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S C I E N T I F I C  A N D  T E C H N I C A L  S E C T I O N  

O N  D E T E R M I N A T I O N  O F  V I B R A T I O N  C H A R A C T E R I S T I C S  O F  A B E A M  

W I T H  A C L O S I N G  C R A C K  I N  B E N D I N G  V I B R A T I O N S  

V .  V .  M a t v e e v  a n d  A .  P .  B o v s u n o v s k i i  UDC 620.178; 620.179 

We consider free vibrations of an elastic cantilever beam with an edge crack, which is simulated as a 
beam portion with a decreased moment o f  inertia. The weight of  this portion is assumed to be constant, 
while the dimensions of the portion are determined by the energy criterion of equivalence. We propose 
an analytical approach to determination of  natural frequencies and vibration modes of a beam with an 
open or closing crack and to investigation of nonlinear distortions of the displacement wave and 
acceleration and deformation of various sections of a beam with a closing crack. The solution allows 
for the possibility that more than one vibration mode of a beam can be generated at the moment of  the 
crack opening and includes the effect o f  the crack on the strain distribution in the beam volume. It is 
demonstrated that the approach we propose gives reliable relationships between various vibration 

characteristics o f  a beam and the crack parameters and makes it possible to solve an inverse problem of  
damage diagnostics. 
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- -  beam length 

- -  coordinate of  the cracked section 

- -  height o f  the cross section 

- -  width o f  the cross section 

- -  crack depth 

- -  relative crack depth 

- -  parameter  to be determined 

- -  cross-sectional area 

- -  moment  o f  inertia of  the section 

- -  moment  o f  inertia of  the cracked section 

- -  moment  o f  inertia o f  mass 

- -  weight o f  a mass at the beam end 

- -  intensity of  the beam weight 

- -  elastic modulus 

- -  density 

- -  natural mode o f  vibration o f  a beam 

- -  distribution of  the slopes o f  the elastic curve of  a beam along its length 
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bending moment distribution along the beam length 

lateral force distribution along the beam length 

natural angular frequency of  an intact beam 

natural angular frequencies of  a beam with an open crack and a beam with a closing one, respectively 

resonance frequencies of  intact and cracked specimens, respectively 

stress intensity factor 

Introduction. As a rule, an intact body and a body with a discontinuity differ substantially in vibration 
characteristics. This difference, which is due to a change in stiffness, can be used for the diagnostics of  a damage (e.g., a 
fatigue crack) and for the determination of  the damage size (dimensions and location). 

The majority of  the published analytical investigations into this problem have been attempts to use the natural 
frequency of vibration as a damage characteristic [ 1-9]. Some works were dedicated to the study of  distortions of  natural 
modes of vibrations or a combination of modes and frequencies of vibration of  a cracked body [ 1, 2, 9]. These scientists 
considered open cracks; this case, however, does not adequately represent the behavior of fatigue cracks, which behave 
as closing ones (the stiffness of a beam with an open crack is assumed to be equal in both half-cycles of  vibration, while 
that of a beam with a closing crack is taken to be different). 

The results o f  numerous investigations have demonstrated the great potential of using the distortion of  the 
vibration waveform of  a system simulating a cracked body for the diagnostics of  closing cracks which cause such a 
distortion [10-15]. The waveform distortion was evaluated by the presence of  higher harmonics in the Fourier expansion 
of  the respective time functions. 

The accuracy of  the analytical solution to a vibration problem for a cracked body depends greatly on the choice 
of  the crack model. In published works one can find a wide range of such models: a crack is simulated by a spring [16, 
17], an elastic hinge [7], a notch [1-3], a zone with a decreased elastic modulus [17]. Shen and Pierre [9] take account of 
the crack influence by semiempirical functions that describe the stress and strain distribution in the whole volume of a 
beam. In all cases, except for [16], the vibrations of  a beam with an open crack were simulated. 

The objective of  the present work is to develop an analytical approach that would make it possible to simulate 
vibrations of a beam with a closing edge crack in order to solve both the direct problem (the determination of 
characteristics of  a beam with a preset crack size and location) and the inverse problem (the evaluation of  crack 
parameters from the known values of the respective vibration characteristics) in the damage diagnostics. The following 
characteristics were chosen for the investigation: the natural frequencies and vibration modes of  a beam, the 
displacement waveform distortion, and strains (taking into account the close-to-actual distribution of  strains near a crack) 
and accelerations of  arbitrary section of a beam. 

Model of a Cracked Beam. The principle of  the analytical approach we propose can be illustrated by the 
example of a prismatic cantilever beam of constant cross section with an end mass because specimens of  similar type 
were used during the testing of  this approach. It is known that free lateral vibrations of this beam without regard for 
damping are given by the differential equation 

04 y(x, t) + pF 02y(x, t) =0, (1) 

~x 4 E1 ~)t 2 

where E and p are the elastic modulus and density of  the beam material, respectively; I = bh 3 / 12 and F = bh are the 

moment of inertia and the cross-sectional area of  the beam, respectively; b and h are the width and height of  the cross 
section, respectively. 

A general solution to Eq. (1) can be represented as 

o o  

y(x, t) = X wi (x )(Pi sin o~it + R i COS O) i t), 
i=1 

(2) 
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where w i (x) and to i are the natural modes and the angular frequencies of vibration of  the beam and i is the modal 
number. The natural modes of  vibration of the beam are given by 

w i (X) = A iS (k i x  ) + BiT(k ix  ) + CiU(k ix  ) + DiV(kix) ,  

where S(kix) ,  T(kix  ), U(kix) ,  and V(k ix  ) are the Krylov functions; 

S(k ix )=  (cosh kix  +coskix) ,  T (k ix )==(s inh  kix +s ink ix  ), 

(3) 

1 (cosh k i x - c o s k i x  ), U(kix)=- ~ V(k ix  ) = ~ (sinh kix - s in  kix),  

2 pF 
k :  =toi E1 

The factors Ai, Bi, Ci, and D i in expression (3) are determined from the boundary conditions 

w i (o) = o, o~ (o) = bw~ (o) = o, 
bx  

M i (L) = E1 0 2 Wi (L)  _ ira r ~4~ i (L) ~ 3 wi (L) 
Ox 2 ~ '  Qi(L) = E l  Ox 3 - -  - .mLto 2 w i (L), 

(4) 

where 0 i is the slope of the elastic curve, M i is the bending moment, Qi is the lateral force, L is the beam length, 
m L is the weight of the end mass, and I m is the moment of inertia of  mass. 

In this case, the frequency equation is of the form 

[S(kiL ) - qT(kiL)][S(kiL ) + g V ( k i L ) ] -  [T(kiL ) - qU (kiL)][V (kiL ) + g U  (kiL)] =0, (5) 

where 

I,nk 3 
q = - - ,  g = - -  

pF 
mLki 
pF  

Then, 

We determine the C i factor from the boundary condition (4) for the bending moment, C i = M(O) / (Elk 2 ). 

M(O)[u (k i x  ) V ( k i L ) + g U ( k i L ) v ( k i x ) ] .  
w i (x) = E I k  2 S(kiL)  +gV(k iL )  J (6) 

The Pi and R i factors in expression (2) are found [18] from the initial conditions at the moment of time t s for the 

displacement y(x, ts)=ys(X ), velocity 3y(x,t) , and the slopes 0(x, ts)=Os(X) of the elastic curve of the beam, 
~t t=_t s 

using the formulas 

o~iG 1 s in to i t  s + G 2 cosolit s ",[! ] tO i mw2i (x)dx+mLw2i (L)+ImO~(L)  (7) 
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Fig. 1. Schematic representation of  a cantilever beam. 

where m = pF 

O iG 1 cos (0 i t s - G 2 sin t~ i t s 
R i = 

to i mw2i (x)dx  + m L w 2 ( L ) + l m O ~ ( L )  

is the intensity of the beam weight; 

L 

G 1 = ~ m y  s (X)W i (x )dx  + m L Ys (L)wi  (L)  + ImO s (L)O i (L),  

o 

(8) 

L 

G 2 = ~ m v  s ( x ) w  i (x )dx  + m L v s (L )w  i ( t )  + I m [ a~ t) ] 0 i (L). 
0 [ Ot J~ t ,  

Let us now consider a beam with an open edge crack (this crack is assumed to be open in both half-cycles of  
vibration) which is located at a distance L c from the base (Fig. 1). We replace this beam with an equivalent one in which 
the crack (as well as the stress relaxation at the crack faces) is simulated as a portion with a decreased moment of  inertia 
of the cross section (portion 2 in Fig. 1). The size of this portion 2d is varied according to the energy-based criterion of  
equivalence. The essence of this criterion is described below. 

The free lateral vibrations of  each portion of this beam, the damping being neglected, are represented by a 
differential equation of  the form (1) [19], where I = I j  is the moment of  inertia of  the cross section of the jth portion of  

the beam, j = l ,  2, 3; I l =13 =I ;  12 = I  o = b ( h - a )  3 /12; a is the crack depth (the subscript "o" stands for the open 

crack). In this case, a general solution to Eq. (1) for the ~ portion of  the beam is taken as 

Yoj (x, t) = ~ wij (x)(Poi sintOoit + Roi costOoit). 
i=1 

(9) 

In the strict sense, from the above formula for the moment of  inertia of the second portion of  the equivalent 
beam it follows that its cross-sectional area is given by F 2 = b(h - a). This, in turn, results formally in a decrease of  the 
beam weight as the crack grows. However, it is known that the crack initiation and growth in a body does not cause any 
decrease of  the weight of the body. This drawback of the model can be overcome either by taking the density of  the 
second portion as P2 =ph / (h - a) or the cross-sectional area of  the second portion as F 2 = bh. The  sought-for dynamic 
characteristics in bending vibrations are invariant with respect to the above approaches. Therefore, taking into 
consideration that the length of the portion with an actual crack is negligible in comparison with the beam length and that 
the second approach is much simpler, we assume that F 2 = F .  Thus, the weight of  the equivalent beam remains 

unchanged with any crack length. 
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The equations that represent the natural modes of vibration of  an equivalent beam are written for each beam 
portion j: 

wij (x) = AijS(ko.x ) + Bo.T(ko.x ) + CijU (kijx ) + Do.V(kijx ), (10) 

where 
4 2 pF 

kij =~176  Ely " 

The boundary conditions and the conditions of conjugation of  portions of an equivalent beam with an end mass 
are of the form 

Mil (L) = ImO)2ikil [ AilV (kilL ) + BilS(kilL ) + CilT(kilL ) + DilU (kilL)], 

Oil (L) =--mLC02i JAilS(kilL ) + Bi lT(ki lL ) + CilU (kilL ) + DilV(kilL)], 

WiI(X2)=Wi2(X2), Oil(X2)=Oi2(X2), Mil(X2)=Mi2(x2), 

Qil(X2)=Qi2(x2), wi2(Xl)=Wi3(Xl), oi2(Xl)=Oi3(Xl), 

Mi2(Xl)=Mi3(Xl), Oi2(Xl)=Qi3(x1), wi3(0)=0, 0i3(0)=0, 

where 

x I =L c - d ,  x 2 =L c + d .  

Taking into account the properties of  the Krylov function [S(0)=I,  T (0 )=U(0)=V(0)=0]  and the last two 
boundary conditions, we find Ai3 = Bi3 = 0. Taking into account the remaining boundary conditions and the conjugation 
conditions, we obtain a set of ten equations whose determinant can be represented as 

all a12 a13 a14 0 0 0 0 0 0 
a21 a22 a23 a24 0 0 0 0 0" 0 

-S(~5) -r(~) -4J(~) -V(~) SiX) TfX) U(X) Vfz) 0 0 
-V(8) -S(~) -r(8) --u(8) rlZ(X) rlS(X ) rlT(X ) rlU(X ) 0 0 
- U ( ~ ) ) - V ( ~ ) - S ( ~ ) - T ( 8 )  r2UQ(,) rzV(?z ) r2S(~, ) rzT(~ ) 0 0 
- r (~)  ---u(~) -v(~) -3(5) rl-lr(,~ ) rl-lU(~) q lv (~ )  q l s (~)  0 0 

o o o o -s(~) -r(~) -~(~) -v(~) v(n) u(n) 
o o o o -v(~) -s(~) -T~)  -Ur (~U(~) 5-~r(q~ 
0 0 0 0 -U(~)  -V(~) -S(~)  -T(~) r21T(n) rz~S(rll 
0 0 0 0 -T(~) --U(~) -V(~) -S(~) rl S0"I ) rlV(n ) 

=0, (11) 

where 

all=U((Pi)-qoV(q)i), a12 =V((Pi)-qoS((Pi), al3=S((Pi)-qoT((Pi), al4=T((Pi)-qoU((Pi), 

a21=T((Pi)+goS((Pi), a22=U((Pi)+goT((Pi), a23 =V((Pi)+goU((Di), a24=S(q)i)+goV((Pi), 

q)i = kilL, 
x2 x2 x 1 

~i=kilX2 =T(Pi ,  ~i=ki2x2 =Trl(pi ,  ~i=ki2Xl=--~rl(Pi, 

r 1 = r -0"25, r 2 = r 0"5, r = I ~  , qo - Im (p~ go - mL(Pi 
I pFL 3 ' pFL 

X l  
"l]i = ki3x1 - ~ (Pi, 
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In solving the above set of equations by the Gauss method, we preset the Ci3 factor as for an intact beam. In 
doing so, we take Mi3 (0) = M(0) and assume also that the moment of  inertia at the boundaries of  the portions is equal 
to 1. 

The solution to the frequency equation (11) with respect to tpi allows us to determine the natural frequencies of  
a cantilever beam with an open crack: 

If  the variation of the bending moment 
change of  strain energy in the second portion of the equivalent beam is given by the equation 

t.Ooi = Z~- ~ / ~ -  (12) 

M(x)  with the length of an equivalent beam is neglected, then the 

AU2 Ebh 3 [ (1-"[) 3 ' (13) 

where 

of  a plane stress state) is determined by the following expression [20]: 

b a 
A U = ~  K2da .  (14) 

0 

In this work, we used the stress intensity factor obtained by Cherepanov for a strip with an edge notch [21 ]: 

KI _ bh 3/-----~4"2M x/(l _ y)_3 _ (l - y) 3 . (15) 

y = a / h .  
In a linearly elastic body the strain-energy change due to the presence of a mode-I crack (under the assumption 

d = 0.3675h(1 - y) [(1 
l - ( 1 - ' t )  3 _~/)6 _3 (1_y )2  +2]. (17) 

For example, for a beam with a height of  the section of h = 13.8 ram, the parameter d ranges from 1.7 to 3.8 mm. 
Now let us consider the vibration of  a beam with a so-called closing edge crack: this crack is open during one 

half-cycle of  vibration and is closed during the other. We also assume that the properties of  a beam with a closed crack 
do. not differ from those of an intact beam. Let us preset the following initial conditions for the displacement and velocity 
of  the beam section at a moment of time t s = - rt / 2O3st : 

ys(x)=w.(x), v,(x)=0 (18) 

(the subscript "'sf' indicates a starting preset natural mode of vibration). Then, in view of the orthogonality condition of  
the beam vibration 
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From the condition AU 2 = AU we determine the parameter d: 

AU 4 4 1 M 2  - -  - -  (1 - -  ~t) - 2  [ ( l  - -  ~ )  6 _ 3 ( 1  - -  ~ )  2 + 2 ] .  ( 1 6 )  
bh2 E 

Since the strain wavelength at the vibration frequencies realized in this work is several orders of  magnitude larger than 
the crack size, the elastic field near the crack can be considered as a quasistatic one [21 ]. This allows us to neglect the 
influence of  dynamic effects on the stress intensity factor. Substitution of Eq. (15) into (14) gives 



L 

fmWst(X)Wi(x)dx +mLwst(L)wi(L)+ImOst(L)Oi(L)=O , i•st, (19) 
0 

we find Psi =1, Picst = Ri =0  from Eqs. (7) and (8). In this case, expression (2) is simplified to the form 

y(x, t) = wst (x)sinCOstt. (20) 

During the other vibration half-cycle, when the crack opens, the equation of  vibrations takes a form similar to 
(9) with Yoj = Ycj, Poj = Pcj, Roj = Rcj (the subscript "c" stands for the "closing crack"). Assume that the crack starts 
opening at a moment of time ts2 =0, i.e., when the beam passes through a neutral position. Then, from Eq. (20) we 
obtain initial conditions for a beam with a closing crack at the moment of crack closure: 

Ys2 (X) = O, Vs2 (X) = COst Wst (X). (21) 

Using expressions (7) and (8), taking into account (21), we obtain Rcj =0 and 

Lc-d Lc+d L 

f mwst (x)wi3 (x)dx + f mwst (x)wi2 (x)dx + f mwst (x)wil (x)dx +G 3 

Pci - f'Ost 0 Lc-d Lc+d 
03oi Lc-d Lc+a L , (22) 

mw23 (x)dx  + f mw2i2 (x)dx + f mw 2 (x)dx  + G 4 

o Lc-d Lc+d 

Where G 3 = m c Wst (L)wi~ (L) + I m O st (L)Oil (L) and G 4 = m L W2il (L) + I m 0 ~l (L). Then, the solution to the equation of 

vibrations of  the beam during the crack-opening half-cycle takes the form 

Ycj (X, t) =Pcs t  Wstj ( X ) sin COos t t + ~ Pci wig ( x ) sin r t. 
it:st 

(23) 

Analysis of  Eqs. (22) and (23) shows that other (satellite) modes which differ from the initial preset mode can arise 
during the crack opening. 

Equations (20) and (23) determine a solution for the first cycle of vibration of  the beam. In a similar way, we 
can construct a solution for the second and subsequent cycles. In this case, the initial conditions for the beam at the 
moment of  crack closure are found from Eq. (23), while those at the moment of  crack opening are found from Eq. (2). In 
the general case, each vibration cycle is described by the appropriate pair of equations (2) and (23). 

However, the estimation of the value of the Pci factors for the specimens used in this work (see the last section 
of  the paper) has demonstrated that the amplitudes of  the satellite second and third modes did not exceed 3% of the 
amplitude of  the first mode (st = 1). This means that for the first vibration mode of  the specimens under consideration we 
can restrict ourselves to finding a solution for the first vibration cycle only. 

The natural frequency of  the stth vibration mode of  a beam with a closing crack is given by the formula [22] 

20) st t.O os t 
O'~cst -- (24)  

COst + O)os t 

Expressions (20) and (23) represent the waveform of displacement of  sections of  a beam with a closing crack. 
They lead to expressions for the determination of  the waveform of acceleration of  various sections of the beam during 
different vibration half-cycles: 

by2 (x, t) _ _to2t Wst (X )sin O)st t, (25) 
~)t 2 
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V.rcJ x ~ ' t "  2 �9 ~0 2 
Ot---------f--- - O) ost Pcst Wst j ( X ) Sln O~ ost t - E (O oi Pci w O. ( x ) sin o~ oi t. 

i~st 

(26) 

During the vibration half-cycles, when the crack is open and closed, respectively, the normalized function o f  the strain 
distribution along the beam length can represented as 

~(x, t) = Mst (x) sin COst t, (27) 

~c(X' t )= f~ (x' Y)(  Pcst~st j(x)sint~176 + ~ P c i~ j ( x ) s i n t~176  st (28) 

where the function f~ (x, y) allows for the influence of  the crack on the strain distribution (the types of  this function are 
shown below). The functions Mst  (x )  and Mij (x) are the normalized functions of  distribution of the bending moment 

along the beam length for an intact specimen and for a specimen with an open crack, respectively (Ms t  (0) = M O. (0) = 1). 

In [9], the function f~ (x, y) on the surface of  a real beam on the crack side was represented as 

/ 2 lx-Lcl) 
f~ (x, y) = 1 - exp h (29) 

where it was assumed that o~ = 1.276. The finite-element analysis of  the strain distribution near a crack* has revealed a 
significant dependence of  the a factor on the crack depth and has made it possible to represent this dependence by a 
function of  the form cx(y) =0.683 +0.152 / y (for y =0  it is assumed that f~ (x, y) = 1). Applying this analysis, we 
obtained also the strain distribution function for the beam surface opposite to the crack: 

fe (x, y )=  1 + [is(y)-  I] exp [ - [  x)---~- ~ lnIS(y) , (30) 

where IS(y) = 0.123 + 0. 813 exp (y) + 0.064exp (7y), ~(y) = 0.063 + 0. 45T. 
It is seen from Fig. 2 that the intensity of  the function fe (x, y) is quite significant near the crack. This means 

that in measuring the strains in the immediate vicinity of  the cracked section one should take into account the influence 
of  both the strain-gauge location L o and the gauge nominal length G on the strain wave. 

Thus, the proposed model of a cracked beam yields relationships between the natural frequencies and modes of 
vibrations of a cantilever beam and the crack depth and location for both open and closing edge cracks. Moreover, the 
derived equations make it possible to study the emergence of  higher harmonics in the Fourier expansion of  the waves of 
displacement, acceleration, and strain of various beam sections with a closing crack in the sttb vibration mode: 

o o  

F c (x, t) = ~-~ + ~ (a n cos nO~cs t t + b n sin n(l)cs t t) ,  (31) 
r~-I 

where 

(Ocst = 
a n  

0 O~ost 

f f (x , t )c~176 f fc(X, t )cosnO)cs t td t ,  
rt o 

O~ st  

n=1 ,2 ,3  .. . .  , (32) 

* The stress distributions near a crack were obtained by A. Yu. Chirkov by the finite-element method. 
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Fig. 2. Strain distribution over the specimen surface (h = 13.8 ram) near the crack: a - surface 
on the cracked side; b - surface opposite to the cracked side. 

0 O)ost 

b n =O~cst f(x,t)sinnO~csttdt+ fc(X,t)sinnO~csttdt , n=l,  2, 3, .... 
0 

L O)st 

(33) 

The functions f ( x ,  t) and fc  (x, t) are determined, respectively, by Eqs. (20) and (23) for the displacement 
wave, by Eqs. (25) and (26) for acceleration wave, and by Eqs. (27) and (28) for the strain wave in the x section of the 
beam. For the strain wave as measured by a strain gauge these functions are determined through the values of the strain 
(which is given by Eqs. (27) and (28)) averaged over the gauge nominal length. 

Assessment of the Adequacy of the Cracked-Beam Model. The adequacy of determination of the relative 
change of natural vibration frequency of a cantilever beam with an edge crack was assessed by comparing the calculated 

data obtained by the proposed analytical approach and the results of  testing specimens with an end mass (the geometrical 
and mechanical characteristics of these specimens are summarized in Table 1 [23, 24]) and the results of  calculations of 
the first-mode natural frequency of a specimen without any end mass (st = 1) by the Rayleigh-Ritz method [9]. 

Figure 3 and Table 2 give several examples of such a comparison for some of the specimens with closing and 
open cracks. It is seen that there is a good agreement between the calculated and experimental results. 

However, analysis of  the results of theoretical and experimental determination of the relative change of natural 

frequency for 15Kh2NMFA steel specimens with a length of L =220 mm has demonstrated that in the case of "~< 0.5 
the discrepancy between calculated and experimental data is in the range -6 .4<  A f  <2.1%. When ~,>0.5 this 
discrepancy is as large as -37.8%. The most probable reason for this is that during the tests when the crack growth is 
quite large, one cannot avoid the generation of  considerable plastic strains in the weakened section, and therefore the 

crack becomes partially or fully open. This is indirectly confirmed by the calculation results for specimens without end 
mass, which were obtained under the assumption that the crack is open: in this case, the maximum difference between 
the calculated and experimental results for the 0.5< T < 0.87 did not exceed 8.3%. For specimens of  VT-8 titanium alloy 
with an open crack, the discrepancy between the results of theoretical and experimental determination of the relative 
change of natural frequency was found to be in the range -0.6 < A f  ~ 16.8% with 0.05 < "f< 0.8. 
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TABLE 1. Test-Portion Size 

Specimen 

material 

15Kh2NMFA 

08KhI8NI0 

VN-8 

Crack 

type 

Closing 

crack 

Closing 

crack 

Open 

crack 

Z~ 

rf l lTl  

184 

220 

220 

220 

220 

220 

150 

220 

220 

220 

and Mechanical Properties of Metals 

Le/L ] h, b, 

0.011 13.8 4 

0.036 13.8 4 

0.077 13.8 4 

0.136 13.8 4 

0.155 13.8 4 

0.277 13.8 

0.200 ~ 20.0 

0.091 20.0 

0.182 i 20.0 

0.518 i 20.0 

I ' '  �9 - 

my 

kg 

0.234 

0.154 

0.259 

0.154 

4 0.259 

4 3.520 

4 0.150 

4 

4 0.255 

E ~  

GPa 

200 

200 

200 

200 

200 

200 

200 

kg/m 3 

7800 

7800 

780O 

7800 

7800 

7800 

7900 

110 4480 

I10 4480 

II0 4480 

TABLE 2. Experimental and Calculated Values of the Crack Depth and Relative Change 
in Natural Frequency 

Specimen 

material 

15Kh2NMFA 

(L= 184 ram) 

08KhI8NI0  

VT-8 

Steel [24] 

t~/ t 

0.011 

I 

0.200 

0.091 

0.200 

a, mill 

experimental calculated 

2.50 2.6 

4.90 5.0 

6.30 6.0 

7.00 6.7 

8.30 8.3 

9.90 9.9 

1.90 3.7 

4.00 5.1 

6.10 6.1 

7.80 7.4 

10.10 9.7 

12.00 11.7 

1.00 I.I 

2.00 2.3 

4.00 4.2 

8.00 8.1 

12.00 I 1.9 

16.00 15.9 

1.33 1.5 

2.53 2.5 

4.00 3.9 

6.00 5.8 

8.00 7.9 

A a ,  % 

--4.0 

--2.0 

4.8 

4.3 

0 

0 

- 94.7 

- 2 7 . 5  

r 0 

5.1 

4.0 

2.5 

- 10.0 

- 15.0 

- 5 . 0  

- 1.3 

0.8 

0.6 

- 12.8 

0 

2.5 

3.3 

l 1.3 

fa / fa=o 
experimental calculated 

0.984 0.985 

0.942 0.944 

0.911 0.901 

0.884 0.872 

0.797 0.797 

0.655 0.654 

0.979 0.995 

0.960 0.976 

0.943 0.943 

0.913 0.903 

0.845 0.830 

0.765 0.749 

0.996 0.997 

0.987 0.990 

0.953 0.959 

0.830 0.833 

0.629 0.624 

0.343 0.338 

0.991 0.993 

0.974 0.974 

0.933 0.928 

0.812 0.797 

0.522 0.510 

A f , %  

-0 .1  

- 0 . 2  

1.1 

1.4 

0 

0.2 

- !.6 

- 1 . 7  

0 

I.I 

1.8 

2.1 

- 0 . 1  

- 0 . 3  

- 0 . 6  

- 0 . 4  

0.8 

1.5 

- 0 . 2  

0 

0.5 

1.8 

2.3 

The difference between the results o f  calculation of the first-mode natural frequency of  a cantilever beam with 
an open crack, which was carried out by Shen and Pierre [9] by the Rayleigh-Ritz method, and the experimental results 
obtained by Wendtland [24] was found to be in the range - 1 . 2 <  A f  < 11.9% for 0.133 < T< 0.8. However, Table 2 
shows that the approach we proposed provides a more accurate description of the experimental data obtained by 

Wendtland (-0.2  < A f  _< 2.3%). 
The proposed analytical approach makes it possible also to solve an inverse problem of  damage diagnostics. 

Using the experimental data on the relative change of  first-mode resonance frequency of  specimens, we calculated the 
Crack-depth values that correspond to these experimental data. It is seen from Table 2 that the relative difference A,, of  
the crack-depth values measured during the tests and those calculated from the relative change of  the resonance 
frequency of specimens is inversely proportional to the crack size. Note that the calculation did not include the 
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Fig. 3. Influence of  the depth of a closing (a) and open (b) crack on the change of  natural frequency 
o f  specimens (lines and dots indicate the calculated and experimental values, respectively). 

crack-front ellipticity, which might be the main factor affecting the discrepancy between the calculation and 
experimental results in the case of  small cracks (i.e., the real crack was somewhat larger than that fixed during the tests). 
To a certain extent, this explains why in the case of  small cracks the calculations give an overestimated crack depth. 

Thus, in the determination of  absolute values of  the crack depth there is a general tendency that the shorter the 
crack the larger the discrepancy between the calculated and experimental results. However, it is with comparatively short 
cracks (with T < 0.5) that the difference between the calculated and measured values of  the relative change of  natural 
frequency is the smallest. This becomes evident when we compare the respective values of  A a and A /  in Table 2. 
Hence, the high accuracy of the analytical determination of the frequency ratio is not always evidence of the same 
accuracy of  the crack-size determination. This finding supports the conclusions made in [23]. 

The experimental method of  harmonic analysis of the strain wave, as described in [25], was used for revealing 
higher harmonics in the Fourier expansion of  time dependence of strain and acceleration during the first-mode vibration 
testing of  the specimens given in Table 1. To measure strains we used strain gauges with a nominal length G = 5 mm, 
whose location L G with respect to the beam fixed end and the crack on the test specimens was varied. The acceleration 
was measured using an accelerometer that was attached to the specimen end. 

In analytical determination of  higher harmonics of  the strain wave, we took into consideration the possibility of  
generation of  the second and third vibration modes of  a beam with a closing crack. Note that the influence of  these 
modes on the higher harmonics turned out to be insignificant for the specimens tested. 

Figures 4 and 5 demonstrate a good agreement between the experimental and calculated values of the strain 
wave second-harmonic amplitudes (in Figs. 4-7, the amplitudes of  higher harmonics are shown relative to the first 
harmonic b 1 because in our case the fundamental harmonic is a sinusoid). Note that in the case of  08Khl8N10 steel 
specimens the strain gauge was placed on the surface on the cracked side, while in the case of  15Kh2NMFA steel 
specimens it was attached to the side opposite to the cracked one (the L G / L values are given in the figures). In some 
cases, the quantitative discrepancy between the experimental and calculated results, e.g., for the zero harmonic during 
the tests o f  08Khl 8NI0 (Fig. 4), was substantial. However, it should be mentioned that all the calculated functions 
describe the experimental results qualitatively and that the error of  measurement of  the zero-harmonic depends on the 
zero drift o f  amplifiers and can be significant. The dashed lines in Fig. 5 illustrate how the second-harmonic amplitude 
responds to a change in the strain-gauge location L G near the crack by + I mm (in this way we simulated the error of  
determination of  LG). It is evident that the influence of  the L G measurement error on the higher harmonics is 
comparatively insignificant. Analytical investigation has demonstrated that this influence decreases with distance from 
the cracked section and can be neglected. 
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Fig. 4. Influence of the crack depth on the strain-wave higher-harmonic amplitudes for 08Kh 18N 10 steel 
specimen, L c / L = 0.283. (Lines and dots indicate the calculated and experimental values, respectively.) 
Fig. 5. Effect of the crack depth on the strain-wave second-harmonic amplitude for 15Kh2NMFA steel 
specimens. (Solid lines - calculation, dots -experiment, and dashed lines - L  G / L  =0.041-0.050.) 
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Fig. 6. Influence of the crack depth on the acceleration-wave higher-harmonic amplitudes for 
08Khl8N10 steel specimens. (Lines-  calculation; dots -experiment.) 
Fig. 7. Effect of the crack depth on the strain wave higher-harmonic amplitude for 15Kh2NMFA 
steel specimens, L c / L  = 0.277 (Lines - calculation; dots - experiment.) 
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During the analytical determination of higher harmonics of  the acceleration wave we took into account also the 
possibility of  generation of the second and third vibration modes of  a beam. As is evidenced by Figs. 6 and 7, we have 
obtained a good agreement between the calculation and experimental results for the second harmonics and have 
confirmed the small values of zero harmonics in these cases. Similar results were also obtained for other specimens with 
a closing crack. 

For specimens with an open crack (VT-8 alloy) the calculation results are close to experimental ones because the 
calculation does not reveal either zero or higher harmonics of  the strain and acceleration wave. The experimental data 
have shown also that the amplitudes of  these harmonics are close to zero. 

The quantitative discrepancy between the results of  calculation of the higher harmonics of  the strain and 
acceleration wave and the respective experimental data may be due to the fact that the analytical approach does not 

include the possible influence of damping, collision of crack faces, crack-front ellipticity, etc., on the higher harmonics, 
on the one hand, and may be caused by errors of experimental determination of the dynamic characteristics under study, 
on the other hand. 

Conclusions. We have proposed a model of a cantilever beam with an edge crack, which simulates the crack as 
a portion with a decreased moment of  inertia. 

We have derived expressions to determine the natural frequencies and modes of  vibration of  a beam with an 
open or a closing edge crack. In solving a vibration problem for a beam with a closing edge crack, we obtained equations 
which make it possible to study the crack-induced distortion of  the wave of displacement, acceleration, and strain of  
various beam sections. This approach allows for the possibility that vibration modes different from the starting preset 
mode can be generated at the moment of  crack opening and includes the special features of  strain distribution near the 
crack. 

The testing of the proposed analytical approach on a considerable body of  experimental data and finite-element 
calculation results has demonstrated that this approach provided reliable relationships between various vibration 
characteristics of  a beam and the crack parameters. 
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