cone D - {(~r, r )  : o "2 > ~-2}. 

R e m a r k .  The right side of  (4.1) contains the integration along the family of  arcs A(q, r with 
a constant angle r  which means that the quantity xa -- -- cot r = (1 + ab)/(a + b) is constant. 
Consider the complexification EC of the plane E. An arbitrary circle A is the real part of a corn- 

conic Ac that contains the points with the same abscissa and the ordinates Ya = v/1 plex x 2 

4'--S~'b-s-2-r csc r  Consequently, the integral in (4.1) runs over the pencil of  arcs A, whose com- 
plexifications AC pass through the points (XA, YA). [] 

Now we use the interpolation method of [5] to reconstruct this function outside D: 

sin ( 4 ~ - 8 2 ) ~ b 0 0 d ) ~ ,  ~ V / ~ - - -  O'2 > 0 (4.2) 
~b(a) = exp ( ~ )  f F zrl~ _ cr I 

where cr r F := (-cx~, - 8 )  tA (8, (x~) and 8 is an arbitrary positive number. The formula (4.2) is 
valid for an arbitrary function q~ 6 L2 (R) such that supp q~ C [ - 1 ,  1]. The support of  the function 
fw is compact and hence is contained in a strip lu - a[ < r. Apply the interpolation method to 
the function 4~r(a) :=  f l ( a ,  r )  taking r as a parameter and fl(u, v) "-- fw(ru + a, v). We have 
f l ( a ,  r )  = exp(tar-la)fw(r-lcr, r). The righthand side is known for Icrl > r l r l .  We set 8 = r l r l  
and get for an arbitrary r the equation 

fW(O, r) = er ~i~-~_~ f sin (r ~ )  e'a(x-~r) 
2>_r2 zrlL -- ~r[ fw(•,  r)d~. (4.3) 

for an arbitrary cr, r .  Now we apply the inverse Fourier transform and recover the function f .  
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where 

We can use another interpolation formula [13] instead of (4.3) 

]w('~, r) 
oo (__l)kotk F e'('~k-'~) 

= cosh ( r ~ )  E / J 3 (ak, v ) +  
k=0 ~ [ o  k - - a  

e-'(~+~k)ak+a f (--ak, r ) ]  (4.4) 

O t k = - -  k +  , a k : =  +or  2, k = 0 , 1 , 2  . . . .  
r 

or this interpolation we need to measure the function fw(a, r )  only in the hyperbolae O "2  = .~2 .+. 
2 k = 0 , 1 ,  

a k , . . . .  

According to (4.3) as well as to (4.4) the main instability factor is equal exp ( r  r 2.,/~--2-a~- ~ 2). Remark. 

It can be shown that a factor of this form is inevitable for any method of reconstruction. [ ]  

Theorem 1. 
For an arbitrary function f ~ L2(E) with compact support supp f C H the formulae 

Y frt exp(t(u(x, y)a + v(x, y)z))fw(a, z)dadv f(x, Y) 
zr 2 (1 - x 2 - y2) 2 2 

9 

and (4.1), (4.3) [or (4.4)1 give a reconstruction from the data M f (A), A E .A. 

5. P lanchere l  T h e o r e m  for Are Means 

For an arbitrary function f ~ L2(H)  we consider the global arc mean transform M f  defined 
on the family .4+ of all arcs in the halfplane E+ that are orthogonal to the boundary. The variety 
,4+ is parameterized by the coordinates ~p, - r r / 2  < ~/ < rr/2 and q ~ IIL We call the function 

g(q, ~ ) -- 

the normalized arc mean transform. 

Theorem 2. 

Mf(q, ~) 
~/q2 _ cos 2~  

For arbitrary square-integrable functions f l, f2 with compact supports in H and their nor- 
malized arc mean transforms gl, g2 the following identity holds: 

2~r2f 1 - x 2 - y 2  = f=/2fR 2y fl(x,  y) fz (x ,  y)dxdy gl(P, ~)g2(q,  ~') dpdqdlp 
- -  3-7r/2 2 (p _ q)2 

where the principal value of the interior integral is taken. 

For the Radon transform in plane, this result is due to Reshetnyak [ 11 ]. Write the right side in 
more explicit form: 

rr/2 f gl(P, aP)~2(q, q/) dpdqd~ 
~r/2 j~2 (p _ q)2 

_ 1 f~r/2 f g'l(P, ~)g2(q,  ~ )  - gl(P, ~P)g~2(q, aP).dpdqd~p 
2 J-Jr/2 q - P 

= g'l (P, ~)g'2(q, 7-') log IP - q Idpdqd~/ (5.1) 
a-~/2 a 
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For a function h = h(q) of one variable we introduce the convolution operator 

D1/2h-- d , h ' ,  d -  dq h' dh 
2rrlql 1/2' dq 

This is an operator of fractional derivative of order 1/2. Now we formulate the Plancherel-type 
theorem in a different form: 

Theorem 3. 
Under the same assumptions we have 

(2zc)2 f 1 -  x2 - y2 Dl/2 gl(q, ~p)D1/2~oz(q , lp)dqdap , 2y fl(x,  y)f2(x, y)dxdy = fTr/2 
J-zr/2 

Proof  of  Theorem 2. We calculate the lefthand side by means of Plancherel's theorem for the 
Fourier transform: 

(2yr) 2 f 1 _ X 2y- y2 (x, y)f2(x, y)dxdy = (27r) 2 . f  f l ,wf2,wdudv f l  

_ f.12 
where det 8(u, v)lO(x, y) = - 8 y ( l  - x 2 - y2)-3. Consider the interior integral in the right side 
and again apply Plancherel's identity 

f ~Di(t, +)~2(t, Vs)ltldt = 2st f F* (~,(t, +)ltl)g2(q, +)dq (5.2) 

where 
e b  

F*(h) -- J exp(tqt)h(t)dt 

The image of the product g l (t)ltl is equal the convolution of g l and of F* (It I). Since of the equation 
F* (It I) = -1/zr Iq I 2, the righthand side of (5.2) is equal to the principal value of the integral 

_2 f gl(P, aP)~'z(q, ~p)dpdq 
J, 2 (p _ q)2 

Integrating this quantity against the density d~p we complete the proof of Theorem 2. By partial 
integration in the right side we get the formula (5.1). []  

P roo f  of  Theorem 3. 

where 

Applying Plancherel's theorem once again we find 

2yr f ~l(t)~2(t)ttldt = f Gl(q)G2(q)dq, 

We have 
27rF, (ltll/2) _ 1 _ d 1 

21ql3/2 dq Iqll/2 

Therefore, the right side is equal 

(2Jr) -1 f D1/2gl (q, ~)Dl/2g2(q, lp )dq 
d 

(5.3) 
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and Theorem 3 follows. [ ]  

Definition. We call the integral 

I l f l ]2 - f n  1 -- x 2 -- y2 2y I f (x ,  y)12dxdy 

the energy of a function f in H.  By-Theorem 3 we have 

= l f DU2g(q, ~)  dqd~p (5.4) 
J-Tr/2 

where g is the normalized arc mean transform of f .  It follows that the arc mean transform can be 
extended to the space of all originals f with finite energy. The normalized image g of the extended 
arc mean transform belongs to the non-isotropic Sobolev space W1/2"~ x [ - z r /2 ,  7r/2]). In fact, 
this transform is defined in terms of two Fourier-Plancherel transforms. Theorems 2 and 3 still hold 
for the extended transform. [ ]  

For the arc mean transform restricted to the family of  arcs "4 we get the following identity: 

Corollary 2. 
For any function f E L2(H)  we have 

f./4 M f ( q ,  ~)  2 
D fw(0-, 3) 2d0-dv = D I/2 d q d ~  (5.5) 

where D = {(0-, r )  : 0 -2 ~ 3 2} is the set ofconormals toproper chords in U. 

This follows from (4.1) by integrating against d~p in the interval [ - r r / 4 ,  zr/4]. 

Corollary 3. 
For any function f with finite energy, the equation M f = 0 implies f = 0 a.e. 

Indeed Equation (5.5) implies that f w  = 0 in D. The function f w  is holomorphic, hence it 
vanishes everywhere. 

6. Microlocal Evaluations of Energy 

We show that for an arbitrary original f with sufficiently small compact support in H the part 
of its energy which is held in the audible zone N* (.4) is estimated in terms of the arc mean transform. 
We parametrize the variety .4. by the coordinates q, ~t [see (3.6)], where q runs over ]R and ~ over 
the interval ( - r r / 4 ,  Jr/4). For a function h = h(q, ~)  in the variety ,4 we define the norm 

fTr/4 f - -  D 112 h(q, r  2 
I l h l l~  1/2 - dqdr 

, I j ~ , l _ n / 4  ~/q2 _ cos 2~p 

Now we state an estimate of  energy for originals with small support. Introduce Euclidean coordinates 
0 in E* and denote by S* the unit sphere. 

Theorem 4. 
Let p ~ H and V be a cone in E* such that {p} x V N S* ~ N*(A). There exist a compact 

neighborhood K of the point p and a positive constant C such that an arbitrary function f with 
finite energy such that supp f C K satisfies the inequality: 

f v  f(O) 2dO < CIIMfIIA, U2 " IlfllH (6.1) 
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For originals with arbitrary support the following statement is true: 

Theorem 5. 
For arbitrary compact sets K, L and an arbitrary cone V C E* such that 

K �9 L �9 H, L x V DS* �9 N*(.A) (6.2) 

there exist positive constants a, c such that for any functioti f with finite energy the following 
inequality holds 

f v  IF (eKf)[ 2 dO < IIM flIZA, I/Z + II exp(--alOI) fllL2 c Ilflll-/ B 

where eg is a smooth function such that eK = 1 in K and eK = 0 in H \ L. 

In other words, the part of energy of f in the audible zone N* (el) is estimated in terms of 
its arc mean data M f  plus a term, which is small for high frequencies of the original f .  We shall 
deduce both theorems from lemmata of Section 7 and complete the proof in Section 8. 

For the part of energy in the silent zone, the reconstruction is exponentially unstable. For a 
nonempty compact set K C E we denote its supporting function in E* as follows: 

[ 0 1K ":" max{0(p), p 6 K}, 0 E E* 

Take a quadratic form Q of signature (1, 1) in E* and consider the cone V(Q)  - {0 : Q(O) < 0}. 
Denote by 8(K, Q) the number such that 

min ( [ 0  ]K + [--0 ]K -28 (K ,  Q ) ~ ~  = 0 ,  (6.3) 
V(Q) \ 

It is well defined and positive. 

Theorem 6. 
Let K be a compact set in E and Q be a quadratic form in E* of signature (1, 1). For an 

arbitrary function h E Lz(E) such that supp h C K the following inequality holds: 

fv( -Q)  exp (--8(K, Q)Qx,/-Q-~)/~(0)2dO< fV(Q) h(O)2dO (6.4) 

Combine this estimate with Theorem 4 by taking a quadratic form Q such that V(Q) = V: 

dO < CIIMflIA,1/2" Ilfll f e x p ( - 3 ( K , Q )  Qv/-Q--~)f(O) 2 H 

In the audible zone this inequality follows immediately from (6.1). The local silent zone E* \N~ (.,4) is 

contained in the cone V ( - Q), consequently the integral of the density I f 12dO with the fast decreasing 
weight exp (-6~/-Q) is estimated in terms of the arc means transform M f .  

7. Estimates in the Audible Zone 

First we find a bound for the Fourier transform of f in terms of the function 

f exp(-t(~ru + ~v) ) fw(x ,  y)dudv, p - (~r, 3) N(p) 

Consider the complexification Ec of the space E with the complex coordinates i = x + t l ,  7 = 
Y + t T. We abbreviate these notations to p = (x, y),/~ = (.~, Y) and/3 = (~, Y) = P + t/~. First 
construct a family of quasianalytic cutting functions. 
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L e m m a  1. 
For arbitrary sets K 

positive s > 0 there exists a smooth function eK = eK(/3, S) in EC such that 
�9 L ~ E there exist positive constants ~, C such that for arbitrary 

O < eK(p,s)  < 1 if  p E E ; (7.1) 

eK(p,s)  = 1, if  p E K ; (7.2) 

eK(p,s)  = O, if  p E E \ L ;  (7.3) 

leK(/5, s)l < Cexp(s ) ,  (7.4) 

I~eK(/5, s)l _< c[/3lexp(-s), if 1/31_<, (7.5) 

Proof .  Take a smooth function a : R --+ R such that a = 1 for t < 2, a = 0 for t > 9 /4  and 
0 < a < 1 otherwise. Set 

The function fi is smooth in Er and 0fi(/3) = 2ta"(p2)p/3 �9 pd~. Define the function 

e(/3, s )_ : . n ( s ) - l exp (_s~2) f i ( / 5 ) ,  /52"_ 22{_ ~2, n(s) "-- f exp(-spZ)a(p2)dp 
that depends on a parameter s > O. We have n(s) > 0 for s >_ O, sn(s) --+ Jr as s -+ ~ and 

f ,e (/5, s), d p <  n(s) -1 exp (s/32) f exp ( - s p  2) Ifi (/3)1 d p <  C exp(s) (7.6) 

for 1/321 _< 1, since I exp(-s/32)l  = exp(s/32 - s p  2) and fexp(-sp2)lgt ldp ~ zr/s as s --+ oo. We 
have 

Oe(/5, s) = n(s)- l  exp (-s /52) 2ta" (p2) p/3 . pd~ , 

since exp(-s /52)  is an holomorphic function. Note that a ' ( p  2) vanishes for p2 < 2. This implies 
the estimate 

f [Oe(/5's) ldp< Ml/31n(s)- lexp(s/32)  fp2>2exp( -sp2)  dp 2 , 

where M = max lta'(t2)[. The integral in the right-hand side is equal s - l  e x p ( - 2 s ) .  The product 
sn(s) is bounded from below by a positive constant c. Therefore, the previous inequality implies for 

1/31 _< 1 

f lbe(/5, s)ldp<_Cl/3[exp(s/32-2s)<_Cl/31exp(-s), C-- M/c (7.7) 

We have supp e(-, s) C 3/2B for any s, where B means the unit ball in E. Choose E > 0 so 
small that K + 3~B C L and denote by X the indicator function of the compact K + 3E/2B. Set 
e,(/3, s) -- E-2e(/3/E, s) and 

s ) -  f e, (p' x (p-  p') dx'dy',  p' -- (x', y') eK (/5, 

The function eK(p, s) is nonnegative since the functions a, e, X are. The inequality eK(p, s) < 1 
follows from X < 1 and f eE(p, s)dp = 1. This proves (7.1). The properties (7.2) and (7.3) follow 
from the inclusion supp eE C 3E/2B. By (7.6) we have for I/3t _ E 

l e t  (/5, s)l <_ f ] e ,  (p' + tfi, s)] dp' < C e x p ( s ) ,  
d 
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which implies (7.4). The inequality (7.5) follows from (7.7). [ ]  

Take the family of functions eK constructed by means of Lemma 1 and write 

(2~r)2F (eKf)(O) = fw. eXp(,r p,p))eK(p)j(p)fw(p)dp Adx  Ady  , (7.8) 

where 0 = (~, 0), dp = da  A dr  and 

r  rv(x,y),  j ( p ) -  4 y ( 1 - x  2 - y 2 )  -2 

Consider the 4-form in E x W*: 

o9 -- exp(t~(0, p, p)) j (p) fw(p)dp A dx m dy 

This form has a meromorphic continuation to the complex space Ee  x W~ with a pole at the variety 
~ 2 + ~ 2 - - 1 = 0 .  

Lemma 2. 
There exists a continuous field q = q(O, p, p) in V \ 0 • H x W* \ D that is homogeneous 

of degree 0 with respect to V x W* and which satisfies the inequalities: 

Iq(O,p,p)l ~ E, (7.9) 

t (al0l + blpl) <_ ~ ( 0 ,  p + ~tq(O, p, p), p) (7.10) 

for O e V, p e L, p �9 W* \ D , O < t < l and some positive a, b. 

A proof will be given in the next section. Take an arbitrary point 0 e V, choose a big parameter 
r, and consider the 5-chain M(r) in Ec x W* given by the mapping 

n x (B*(r) \ D) • [0, 1] --+ Ec x W*, (p, p, t) w-~ (p + ttq(O, p, p), p) (7.11) 

where B*(r) is the ball in W* of radius r. Define an orientation by the form dx Ady/xdcr Adz Adt. 
By Stokes Theorem we get 

f eKog=fM d(eKog)=fM OeKAO9 (7.12) 
M(r) (r) (r) 

The boundary aM(r) consists of the four pieces: 

aM(r) = Mo(r) U Ml(r) U H(r) U W(r) , (7.13) 

where M0 (r), MI (r) are the intersections of M(r) with the hyperplanes t = 0 and t = 1 oriented by 
the forms q:dp/x dx/x dy, respectively. The pieces H(r), W(r) are the intersections of M(r) with 
the hypersurfaces p �9 all, p �9 a(B*(r) \ D), respectively. We have 

eKIH(r) = 0 ,  oglW(r) = 0 .  (7.14) 

Indeed, the first equation follows from (7.3). The images of the vectors a/Ox, a/ay, a/at, y under 
the mapping (7.11) generate the tangent space of the chain W(r), where y is an arbitrary tangent 
vector to the boundary of B* (r) \ D. The form dp = da/x dr vanishes on any pair of these vectors, 
which implies the second Equation (7.14). Combining (7.12), (7.13), and (7.14), we get the relation 

fM eKog=fM eKog--fM OeKAog. (7.15) 
o(r) l(r) (r) 



Reconstruction J~'om Limited Data of  Arc Means 37 

On the other hand, we have 

fM e x w ~ f e X J f w  expO*)fwdpdxdy=(2zr)ZF(eKf)(O) 
+ dE * 

as r --+ oo, where M+ = Mo(r) U L x D. 
For an arbitrary ~6 > 0 we introduce the notation fw,~(P) - exp(-l~lp])fw(p). 

Lemma 3. 
For any compact sets K, L, and cone V that satisfy (6.2) and any constant ~ < b there exists 

a constant c > 0 such that for any s > 0 andan arbitrary function f in H withfinite energy the 
following inequality holds: 

5 ^ 2 dp + e x p ( - 2 s ) l l f l l ~  (7.16) cs exp(2S)fw,\ofw,   ;+foi  
P r o o f .  Write (7.15) as follows 

/M exW = ll +12 + I3 , 
+ 

where 

h(o) 

,2(0) 

I3(O) 

w(o, s 

":- f L  eKO~ , 
• 

f L eK (/3, s ) j  ( p ) exp  0q l  (0,/:3, p ) ) f w , b d p A d x A d ~ ,  --'-- exp( -a[01)  *\D 

-- -- j ( / 3 )exp( t~  (0,/~, p))  fw(p)Oeg (~, s)/x dp/x d2/x d~ 
(r) 

"-- dp(O, p + ttq, p) - tt(a[OI + blPl) 

Write the first integral in the form I1 (0) = F (e K j F* (X fw)),  where F = Fx. y~o, F* = Fp~_ (u, v) 
are Fourier transforms and X is the indicator function of the cone D. By Plancherel 's identity for 
the Fourier transform we have 

= e K j F ' ( x f w ) e d x d y  

2y [eKF, (x fw)  2 = (2702 fL 1 -- x 2 -- y2 dudv 

_ dudv = (2zr)4CL fw(P) 2dp (7.17) 

where CL --" maxL 2y(1 -- x 2 -- y2 ) - t .  The second integral is estimated pointwise: 

' fw fw.h(p)ldP (7.18) [12(0)[ < C L exp(-a[O[ + s) *\a 

with the constant C~ - max{ l j (p  + tq)[, p e L, ]q] < E}. Here we use (7.4) and the inequality 
[ exp(t oj)[ _< 1. The kernels e x p ( - a [ 0  D and e x p ( - b ' [ p D ,  b'  > 0 are square-integrable. Therefore, 
(7.18) implies the following inequality: 

iv 11212d0 < C 'exp(2s )  *\D fw,~[ dp (7.19) 
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for an arbitrary/3 < b (and the constant C r = C(b -/7)-2). 
Write the third integral as a three-fold one 

fH(SB (f01 ^ - ) ) 13(0)= *@)\o j (~)exp( t@(O,~ ,p) ) fwOeK(~,s )  dp d x A d y ,  

where ~ = p + ttq. From (7.5) follows the estimate IOeK(p, s)l < Ct exp(-s ) ,  where C does not 
depend on s, hence in virtue of (7.10) we have 

, o  (/o I ) IS3(O)l _< c e x p ( - s )  exp(-t(alOl + blPl))tdt I fw  dP 

_5< C exp(-s )  f (l+lOl+lpl)-2Jfw(p)lclp ,S W*\D 
The kernel in the right side is square-integrable and, moreover, 

fw(1 + IOl + IPl)-adp C(1 + 101) -2 <_ 

hence, the right side is estimated by the quantity 

C e x p ( - s ) ( f w  fw 2 ,~1/2 
(1 + 10l) 2 *\O 60) 

We extend the integration to W and apply Plancherel's Theorem: 

This gives the estimate 

fw*\o fw 2dp <_ f I f w [  2 d u d O  = [[fll2 

C exp(-s )  
113(0)1 < Ilflln 

- -  ( 1  + 101)  2 ' 

and 

v lI312 dp < C exp(-2s)llfll 2 

This together with (7.17) and (7.19) imply the lemma. [ ]  

Lemma 4. 
For arbitrary sets K, L, V as above there exists positive c such that 

c IF(exf)12dO < IIMflI2A, U2 + .\DIIW,#(p) dp) IlfllH 

Proof .  Take the number s that validates the equation 

exp(4s) f . fw,# 2 = dp Ilfll 2 . 
d W  \ O  

We have s > 0 in virtue of the inequality 

(7.20) 
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Substitute this parameter in (7.16) and get (7.20). []  

Now we assume that the compact K is so small that 8 (S(K), R)vrR'-~ </31p I, where R (p) -- 
r 2 - ~r 2. Apply (6.4) to h -:- fw: 

^ 2 
_ _ dp L*\D fw,,8 dp< L *  exp (-a(S(K), R)'q/-'R) f (8)2d0 < L fw 2 

By Corollary 2 the right side is equal IlMf II~, 1/2" Therefore, the second term in (7.20) is estimated 
by the product [[MfllA, l/2 [If liB. The first term is also bounded by this product, since (5.4). 
Consequently, Lemma 4 implies Theorem 4. Theorem 5 follows from this lemma and: 

L e m m a  5. 
There exist positive numbers c, C such that 

L ^ 2 f exp(-clODf(O)2dO *\D fW,~(P) dp < C 

for any function f with finite energy. 

We shall prove this lemma in the next section. 

8.  T h e  E s t i m a t e  i n  t h e  S i l e n t  Z o n e  a n d  L e m m a t a  

Proof  of  T heo rem 6. Choose Euclidean coordinates ~, r/in E* such that the minimum in (6.3) 
is reached at the vector 00 = (1, 0), i.e., 

r Oo ]K + I 0o ]K = 23(K, Q ) ~  

Choose a point q ~ E such that r 00 1K +Oo(q) =r  -00 1K --O0(q) and set K'  -- K + q. We have 

r00 1K,=r -00 1K '= 3(X, Q ) x / ~  (Oo) 

This implies that there exists a constant b such that the inequality 

I (~, q) ]K '< -- 3(K, Q)x/-Q(~, rl) +blol  

holds in E*. The support of the function hq(p) -- h(p - q) is contained in K r. By the above 
inequality and the Paley-Wiener theorem we have 

/~q (~, ~) < Cexp (I ( ~ ,  ~ ) ] K ' )  < C(o)exp('(K, Q)x/-Q(~, rl)) 

in the complexified space E~. Therefore, we can apply the interpolation formula (4.2) to hq(O) = 
exp(-  t 0 (q))/~ with respect to the variable ~: 

( ' ( K ,  Q ) . ~ ' ~  f sin ( , (K, Q)~/-Q()~, o))~()~, q)d)~ hq(~, O) exp \ (x,o)<o rr I~. - ~ I 

It can written in the form of convolution in variable ~: 

\ 
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where 

d~ h "-- x sin (~(L, Q)~'-S-Q)/~ 
e(~) -- rrl~l '  

and X is the indicator function of the cone V(Q). The convolution with the kernel e is a unitary 
operator in L2(R). Therefore, for each O we have 

exp (-a(L, Q)v/-Q)h 2d~= f h 2d~< f ~.~. 
Integrating this inequality with respect to r/, we obtain the following inequality for L2-norms: 

( l _  x ) exp (_8 (L ,  Q)v/.-~) ~ 2< X[ t ; [] 

P r o o f  o f  L e m m a  2. Assume that 0 ~ V and p ~ W* \ D. The gradient of the phase function 

( ') V(I) ":-" dPtx, (I)y = --0 -t- (O'VU -t- TVV) (8.1) 

is the sum of the vector - 0  ~ V and of the vector p* "-- aVu  + rVv  which is contained in the 
cone Vp -- dS*p(W* \ D). The closures of the cones V and V; have no common non-zero element 
because of (6.2). The angle between these cones is a positive continuous function of p ~ L, For 
arbitrary non-zero vectors O, O' 6 E* we denote by 4~(0, 0') one half of the angle between these 
vectors such that 0 < 4)(0, 0') < zr/4. Similarly, we define an angle ~(0,  U) for a vector and a cone 
U. For arbitrary elements 0 ~ V, 0' ~ V' we have 

10 +0 '12 > ( 1 -  cosN~b (0, O'))(1012 + 10'12) >__ sin 2 4~(0, 7')1012 + s i n  2 ~b (0', V)10'12 

It follows from (8.1) that 

sin 2 ~ (0, Vp)1012 -t- sin 2 q~ (p*, V ) I : 1 2  _< I v . I  z _< (101 + Ip*l) 2 , 

Set 

and 

S(O) "-- minsin2q~ (O, Vp)1012, T(p) -- minsin2~b (p*, V)Ip*l  2 , 
p~L peL 

s(o) + T (p )  , 
q - a N r  p, p)l 2 r e ( o ,  p, p) 

in V x L x W* \ D, where ~ is a positive parameter to be specified. The functions S and T are 
continuous and homogeneous of degree 1, hence the field q is continuous and homogeneous of order 
0 with respect to the variables 0, p. It has the following upper bound: 

(sin q~ (0, Vp) + sin ~b (p*, V)) 2 
]q(O, p, P)I < ~max 

L 2 sin ~b (0, Vp) sin ~b (p*, V) 

Choose 8 small enough to validate (7.9). Show that the field q satisfies (7.10). By Lagrange theorem 
we have for some t', 0 < t '  < t 

Z~q~(O, p + ttq, p) 
t 2 

= tV*(O, p, p)q(O, p, p) - -~ZsV2* (0, p + tt'q, p) (q(O, p, p)) 

t 2 (s(o)  + r__(p)) 2 v 2 ~  * 
= t(S(O) + T(p))  2 IVq5(0, p, p)]4 (0, p + tt'q, p) ( V * )  

= (t + t2B) (S(O) + r ( p ) ) ,  

B "-- S(O) + T ( P ) v 2 ~ .  (O,p +tt 'q ,  p) ( V * )  
2[Vqb[4 
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The quantity B is uniformly bounded with respect to all variables, since (7.9) and the relation 
IV2~(0, p + tq, P)[ = O(10l + Ip[). Therefore, for sufficiently small t the right side is estimated 
from below by, f.e. 2t/3(S + T). This proves (7.10), if we take into account that S and T are 
continuous and positive. [ ]  

P r o o f  of  L e m m a  5. Write fw.~(p) = fw• v, where 

v - exp (--tqb (0,/3, p) --/~IPl) f(O)dO A du A dv 

Choose a number f f  </5. By the method of the previous proof we find a field q = q(O, p, p) such 
that 

-~d~(O, p + tq, p) + fflPl >- c'lOI (8.2) 

for a positive d. We construct this field in the form 

V~(0 ,  p, p) 

q = -0- IVY(0, p, p)] + P'Ipl ' 

where a is a positive parameter. The denominator does not vanish in V x W* \ D. This field is 
well-defined continuous and homogeneous of degree 0. We have 

- 3 q b ( 0 ,  p + tq, p) + P'Ipl = 0- I V * l  + P'Ipl + P'tpl + o 0 -2 

If ~r is sufficiently small, the right side is estimated from below by c'lOI for some positive c'. Fix 
0 6 E*, a number r and consider the 5-chain N(r) in E* x EC given by the parameterization: 

(0 6 B(r), p 6 E, t 6 [0, 1]) ~ (0,/3 = p + itq(O, p, p)) 

The form v is holomorphic in 0 and/3; hence, 

N(r) (r) 

Inequality (8.2) implies that integral of v over the piece of aN(r) ,  where t0l = r tends to zero as 
r --+ ~ .  Comparing integrals over two pieces of the boundary of N(r), where t = 0 and t = 1 
correspondingly, we get the equation 

[ v = [ exp ( - t  qb(0, p + tq, p ) - / ~ I P l )  f(O)d~drldudv 
Jw xE* JW xE* 

By (8.2) we can estimate the right side by the integral over E* of the density exp(-c~[O[)f(O)dO. 
This integral can be estimated by L2-norm of the function exp(-c[ODf for any c < d,  whence 
Ifw,g'[ < CLLexp(-clOl)fLI in W* \ D. The L2-norm of fw,g in this cone is estimated by the 
supremum of the left side, since f f  </5. Consequently, the last inequality implies Lemma 5. [ ]  
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