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Abstract: We study the continuum scaling limit of  some statistical mechanical models 
defined by convex Hamiltonians which are gradient perturbations of  a massless free 
field. By proving a central limit theorem for these models, we show that their long 
distance behavior is identical to a new (homogenized) continuum massless free field. 
We shall also obtain some new bounds on the 2-point correlation functions of  these 
models. 

1. Introduction and Statement of the Main Results 

In this article, we study the long distance behavior of  (lattice) statistical mechanical 
models defined by convex Hamiltonians H ( ~ )  which are gradient perturbations of  a 
massless free Gaussian. Under certain assumptions (see (H-l)  and (H-2) below), we 
shall prove a central limit theorem for these models and show that their behavior 
at long distances is governed by suitable continuum massless Gaussians. The main 
idea is that these statistical mechanical models can be expressed (following Helffer 
and Sjtstrand [8, 12]) in terms of  an infinite dimensional elliptic PDE. We develop a 
suitable extension of  homogenization for this elliptic equation which will then yield 
the desired central limit theorem. Along the way, we will obtain new estimates which 
are pointwise versions of  the Brascamp-Lieb inequalities [1]. When the Hamiltonian 
is a "small" perturbation of  a massless free field, using the renormalization group 
analysis and multi-scale expansions, these models have been studied in [4, 10] and 
more recently in [2]. Their methods, when applicable, give more detailed information 
than our methods. However, our methods do not require the Hamiltonian to be a 
"small" perturbation of  a massless free field. 

In this introduction, we first define the model and then we state the main results. 
Then the notations for the rest of  paper are introduced. A brief sketch of  the proofs 
and organization of  the rest of  paper conclude the introduction. 

1.1. The model. At each point x of  the lattice Z a, there is a real random variable 
~(x) and we consider the following Hamiltonian H A, A = A(L)  C Z a a cube of  side 
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L centered at the origin: 

A def. ?Tt 2 
H~(~) = E V ( ~ ( x ) -  ~(y))+ ~ E ~~ 

x,yEA xcA 

and V E C: (~ )  is an even function, m in the Hamiltonian will be referred to as 
the mass and the second term is called the mass term. The superscript A indicates 
Dirichlet or periodic boundary conditions. In this article, the particular choice of 
boundary conditions will become unimportant as A T oc. We denote by d#A(~) the 
induced probability measure and for any allowed functional F(~) ,  we use either of 
the following symbols to represent its expectation: 

f A def. l f F(~)exp{_HA(~p)}~A~ ' ( F >A _ F(~) dt%~((p) - ~ A  

where f 
~,~A = ] exp(_HA(q0)}:~Aq0, 

J~ IAla 

is the partition function (in volume A) and 

~ A ~  def. H = d ~ ( x ) .  

xEA 
Note that when V(z) = �89 2, Hm is a free field Hamiltonian of mass m. 

We restrict the class of Hamiltonians by imposing the following lower bound on 
their Hessians as quadratic forms (m > 0): 

Hess H A def. [O~(X)O~o(y)jO2HAm 1 >_ (--6A + m2), (H-l)  

for some 6 > 0, independent of A. Let us denote the variance of a functional g by 
Varg: 

Wargdef" ( ( A ) 2 )  A = , 
m 

and let 
def. E ~(f) = qo(x)f(x). 

82 
We shall frequently use the following inequalities. 

Theorem (Brascamp-Lieh Inequalities). 

(a) For any C 1 functional g(qo), 

( Og(~)lA 
Og( ) (Hess HA)_l(x, y) , Varg(r < Z 

x~y m 

(b) 

( e t~ ( f )}~_<exp  -~ ( f , ( - 6 A  + m)- l  f ) . 
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For a proof, see [1] (see also Remark 6 below). 
W e  can define an infinite volume massless ( i .e .  m = 0 )  probability measure/~(q~) 

through the following procedure1: 

(eC~(f) ) = [ ec~(f)d/z(~) def. lim ( e c~(f) )m def. lim lim ( e c~(f) )A m . (1.1) 
J m$O rn~O ATac 

Note that by part (b) of Brascamp-Lieb inequalities (hereafter B-L), the right-hand 
side of this equation remains bounded as m ~ 0 whenever f is compactly supported 
(and has average zero in d = l, 2). The uniqueness of limit is established in [13]. Note 
that in d = 1,2, the condition that f has to have zero average means that the class 
of allowed functionals is restricted to those which only depend on the difference of 
fields at different points of space. 

One can also use B-L inequalities to prove the ergodicity of the infinite vol- 
ume probability measure constructed above. This holds independent of the boundary 
conditions. 

To probe the long distance behavior of massless models, we introduce the slowly 
varying scaled field 

~(fe) = ~ ~(x)F(x)  def. ed/2+l Z 9~(x)f(ex), f E C ~ ( ~ d ) ,  e > O. 
X X 

If f is an approximation to the characteristic function of a unit box, then qo(f ~) will 
be the sum of L d (L ~ l / e )  random variables ~p(x) divided by the scaling factor 
L d/2+l . If {~(x)} is a family of independent (or even weakly dependent) random 
variables, the correct scaling for having a central limit theorem (CLT) will be L -d/2 
but in the massless models, the field variables are strongly dependent and we require 
a stronger scaling, namely the factor L - l-d~2,  to  obtain a non-trivial CLT. However, 
the family of random variables {V~(x)} only needs the standard scaling L -d/2. 
Although in d = 1 these gradient random variables are independent, this is no longer 
true in d > 1 where even at large separations, gradient fields are correlated and the 
correlation functions are not absolutely summable but are bounded as quadratic forms 
and allows the standard scaling. 

Define V i f (x )  def. f ( x  + ei) -- f (x )  and let V~ denote its adjoint with respect 
to the standard inner product of g2(zd) (see Sect. 1.2 for more details). To cover all 
dimensions in a uniform way, and according to the above argument, we choose to 
study the gradient of fields and for f c C ~ ( ~  d) and an arbitrary integer g, 1 < g < d, 
we introduce 

Veqo(f~) ~ ~(V~fe) ~ Z ~(x)V~fe(z), fe(x) def. ed/2f(ex). (1.2) 
X 

Our main results are stated in Theorems A, B and C below. In addition to (H-l), let 

Hess H,~=o < C for some positive constant C. (H-2) 

1 By A ~ cx~, we mean that the size of box A approaches ~ .  
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Theorem A. Fix g E { 1 , . . . ,  d}. Then under hypotheses (H-l)  and (H-2), the con- 
tinuum scaling limit o f  the above models with m = 0 is a continuum massless free 
field. In other words, there exists a constant positive definite matrix q such that for  all 
f E C~xD(]~ d) and t E R, 

where 

-OQ o 
li~0 (et~~ = exp I ~  ( f ,  ~ z  e ~xe f ) J  ' (1.3) 

d o o 
Q-1 = _ ~ qij 

Ox~ Oxj' i,j=l 

and ~(V~f~) is defined in (1.2). 

Remark 1. The RHS of Eq.(1.3) is the generating function of the continuum Gaussian 
probability measure with covariance Q. 

Remark 2. It follows easily from our proof that if the model is (statistically) rotational 
invariant under lattice rotations, the continuum limit will have the full rotational 
invariance, that is q will be a multiple of the identity. 

Remark 3. For m = 0, all these models enjoy the formal continuous symmetry H(~)  = 
H (~  + const.). In the presence of the mass term, this formal symmetry will be broken 
and the scaling limit will be a white noise Gaussian. In this case, the appropriate 
scaling is different from the one given above. For massive FKG models, a result 
due to Newman [11] proves the convergence to white noise. Note that in the nearest 
neighbor case, our conditions are sufficient to imply the FKG property. 

Theorem B. Let m > 0. Then there is a constant m '  > 0 such that 

I(~(x)~(y))ml < Ce -'~'II~-ylI, f o r s o m e  C > O. 

Here ( . ) m  denotes the expectation with respect to the infinite volume massive proba- 
bility measure (with mass m), defined in (1.1). 

For the massless model, we prove 

Theorem C. Let m = O. Then for  the above models in d > 2, we have the following 
estimate: 

I( )l < C IIx - y l l E - L  f o r  some C > O. 

Remark 4. We can relax the nearest neighbor restriction on the Hamiltonian. For any 
finite range interaction, Theorems A, B and C hold. See Sect. 4 for more details. 

Remark'5. Theorems B and C will be proved separately from Theorem A. For sim- 
plicity, Theorem C has been used to prove Theorem A in d > 2, however that could 
be also avoided (see the proof of Theorem A in d = 2). 

1.2. Notations. We shall always denote by d the dimension of space. 2~ a is the d- 
dimensional integral lattice and by Z~, we mean the set 

{(Xl, . . . ,Xd) : x i / e  E Z , i  = 1 , . . . , d } .  
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We always think of Z d as imbedded in ~d with coordinates which are integer multiples 
of ~, with respect to a Cartesian system defined by the unit vectors {ei : i = 1 , . . . ,  d}. 
For any x E ]~d, Ilxll will denote the Euclidean length of x. 

For a real (or complex) valued function f ( x )  on ~d, and i = 1 , . . . ,  d, define 

(V~f)(x) def. f ( x  + ~ei) -- f (x ) ,  
E 

( ~. dee. f ( x  -- ~ei) -- f ( x )  
V i  f ) ( x )  = 

Note that V ~* is the adjoint of V e with respect to the standard inner product of 
~2 2 4  ( ~ ) .  When E = 1, we shall drop the superscript ~. The discrete Laplacian (on 2~ d) 
will be denoted by A. 

Using the above notation, our (formal) Hamiltonian can be rewritten as 

d 

H;~,m(qo) = Z ~ V(Viqo(x)) + 1 2 ~ m  Z ~2(x)" (1.4) 
xEZ d i=l xE~ d 

Let # be the infinite volume translation invariant massless ergodic probability 
measure which was constructed in Eq.(1.1). We denote the expectation of a functional 
u w.r.t, this measure by any of the following notations: 

f u ( ~ ) @ @ ) -  (u} - - E { u } .  (1.5) 

def. 
Let L2(#) be the Hilbert space with inner product ( u ,  v )~ = (u~) .  For a smooth 
functional u(~), we define 

- _ _  O H ( v )  OxU(qO ) def. OU(~)  O ; U ( ~ )  def. OU(~p) + - - .  

0~(x)' O~(x) O~,(x) 

Note that (9* is the (formal) adjoint of 0 with respect to the inner product: 

We define: 

(O;u, v)# = (u, Oxv),. 

xEE d 

For the entries of Hessian, we use the following short notation: 

g~ly def. 2 02H 
= OxyH =- O~(x)O~(y)" 

We put, 

Z e def. ~d Z 

x xEZd 

and as a rule, we drop the superscript ~ whenever E = 1. 
To simplify the notations, we shall use 

d~r. aeV(z )  I 
a i ( x ,~ )  - dz~ ]z=v~(x)" 
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Then a simple calculation shows that H "  is a finite difference elliptic operator: 

d 

(H"u)(x,~)= Z H~'vu(Y'~)= ZV*(ai(x'~)Viu(x'q~ (1.6) 
y i=1 

Hypotheses (H-l)  and (H-2) are then equivalent to 

0 < a o  1 ~ a i ( x ,  ~ )  <_ ao,  (1.7) 

for some constant a0 > 0, uniformly in ~ and x. 
Finally we warn the reader that the constants which will appear in different places 

are not necessarily equal, although we might use the same symbol for them. 
1.3. Sketch of proofs. To prove our main results, we will use a representation which 
was originally introduced by Helffer and SjSstrand [8, 12], in a somewhat different but 
related context. Fix g E { 1 , . . . ,  d} and f C C~(Nd). We seek a solution v~(y, ~), y E 
E d  to the following PDE: 

Z Oyve(y, ~) = ~(Ve fe), (1.8) 
Y 

in the space of gradient functionals, i.e. we assume Oyv~(x, ~) = Oxve(y, ~). By taking 
another derivative Ox of the above PDE, and using this property, together with the 
observation that the commutator 

[O~, O;]= H:y, 

o,~(xT~L) = 

we obtain: 

Y 

Z * = (o;ox + Eox, o~1) ~ ( v ,  ~) 
Y 

Y Y 

. x - .  H i '  v " = ~ o~oy~,(~, ~) + 2_., ~y ~tv, ~). 
Y Y 

Therefore v~ satisfies the following PDE: 

d 

(Sv~)(x, ~) d~. -A~v~(x, ~) + y~ V~ (aiV~v~)(x, ~) = V~L(x), 
i=1 

hence, [ • 1 
v~ = - A ~  + V*aiVi  V~f~ = 59e-lV~f~. 

i=l 

(1.9) 
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Using (1.8), we can express the pair correlation functions of  ~ fields in terms of  v: 

x 

x 

= ~ ivy(x, ~)Vif~(x  )) 
x 

= ( ( V e f ~  - 1 ,  * , ~ V I A ) ) ,  (1.10) 

where ( , ) denotes the standard inner product of g2(~d). 
To prove Theorem A, we will show that ( V~f~, ~ f - l v ~ f ~  ) --+ const, in L2(#); 

more precisely 

( l(~7gf " --I * ]2) * , ~  V t f , ) - Q I  ---~0 a s r  (1.11) 

def. , 
where Qf  = (V~f~,  QVef~)  and 

0 2 

Q-1 = _ ~ qij OxiOxj ' 
i j  

for the constant positive definite matrix q given by 

def. 
q i j  = lim ( a i  ( S i j  - -  Vi(~-~ + ~ ) - l V ~ a j )  }. 

f~10" 

Proof (of Theorem A, assuming (1.11)). Put 

Gr def.( ) = et~(V~f~) 

By the Brascamp-Lieb inequality, for any given f there is a constant C > 0, inde- 
pendent of r such that 

The constant C can be chosen independent of t for t in any compact set. A straight- 
forward calculation shows that 

dGd~t) - t((~x v~(x,.)V~f~(x)-Qy)et'(v~f'))+ 

Therefore 
dG~(t) 

dt - tQ yG~(t) + tA~(t), 

where A~(t) = o(1) as ~ J. O, by (1.11). Theorem A then follows upon integrating the 
last equality and then letting ~ ~. O. [] 
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Remark 6. Following Helffer [7], the proof of B-L inequalities is a straightforward 
application of the above representation. To see this, consider g(~) c C 1 A L2(#) and 
let ~ x  Oxv(x, ~) = g - ( g ), or equivalently v = 5~  - l (0g) .  Then a similar calculation 
to the one which yielded Eq.(1.10) gives 

Var9=  ( ( 0 9 ,  ~ - 1 0 9 ) )  < ( ( 0 9 ,  (H")- lOg)) ,  

where the last inequality follows since --A~ > 0. This proves part (a) of B-L in- 
equalities. Part (b) follows easily from part (a). 

Remark 7. Instead of having an L 2 convergence in (1.11), any L p, p > 1 convergence 
would be sufficient. This might be useful if one wants to relax the hypothesis (H-2). 

The proof of (1.11) relies on homogenization. To see that, we first rescale as follows: 

~ v d x , ~ ) V ; f ~ ( x )  = ~d ~ u~(x,~)V~e.f(x) 
x xC~d 

= ~ u ~ ( x ,  ~)V~*f(x),  
x 

where u~(x, ~) def. el_d/2v~(x/~, ~), X C Z d, satisfies 

d 

ZV~*a~(x/E,~)Vi]u~(x,~)  = V e f (x) ,  x �9 Z a. ( (~r162 ~ )  de2" [ - ~  qo q- e e* 

i=l 
(1.12) 

If the first part of the above operator was absent, this equation could be viewed as 
a standard elliptic homogenization problem [15] (where ai(x/e, ~) would play the 
role of the uniformly elliptic coefficients of an elliptic PDE, corresponding to the 
realization ~ of the random media). In Sect. 3 we show that suitable modifications 
of the standard techniques apply even in the presence of the first part of the operator 
and we obtain (1.11). 

According to the above considerations, to obtain pointwise estimates on the two 
point functions, it suffices to obtain pointwise bounds on the kernel of 5~  -1 (or 
( ~  + m2) -1, for the massive case). Since ~ + m 2 > m 2, we can simply apply the 
Combes-Thomas' trick of conjugation and analytic continuation to prove Theorem 
B. This proof is quite straightforward and mainly uses the fact that ~ + m 2, for 
m > 0 is positive definite, therefore the result can be extended to a wider class of 
Hamiltonians. See Sect. 2.2.1 for details. 

On the other hand, the massless case (m = 0) is not as easy as the massive (m > 0) 
case and uses the specific structure of the Hamiltonian. If  we only had the second 
part of the operator ~ ,  then the desired bounds would be a simple application of the 
Aronson estimates [3], which gives the following upper bound 

F(x,x,;t,O) < Ct-d/2exp { l[ x -  x'l[2} 
- C t  ' 

on the fundamental solution F of the problem 

Ou(x, t) a 
Ot - - Z V*bi(x, t)Viu(x, t), 

i=l 
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where 
0 < ao 1 < bi(x,t)  < ao. 

In the proof of Theorem C, we use the semi-group representation for the solution 
v of (1.9). Upon trotterizing the corresponding semigroup, we observe that we are 
still able to use the Aronson upper bounds to get the desired estimate. Details are 
given in Sect. 2.2.2. 

Note that Theorem B can be also proved by the same techniques as will be used 
in the proof of Theorem C. 

1.4. Organization. In Sect. 2, we mainly study Eqs.(1.8) and (1.9). After introducing 
the proper spaces and norms, we solve the second order PDE of (1.9) and then we 
show that its solution also satisfies (1.8). In the rest of that section we prove Theorems 
B and C. Section 3 is devoted to the homogenization of the solution of (1.12). We 
shall see that the proof of homogenization follows from [15, 9] and relies mainly on 
Hilbert space methods and ergodicity. In Sect. 4, we will see that these results can 
be easily extended to long but finite range interactions. Finally, in the Appendix, we 
have collected some gP estimates which are used in Sect, 3. 

2. Helffer-SjOstrand Representation and Proofs of Theorems B and C 

In this section, we study the Hellfer-Sjtstrand representation and related PDE's that 
will form the bases of our analysis. In Sect. 2.1, we give a rather careful definition of 
the relevant PDE's and the spaces in which we seek for solutions of them. We shall 
first show that Eq.(1.9), or equivalently Eq.(1.12) has a unique solution in the ap- 
propriate spaces. Then we verify that the solution of Eq.(1.9) satisfies Eq.(1.8) in the 
suitable sense (see Proposition 2.1). Finally in Sect. 2.2, we obtain some new bounds 
on the decay of two point functions, for both massive and massless models. These 
can be considered as pointwise extensions of the (form-wise) classical Brascamp-Lieb 
inequalities. 

2.1. Some related PDE's and the Helffer-SjOstrand representation. We first define the 
Hilbert space oq~a(#) as the completion of the smooth local functionals under the 
inner product 

( u(~) , v(~) ).~l ~ ( u,  v )~ + ~ ( Oxu(~) , Oxv(~) )~. 
x 

When there is no danger of confusion, we will use the following shorthand: 

( Ou, Ov ), ~ ~ ( Oxu(~) , O~v(~) ),. 
x 

We also define the space C0(Z d, ~ 1 )  of compactly supported ~ l ( # ) - v a l u e d  func- 
tionals. 

For any u, v E Co(Z~, ~ l ( # ) ) ,  define the inner product 

d 

(u, (a u(x, + V v). 
x y i = l  x 
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Completion of C0(Z a, , ~ l ( / z ) )  with respect to this inner product will be denoted by 
~ (  , ,  u). 

For fixed f (x )  E C~(Rd),  e > 0 and g E {1 , . . .  ,d}, consider the following 
problem: 

d 1 

(C~eu)(x, ~) def.= A~U(X, ~) + V i a i (x, qo)V i u(x, ~) = V e f(x) ,  (2.1) 
i=! 

for x C Z~, where a~(x, ~) def. ai(x/e, ~) satisfies (1.7). 
1 d We say u E ~ ( Z ~ ,  #) is a (weak) solution to this problem if for every v C 

1 d ~ ( Z ~ ,  #), we have 

1 
-fi Z Z ( Oyu(X, ~) , Oyv(X, ~p) ) u+ (2.2) 

x y 

( ) . = Z (f(x),  ) .  
Z X 

The main tool to treat this type of PDE's is the Lax-Milgram theorem, which requires 
that the associated bilinear form be bounded and coercive (see [5]). Verifying these 
two conditions is straightforward and uses (1.7). 

As we saw in the Introduction, the homogenization will be applied to the solution 
of the second order equation (2.1), while the statistical mechanical conclusions will 
be drawn using the solution of the first order equation (1.8). The next proposition 
identifies these two solutions. Let 

~ -  def. ( all smooth local w(~) s.t. ~ ( 2 2 = IO;~w(~)l ) + Z ( [O~w(~)12 ) + 
t X ~ y  

( Iw(~)l 2 ) < oc, ( w ) = o }  (2.3) 

Proposition 2.1. Let u C ~ l  be the unique solution to (2.2), with e = 1. Then for any 
w C ~///', ~ defined in (2.3), we have 

( w , Z O * u ( x , ~ p ) - ~ ( V ~ f ) )  =0. (2.4) 
x # 

Proof Put e = 1. Let u C ~ l ( z d ,  #) be the unique weak solution to the PDE 

5i~u(z, p) = V~f(x) ,  x C Z d. 

Assume that for all x, y E Z d, u is of gradient type, i.e. 

( v , O~u(y, ~) ) u = ( v , Ovu(x, ~) ) , ,  Vv e L2(#). (A) 

Then, using this equality, the commutation relation and the definition of u, 

O~ v(x, qo), Oy u(y, ~) - ~(V e f )  = 0. 
Y iz 
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Proposition will follow if we show that the subspace 

is dense in ~ .  To prove this, assume that 3 w  E ~ such that for all v E ~ ' ,  

( Z O* v(x, ~) , w(~) ) =0.  
X ," / z  

On the other hand, for w C ~'/Y, v(x, ~) = Ozw(~) C ~l, therefore we can put 
v(x, ~) = Oxw(~) in the above equations to obtain 

< ioxw( )i 2 > = o, 
X 

which shows that w =const., but the only constant in ~ is the zero vector so w = 0. 
This proves that ~"  is dense in ~ ' .  

Next we justify the assumption (A). Let 

c0grad(zd ~,,yl) def {U C Co(Z d, ~ 1 )  : 2s satisfies (A) }. 

E $  Then one can easily see that 2~ leaves cvgrad invariant. If we solve <~u = ~7 e f ~ 0  
in the completion of this space (which is a subspace of ~1), we will obtain a unique 
solution in this space. Note that V~f  E cgraa(Z d, ~eS l) since V~f(x) = 0x~(V~f). 
The earlier considerations about the existence and uniqueness of the solution in the 

fwgrad larger space ~ l  and the invariance of ~0 under ~ imply that these two solutions 
should agree and this justifies the assumption (A) and finishes the proof. [] 

Remark 8. Equation (2.4) can be extended to be valid for w E ~// '+ const., since 

(const . ,y]O~u(x ,~)-~(V~f))  =0.  
x 

2.2. Some new pointwise bounds on the 2-point functions. In the first part of this 
section, we will consider the massive models, i.e. m > 0. Bounds on the decay of 
massless models will be obtained in the second part. These bounds are the pointwise 
extensions of the Brascamp-Lieb inequalities and are comparable to the bounds that 
one can obtain for the pure Gaussian models. 

2.2.1. Massive models. For a fixed m > 0, consider the operator 

d 

S = - A ~  + ~ V~aiV~ + rn 2, 
i=l 

defined on g2(~d;,~l(/~)) . Note that as a quadratic form, .5~ _> m 2 (see Remark 9 
below). For any p c R d, define the operator Tp of multiplication by exp(ipz), z C zd 
on this space. T v is a unitary operator with respect to the inner product 
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with inverse T~ -1 = T_p. Finally define the operator: 

~ p  d~. T~- ' ~ Tp . 

Since Tp commutes with - A ~ ,  it is easy to check that for small IPl, P c C d, ~ v  is 
still positive definite and hence invertible. 

Theorem B. There is a constant m I = m~(ao, m,  d) > 0 such that 

( ~ ( x ) ~ ( y ) )  <_ C e  -m'llz-yl[, for  some C > O. 

Proof. The above considerations show that ( T v l ~ T v )  -~ = T v I c S - ~ T  v, which was 

originally defined for p E I~ d, has an analytic continuation into the disk IPl < P0 of 
the complex plane. Therefore we can choose m '  = m'(ao, m,  d) such that 

I~- l (x ,x ' ;~ ,~ ' ) l  < Ce-m'llx-~'ll, 

uniformly in qa and ~ ' .  [] 

Remark 9. The same argument, and hence result, holds if instead of having an m > 0 
explicitly in ~ ,  we assume that 5~, > m2; after all that is the only hypothesis we 
have used. 

2.2.2. Massless models. We shall obtain a power law decay for the kernel of S~ - l ,  
where 

d 
= --A~ + E V~a~Vi = - A ~  + H " ,  

i=l 

where ai satisfy (1.7). Proof of Theorem C will then be a simple application of this 
result. 

We start with the semigroup generated by this non-negative (self-adjoint) operator 2. 
Since each of the two parts of ~ is non-negative, we have the following Trotter prod- 
uct representation for this semigroup: 

e-t'5( = n---,oolim (e t /nA~'e- - t /nH")n .  

The above convergence takes place in the strong operator topology. Put 

i~n) def. ( e t / n A ~ e _ t / n H " ) n  

= et/nA~'e--t/nH" . . .  et/nA~'e--t/nH", (n pairs) 

and define the following kernels: 

St(~,r d~f. et,a~(~,r 

kt(x,  y; qo) def. t H "  = e -  ( x , y ; ~ ) .  

2 The non-negative quadratic form induced by ~ on ~)1 gives a self-adjoint extension of S( which we 
will again denote by S .  
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Therefore the kernel of I} n) can be written as 

I(n)t~ f " t ~x,Y;~, r  = E d~t((fln-1)'" d~t((fll)st/n(~'~n-1) 
Xn- - l  ~...~Xl 

kt /n(X,  Xn--l'~ ~ o n - - 1 )  �9 �9 �9 S t / n ( ~  1 , r Y; r  

f f  dP(~n-1) �9 �9 �9 dp(~ 1) St/n(~, r St/n(~l, r x 

E k t /n (X  ' Xn_ l  ; ~ n - - 1 )  . . . k t /n (X l ,  y; ~)). 
X n - - h . . . ~ X l  

For fixed ~, ~1 . . . ,  ~n-1,  r  let 

u(n)(t, x) def. E kt/n(X, Xn-1; ~ - l ) . . .  kt/n(Xa, y; r  
~n--l~.*.~Xl~y 

Then it is clear that for fixed n and t, u(n)(t, x) is the solution at time s = t of the 
following problem: 

{ au('~)(s, x)/as = - ~ i  d, v* b~n)(x, s)Viu(n)(s, x), 
(2.5) 

u(n)(o, X) -~ f(x) 
where 

b~n)(x, 8) d~. ai(x, ~k) for (k - 1) t < s < k t ,  k = 1 , . . . ,  n. 
n n 

Back to Eq.(2.5), we know that its solution has the following representation at 
time t: 

u(n)(t, x) = E F(n)(t' 0; x, y)f(y), 
Y 

where F(n)(t, s; x, y) is the fundamental solution corresponding to Eq.(2.5), with the 
initial condition f(x) = gxy. Since bi(x, t) is bounded from above and below (uni- 
formly in n, x and t), Aronson's estimate [3] implies the existence of a constant 
C(which only depends on dimension d and the ellipticity constant a0) such that 

0; x, y) < t~-~e -IIx-yll2 /ct, F(n)(t, 

which, in turn, gives us the following bound: 

E kt/n(X, Xn--1;(fln--1) "' 'kt/n(xl,y;r < C--~--e-IIx-Yll2/Ct 
-- td/2 

X n - - I ~ . . . ~ X l  

uniformly in ~'s .  
Since the operator exp{tA~} preserves positivity, and hence its kernel 

St(~, r is nonnegative, we can estimate the kernel of I~ n) through the above es- 
timate. Putting St/n'S together, we obtain: 

I~n)(x, y; ~, r <_ ct-d/2e-II~-ylf2/CtetZ~(~, r 

Since 
P 

~(x)~(y) ) = / • - t ( x ,  y; ~, r  dp(~)d#(r < 

Theorem C follows by integrating out t in the above estimate and then letting n --~ oo. 
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3. Homogenization and the Proof of Theorem A 

In this section, we shall extend the standard techniques of  homogenization (see [15, 
9, 6]) to the elliptic PDE (1.12) to prove Theorem A. Throughout this section, we 
will use the massless probability measure constructed in (1.1). Since the whole proof  
is rather lengthy, we will break it into two steps which we will describe here briefly. 

Step 1. This step is the heart of the proof of Theorem A. Fix A > 0; g C { 1 , . . . ,  d} 
and f C C~(]~d), and consider the following PDE: 

( S  = + ~)u~(x,  ~) = =* x d V e f (x ) ,  E ~E. (3.1) 

Let w~(x)  satisfies 

~7 e f ( x ) ,  x qij~Ti ~ j  + )~ W~(X) = E* E ~E" 
i,j=l 

The key step is to show that the constant positive definite matrix q can be 
chosen so that Ilu~ -w~l lE ~ 0 as r ~ 0 (see Theorem 3.1). We construct the 

constant effective diffusion matrix q by introducing an auxiliary function X~ 
which formally satisfies (cf. (3.7)) 

( ~  +/~)X/~ = - V * a i .  

As fl J. 0, ViX~ has a well defined limit, which will be denoted by r A very 

important observation is tha t /~E(x~i )  2 --+ 0 as /3 J. 0 (see Proposition 3.1). 
We then define 

qij = E ai(~ij + ~)ij), 

and introduce the error function 

d 

z=(x,~)  uE(x,~)  wE(x) + ~ F E, E = - X i  ( x / G ,  ~)Vi w (x). 
i=l 

As we just mentioned, the last term in the error function will go to zero as 
r .~ 0, therefore to prove that llu~ - w~llE --* 0, it suffices to prove that 
IizEllE --+ 0. One way of doing this is to calculate (ZE,(cSE + A)ZE)E and 
show that this expression vanishes. Since ~5;~ E + A is uniformly elliptic, this 
last statement implies llzEll~ --+ 0. These will be our plans for Step 1. It is a 
standard result that as e I 0, [[w~ - w~,HE --+ O, where w~ satisfies 

-- E q i j - -  + A w)~(x) - x E (3.2) 
i,j OXiOXj OXg' 

As a result, in this step we show that for A > 0, Ilu~, - w ~  lie ~ 0, as ~ $ 0. We 
call this step the massive homogenization due to the presence of the positive 
constant A > 0, which plays the role of  a mass. The main reason for adding 
this mass (which will be later removed in Step 2) is that we are solving these 
PDE's  in the whole space and in the presence of such a mass, solutions have 
exponentially fast decay at infinity. We remark that the probability measure 
is kept massless. 
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Step 2. We extend the results of Step 1 to the massless case )~ = 0. Namely, in this 
step we show that for the solutions u~ and w~ of (3.1) and (3.2), and any 
t? t r {1, Idots, d}, we have, as ~ .L O, 

~ V ?  g(x)~1(x, ~) -~ y : j  V? g(x)~(x, ~), 
X X 

y ~ V ~ *  g(x)~,(x) ~ ~* ~ Ve, g(x)wo(x), 
X X 

uniformly in e, where u~ and w0 satisfy Eqs. (3.1) and (3.2) with ,k = 0. This 
and the result of Step 1 will prove that 

E~V~e*g(x) [u~(x, ~) - w0(x)] L2(~)) 0, as e ~ 0. 

We know from Sect. 1.3 that this last statement implies Theorem A. 

3.1. Step 1: Massive homogenization. For x E Z d, define Tx : L2(#) ---+ L2(#) by 

(Tx~)(~) = ~(~--x~), 

where (Tx~)(y) = ~(y - x), x, y E zd. The T-invariance of # (i.e. the translation 
invariance of #) shows that {Tx}xeZ~ is a family of unitary transformations on L2(#). 
Since the translation group ~-~, x C 7 '~d is ergodic, the only functions in L2(#) that 
are invariant under the unitary group {Tx, x E zd}, are constant functions. Let 
D1," �9 �9 Dd denote the generators of this unitary group along the directions e l , . . . ,  ed: 

(D{g-)(~) d~. (T~,y)({) - ~(~), 

and let D~ be the adjoint of Di, with respect to ( , ) w  that is (~ ,  Dih)~  = 

D * ~  ( ig ,  h)~" 
We define the inner product3: 

d 

i=l 

on the Hilbert space ,~1 (# ) .  Corresponding to any ~ 6 Lz(p), we define a stationary 
gby  

g(x, ~) d~. (T~y)(~) = ~(r_x~), x e ~d. 

7-invafiance of p implies that the expectation of any such function is independent of 
x, and we also have 

Vig(x,  ~) = Dig(x, ~), V~g(x, ~) = D*g(x, (p) 

for such functions. 
Define the Hilbert space H~(Z d, #) def. g2.zd L 2 . . .  = ( ~; tP)) of square summable func- 

tions over Z d with values in L2(#), with inner product 

3 Note that the norm induced by this inner product is equivalent to the one induced by ( , )j%.~1. 
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( U,  V )e def. E sd ~ U(X, ~)V(X, ~) =- E ~-~u(x,  ~)v(x, (p), 

xE~ x 

II~ll~ = ( u ,  ~)~. 

Finally define the Hilbert 1 d d~f. = H i (Z~, , : ~  (p)) of square summable space H~ (Z~, #) 1 d. 1 
~ l (# )_va lued  functions over zd with the inner product: 

d 

( U ,  V)I,r def.= (OU, O V ) e q . ~ ( V ~ U ,  ViV) "b(U, V)e 
i=l 

( ) 
i=l xE~ 

+ E  

+ 

and 
Ilulll:,~ dof ( u ,  u), ,~. 

Fix A > 0 and / E { 1 , . . . ,  d}. For simplicity, we shall drop the subscript A in 
1 d this section. For f E C~(~d), let ue(x, ~) E HI(Z~,p)  be the solution to 

d 
1 

ai Vi u , V~v ;~(u - j ( O u  t , O v ) ~  + ( ~ ~ ~ )~ + , v ) ~  = ( f ,  V ~ v ) ~ ,  (3.3) 
i=l 

1 d for all v e HI(Z ~ , #), where a~(x, ~) :__ ai(x/e, ~), x E Z d. By translation invariance, 
at(x, ~) = Tx'Si(~) for some ai(~) E ,_~1(#) and there exists a constant a0 > 0 such 
that 

ao I <_ at(x, ~) < a0, uniformly in x, ~. (3.4) 

Using this, it is a quite straightforward application of the Lax-Milgram theorem to 
establish the existence and uniqueness of the solution to this PDE. We further obtain 
the following estimate: 

Ilu[[2,~ _< C / / 2 ( x )  dx, uniformly in ~. (3.5) 

The (lattice) homogenized problem is the following. Let 1 d H i (Z~) be the Hilbert space 
of all square summable functions u on Z d with square summable derivatives, with 
inner product 

( U ,  V )1,r = ~r -b ~ r  ~ V~U(X)V~V(2s 
x x i 
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1 d Note that we have used the same notation for the inner product on H i (Ze,/.t) and 
1 d H~(Z~) since they agree on the functions which only depend on x. For f E C~(Ed),  

1 d let w e E H~(Z e) satisfies 

d 

E e E qijV~we(x)V~ v ( x ) + / ~ E  ~we(x)v~-~= E ef(x)V~ev(x)' (3 .6 )  

x i,j=l x x 

Hl(~d~ Here we are assuming that qij is a positive definite symmetric for a l lv  c e,-e-" 
matrix (see Lemma (3.1)). Existence and uniqueness of the solution again follows 
easily from the Lax-Milgram theorem. Furthermore, since f E C~(~d) ,  the solution 
w e goes to zero exponentially fast as ]x I ~ oc for )~ > 0. 

We would like to show that for suitably defined qij, the solution u e of Eq.(3.3) 
approaches as ~ J. 0 to the solution w e of Eq.(3.6), in a suitable sense. 

Theorem 3.1. For f E C~(~d),  )k > O, let U ~ C H~(Z d, #) be the solution to 
Eq.(3.3). Then there is a positive definite constant matrix qij such that 

Ilue(z, ~)  - we(x)l le  --* 0 as ~ ~ 0, 

where we(x) E HI(Z d) is the solution of Eq.(3.6). 

The first step towards the proof is the construction of qij. To this end, we consider 

the following problem. For any constant/3 > 0, let ~ E ~ 1 ( # ) ,  i = 1 , . . .  ,d, be 
the solution to 

d 

(O~', O ~ )  + E ( D j ' ~ ,  "SjDj~3i)u+/3(~, ~ ) ~ ,  = - ( 'd i ,  Di'~), (3.7) 
j=l 

for all ~ C ~b~l(#). Coercivity and boundedness of the corresponding bilinear form 
follows easily, which, upon using the Lax-Milgram theorem, implies the existence and 
uniqueness of the solution. Moreover one can easily obtain the following estimates. 
For all i , j  = 1 , . . . , d ,  

(a) /3E {(~3)2} <_ C, 

(b) E (Dj~3i) ~ < C, 
(c) E ( O ~ )  2 < C. 

The constants on the RHS's do not depend on/3. Because of estimates (b) and (c), 
there is a subsequence/3' J. 0 along which 

D j X  i -'~ Cji (some limit) 
0 ~ '  --~ {~,i (some limit) (3.8) 

weakly in L2(p). Using the estimate (a) we can pass to the limit in Eq.(3.7) along 
that subsequence to obtain 

d 

E ( Oz'V, ~x,i )tz + E ( Djv,  "aj~bji )~z = -('ai , Di'v )t,. (3 .9 )  

x j=l 

We further notice that the limits in (3.8), are independent of the subsequence. To see 
this, assume that we would obtain the limits {~, ~b} and {~', r  as/5 ~ 0 along the 
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s_ubsequences /3(1) and/3 (2), respectively. Then, for all ~ 6 ~ l ( # ) ,  ~ = ~ _ ~, and 
r = ~b - ~b' satisfy 

d 

Z ( O x ~ , ~ x , i )  + Z ( D j ~ , ' S j - ~ j i )  , = 0 ,  i = l , . - . , d .  
x j = l  

If we substitute in this equation Xi for %', and then pass to the limit once along fl(1) 
and once along/3(a), and then subtract the results, we obtain: 

d 

x j = l  

Uniqueness, then follows from the above equation and (3.4). 
We define 

i qij def. E'ai((~ij +~i j ) ,  i , j  = 1, . . . ,d .  (3.10) 

L e m m a  3.1. The "effective" diffusion matrix q defined above is a positive definite 
symmetric matrix. 

Proof From Eq.(3.9), we have: 

d 

Z (O~g' ~,i  ), + ~ ( Dkg, ~5k(6ki + ~ki) ), = O. 
x k=l 

Substituting g = ~ in this equation, and passing to the limit/3 ~. 0,we obtain 

d 

x k=l  

Adding qji  = ~ k  ( 6kJ , "ak(6ki + ~)ki) )U t o  b o t h  s i d e s ,  

d 

q s ,  = 

xC~ a k=l 

This shows that q is symmetric. Let c = ( C l , . . . ,  ca) E Ii~ d be a nonzero arbitrary 
vector. Multiplying both sides of the above equation by e~cj and summing over i, j, 
we obtain: 

i,j=l \ k=l k=l  p 

k=l i=1 i=1 
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On the other hand, 

d d d d 

i=l i=l i=l i=l 

for E (~k,) = 0, which follows from the definition of ~b'~ki = lim~0 D k ~ .  Using the 
above inequality, (3.11) and (3.4), 

d d 
2 c qijcj > aol  

i , j= l  i=l 

Similarly, 

d d d d 

e 2 Z ciqijcj < - ( E  i ) { Z E E ( ~ , k ) + a ~  1 + E E(~Jk)2) }" [] 
i , j= l  /=1 i=l  x j , k = l  

So far we have constructed the effective diffusion matrix q and we have shown that 
it is a positive definite matrix. The following estimates will play crucial roles: 

Proposition 3.1. 

(a) limz~0 fiE ( ~ ) 2  = 0 ,  i ---- 1 , ' ' ' ,  d. 
(b) limz~o E [Dj~i - ~ j i [  2 = O. 

Proof. Subtracting Eq.(3.9) from Eq.(3.7), and substituting 5" = ;~  in the result, we 
obtain: 

d 

x j = l  

(3.12) 
Put ~ = ~z Xi in Eq. (3.9) to obtain: 

d 

E ( O ~ '  ~,i ). + E ( DjX3i' "djfJ'ji ). = -(~di, Di~3i ).. 
x j = l  

Passing to limit t3 ,~ 0: 

d 

x j = l  

Subtracting the last two equations yields 

d 

x j = l  

(3.13) 
Finally subtract Eq.(3.13) from (3.12) to obtain: 
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d 

x j=l 

, Xi ) .  = ( ' d i ,  iX~ 

Now pass to limit/3 I 0. Proposition follows from (3.4), and the weak convergence 

of Cji. [] 

Introduce the error 

d 

---- E e* e Z d (3.14) Z e ( X  ' ~ )  def. ire(X, ~tg) -- We(S )  q" e X~2(X/e ,  ~ ) ~ i  W (X), X E e, 

i=l 

where X~(x, ~) de2" ~/fl(T--x~) satisfies: 

v , e ( S ~ e + l ) x i  (x/e,~o) = ( v ,  We*a" " e - v ~  i t x l e , ~ ) ) e ,  

We shall need the following result: 

Lemma 3.2. 
e 2 

(a) Ilex~ ( x / e ,~ )VT*we l l e  ~ 0 as e .[ O. 
Furthermore, there is a constant C > O, independent of  e, such that 

(b) Ilzelle <_ c, 
(c) IIVfzelle <_ C. 

Proof. 

(a) 

e 2 e* e 2 ---- 
eXi (x/e,~)Vi w 

r 

by Proposition 3.1. 
(b) 

2 2 

x 

' ' e ~ ' ~ e  (v?~e)~  _~ o, e 2 E  ~,Xi ) 
x 

1 d Vv ~ H i (2e ,  tz). 

(3.15) 

d 
e 2 Ilzelle --< II~elle + If~lle + ~  ~ (x/e,~)v? ~e �9 

i= l  

The first term on the RHS is uniformly bounded in e by estimate (3.5). A sim- 
ilar estimate for u bounds the second term and finally the last term is bounded 
uniformly by part (a). 

(c) We have: 

d 

IIV~zell~ < v%e ~ *~e(x+ee~) e _ ~ e + l l V T u l b + e  ( V T x ~ ( z / e , ~ ) ) V ~  
j = l  

d 

+e F_, ~;2(x/e, ~)v~v;*~e(~) e 
j = l  
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The first two terms on the RHS are bounded, uniformly in e. For the third term, 
we  have: 

e ( V ~ X ;  ( x / e ,  q p ) ) V ~ * w S ( x + e e i )  = E ( D i ~  s ( V  , 
s 27 

which is obviously bounded, uniformly in e (see (b) before Eq.(3.8)). The last 
term above is bounded by Proposition 3.1. rn 

We are planning to calculate ( z  s , ( ~ s +  A)z s )s" After some straightforward 
calculations, we  obtain: 

(z  s , ( S f  s + ,X)zS)s = 

Z e  [qij  - -  aje~ij e s s 2 s* e e 
, --  E a j V j X  i ( x / e ,  qp)]Vi  V j w  

i,j=l s 

S* S S 2 + z s ,  ~ [ c ~ s x ~ ( ~ / ~ , ~ ) + v ~  , , , ( ~ ) + > , ~ x ,  ( x / ~ , ~ ) ] v ? ~  ~ 
i = 1  s 

d 

, e a j x  i ( x / e , ~ ) V j V  i w 
i,j=l 

That the last two terms vanish as e .L 0 fo l lows easily from Eq. (3.15), Proposition 
3.1 and Lemma 3.2. Therefore we only need to prove 

L e m m a  3.3. As  e I 0, 

I s d ~  z s [q~j a~5~j s s s: s ,  s s = , - - eajVjxi (x/e, ~)] Vi Vjw ~ O. 
i,j=l 

s 

P r o o f  Let Is =Iet + let', where 

I ;  def. Ze ' [qij  - -  aej (~i j  + C j i ( x / c ,  qP))] V ~ * V ; W  s , 

i , j=l e 

i~, def .  Z s ~ e e s e 2 s *  e e 
= ay C j i ( x / e ,  ~ )  --  e a j V j X  i ( x / e ,  qo) V i V y W  

i,j=l e 

We shall show that let, le  t' ~ 0. let' ~ 0, as e J. 0 since 

E { r  ~)  ~ ~ 2 - ~ v j ~  ( ~ / ~ ,  ~ ) }  = E {~j~ - n - s 2 , 2  --3Xi .t ---+ 0, 

by Proposition 3.1. It remains to show that let ~ 0. Define 
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By definition, E gji = 0, and we have 

= z ~, gj i (x/e ,~)V i V j w  , 
i,j=l e 

where  9 j i ( x ,  qo) = ffji(T_xqO ). Def ine  

k def. f (e iAz -- l ) ( e  -iAk -- 
G j i ( x '  ~ )  = - -  ~ le ~ --  i l f  1) U(dA)~yi(~), 

where {U(d)Q}as~e is the family of spectral projections corresponding to the family 
of unitary operators {T~ }~ez~: 

Tx = f eiAxU(d),). 
J~ d 

G is well defined since 

and we have 

l e  i ~  - llle -i~'~ - 11 4 ~ "  Ix~l, 
~id=l I eia~ -- 112 ~ i=1 

d 

Vkc~i(x,  ~) = gji(z, ~). 
i=l 

Moreover, since U(d)()U(A) = U(A) for A C d/V, = 0 otherwise, we have (x E zd):  

s leiX~/~ 112 k 2 ~2 -- 
~2E(Gj , (z /~ ,~) )  _< ~ ~ T g  ~, : _ i i 2 ( U ( d ~ ) ~ J ' , ~ J ~ ) .  �9 

One can easily show that the integrand is bounded uniformly in ~ (for x in any 
compact set): 

eiAX/e 2 ~2 I -11 ~-~ ~ - ; ( -  72  -< 4d21xl 2. 

Since 
leiAx/e -- 112 

limr ~ ,  --55-2 = 0, for A ~ 27rZ d, 
~0 )--s e - 11 

the dominated convergence theorem implies that 

leiXx/, _ 1] 2 
l imeZE (G~i(x/e ' ~))2 = lim Z e2 (3.16) 

AE27rg d 

On the other hand, for A C 27r~ d, U()Qgji is T~-invariant: 

f~d e'~' xU(dA )U()Ogj~ = U()Q'~j~, T~U(A)~j~ = ' ' - 

since e i)'x = 1. Ergodicity of  T~, then, implies that U(dA)'~ji is a constant and we 
have 
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Hence 

( U(d)O'gj~ , "gj~ ) ~ = U(d)O'~j~E ('~j~) = O. 

l ime2E  (Gki(x/r ~))2 = 0. 

Therefore 

( z  ~ , gj~(x/~, ~)v~ v j ~  )~ = 
d 

, e V k C # z / e ,  ~))~ I 
k=l 

d 

I 
k=l 

because of  [IV k z II~ -< c and Eq.(3.17). 

Proof(Theorem 3.1). We have shown that 

that is, 

[] 

lira ( S ,  ( ~  + ,~)z ~ )r = 0, 
e+0 

(3.17) 

)~ l im(z  ~ z* ) = 0. 
e,LO 

Therefore [[z~[[~ --* 0 as e I 0. On the other hand, we have already observed that 

E2 
eXi (x/e,  ~)V~*w ~ ~ ~ 0, 

by Proposition 3.1. These together yield [[u ~ - w~]]~ ~ 0. 

3.2. Step 2: Removing mass. Theorem 3.1 proves the homogenization for the massive 
case, i.e. when )~ > 0. Since we will need to consider the case ,~ = 0, let us, for 
A > 0, call the solutions to Eqs. (3.3) and (3.6), u~ and uA, respectively. 

Now consider the following PDE's:  

d 

A~u~ + V~ a i V i u  o = V e f ,  (3.18) 
i=l 

d 02U0 _ Of (3.19) 
-- Z q~J OXiOXj OXe 

i , j=l  

In Sect. 2.1, we saw that Eq.(3.18) had a unique solution in the space 1 d ~e (Ze ,  #). The 
second PDE (3.19) can be solved in the space ~ ( R n ) ,  the completion of  C~(It~ d) 
with respect to the norm 

a f Ou(x)2 

i=l 

Again the Lax-Milgram theorem shows the existence and uniqueness of  the solution 
in this space. 
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Next we will show that 

T h e o r e m  3.2. For any function g C C ~ ( R  n) and any ~', 1 < g' < d, we have: 

lim E Uo(X, ~) - uo(x) V~e* g(x) = O. 
e$O 

Proof. We break the above expression into three parts and write: 

{( lim lim E I l~,~ + I[,;~ + I~,;~ , 
A.L0 e.LO 

where 

x 

123, = E ~ [ u ~ ( x ,  q a ) -  u~(x)]V~e*g(x), 
x 

sL ,  : - 

x 

From Theorem 3.1, it follows that 

12 l i m l i m E  (~,;~) = 0. 
A~O e$O 

Therefore we are left with two more terms. We show that uniformly in e, 

(a) lima~o<(II,~(x,~a))2>=O, 

( 3 2 = 
(b) l im~0  

For this, we treat d > 2 and d < 2 separately. 

(d > 2) In this case, (a) follows from the uniform upper bound that was obtained in 
Sect. 2.2.2 

7i  i5 dte tl~ A~--tV a XU " X  " = d#(~') 2 . . . .  t , Y, ~, ~') • 
~Y 

- - t A  e* ( ) e* (1 -e  )V e f x V  e,g(y) 

/ i  e-LIx-yll2/ct (1 - e -t:~) ]Of(x) Og(y) 
< C dx dy dt td/2 OXe Oye, ' 

where C = C(ao, d) can be chosen independent of  e, and we have used the fact 
that e x p { t A ~ } l  = 1. Since f , g  E C ~ ,  the above integral converges to zero, as 
A 1 0, by dominated convergence theorem. This implies (a). Proof  of  (b) follows 
along the same lines. 
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(d = 2) Without loss of  generality, we can assume that 0 < 0 < ai(x, qo) < 1, 
for some constant 0, uniformly in x, ~. This can be achieved by straightforward 
algebraic means. Let 

K ~  def. V~(~,~ ~ 4" A ) - I v  r 

K[,0 d~. V ~ ( _ I / e 2 A ~  _ A~ + A ) _ l ~ e ,  ' 

where - A ~  is the discrete Laplacian on the lattice Z~. We will use the notation 
of  Appendix A. Using the identity 

/(~ - K~ -- (1 + K~a~)A~(1 + a~K~,), 

= - -  T . ( e ,  0 A~ def. Ko,O ~*A ' 

we can rewrite 

I~.x = E ' g ( x )  [(1 + K~a')A~,(1 + a~K~a)f] (x, ~). 
x 

We know from Appendix A that both (1 + K~a ~) and (1 + a~K~,) map g~ 
gs'zd L 2" -- t ~, (#)) into itself, uniformly in e (i.e. their operator norms are bounded 
independent of  e), for s close enough to 2. If  we view A~ as an operator form e p 
to t r, then we claim that its norm vanishes uniformly in e, as A I 0, for p and r 
less than (but close enough to) 2. Part (a), then, follows from this claim since 

uniformly in e and this implies I~, x ~ 0 in L2(#). To prove our claim, we first note 

that A~ acts as a convolution. For each fixed x, let A~(x) : L2(#) ~ L2(#) be the 

kernel of  A~ and put B~(x) = II-A~(Z)IIL=(~)~L=(,). From the generalized Young 
inequality for convolutions, we know that IA~lp_.~ is bounded by [[BY, I[e~(zD, 
where p, q and r are related through 1/r = 1/p+ 1/q - 1. So it suffices to prove 
that IIBY, lle~(r4) vanishes uniformly. This can be verified for 1 < q < 2, if we note 
that B~, in Fourier space looks like the A/(p 2 + A). Therefore 

IA~,lp--.r = l IB ' , I le i t iS)  ~ 0,  as A .L 0 (3.20) 

uniformly in e, for 1 < q < 2. We remark that we can not take r = p since this 
implies q = 1 and (3.20) is not true for q = 1. However, a suitable choice of  q, 
close enough to 1, allows us to choose r > p, both close enough to 2 and this 
completes the proof of  part (a). 

Since convergence in A of  these two terms is uniform in e, we can replace the order 
of  limits from limit0 lim~0 to lim~to limx~o and then the theorem follows from the 
above observations. [] 
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4. Extensions to More General Interactions 

In this section, we extend the results of  the previous section to the more general class 
of interactions with an arbitrary but finite range R. For this, we use a rather different 
notation which we now explain. 

Let p = ( P l , . . . ,  Pd) C Z d. For a real (or complex) valued function f ( x )  on Z d, 
and i = 1 , . . . ,  d, define 

(Vpf ) (x )  d~. f ( x  + ep) -- f ( x )  
~llpl l  ' 

(V~*f)(x)  dej. f ( x  - ep) - f ( x )  

~llpl l  

Note that V~* is the adjoint of  V~ with respect to the standard inner product of  
~2 ~d ( ~ ) .  When e = l, we shall drop the superscript e. Put 

Zd+(R) d~" {(X,,. . . ,Xd) �9 Z d : Ilzll < R, xi > O,i= 1 , . . . , d } .  

We will consider Hamiltonians of  the type: 

g = Z V  ({Up[[Vp~(x) : p �9 Zd (R)} ) ,  
X 

that is, for a fixed x, V is a functional of  all possible Vp~(X) for all p �9 Zd(R).  We 
assume that V is at least a C 2 functional with respect to its arguments. Define 

0 2 V ( z )  z={llP'llVp,~(x)} apa(X, (p) def. Ilpll- II,fll ~ 

Our main conditions on the Hamiltonian will be 

d 

Z a p , , c p c , ,  _> (5 Z ce ,2 , for some constant 6 > 0 (E-l)  
pa i= l 

for any vector c = (Cp)pe~d(R). We also require 

I%~(x, ~)[ < C, (E-2) 

for some positive constant C, uniformly in x and g~ (cf. (H-I )  and (H-2)). 
Any sum over small Greek letters is understood to run over the whole Zd(R) 

unless stated otherwise. 

Remark 10. Using B-L inequalities and (E-l),  one can easily prove the existence of an 
infinite volume, translation invariant ergodic massless probability measure (cf. Sect. 
1). 
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Define 

def. E p c r  qP~r~Tp ~7cr " 

where ~po will be defined shortly. Let 

D p def. rip -- 1 , def. T _  p - 1 
[ ~ -  , D p - -~p~ 

For any function g(x, ~) = Tzg(~), we have 

Dpg(x, ~) = Vpg(x, ~), D*pg(x, ~) = V~g(x, ~). 

Then define ~ E ~ l ( # ) ,  a E Z+d(R) as the unique solution of 

( - z ~  + E D*papp, Dp, +/3)X ~ = - E D*pap~. (4.1) 
pp' P 

We shall work in the same Hilbert spaces as before. The Lax-Milgram theorem can be 
applied due to the (E-l) and (E-2). One obtains estimates similar to those following 
(3.7), which in turn, prove the existence of the weak limits 

{ r ~e2 lira,10 D , ~ ,  
~ p  de~. lim~k0 0 ~ .  

One can again show that these convergences take place in L2(#). We define 

~p~ = E E app,(6p,~ + r (4.2) 
p' 

and prove 

Lemma 4.1. For ~ defined above, we have 

ac ~t i 

Proof As in the proof of Lemma 3.1, we will obtain 

E + 
x pp' 

Multiplying by c~c~, and summing over indices, we obtain 

E q ~ , c o c ~ , : E ( A p , a p p ,  Ao,)u, 
aa' pp' 

where Ap = ~ a  Ca(Spa + ~bpo-). Hypothesis (E-l) then gives the lower bound 

d 

6 ~-~' AZ . 
i=1 

On the other hand, since E ~p~ = 0, this last expression dominates 5 ~ ~ .  [] 
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It is important to understand that this lemma implies the ellipticity of  the limiting 
continuum operator. Let 

o 0) 
0~ - ~ " ' ~  

be the continuum gradient. Then as ~ ~ 0, we have 

e 0 p 

v~ ~ ~ U~' ~= Ilpll' 
hence 

where 

A 0 2 

S e ~ - ~ qij O x i O x j '  
i j  

d e f .  
,K----% A 

qpp PiP j .  qij = ^ ' ^  i 
pp~ 

Ellipticity of  q is exactly equivalent to the above lemma. The error z e now takes the 
form 

z e ( x  ' ~ )  def. Ue(X ' ~ )  -- We(X ' ~ )  + C E 2 
= xp (x / e ,  ~)V;*we(x), 

p 

where u e and w e satisfy 

{ ( ~  + A)ue(x ,  ~ )  = V ~ f ( x ) ,  
e . e + )~ w e ( ~ p a  qp~Vp Va  ) (x) = V~f(X). 

The rest of  proof goes through with obvious modifications and we will not repeat 
them here. 

A .  ~P E s t i m a t e s  

In this appendix, we state some ~P estimates on the solutions of  the PDE's  which 
were studied in previous sections. We start with some definitions and notations. 

For a functional u(x ,  r let us define its s norm, p > 1 by 

Lul~ dof. ~ Ilu(x, ")ll p, 
X 

where 
f 

]]u(z, .)l] 2 = ( lu(x,  ~)i 2 } - J ]u(x, d#(~),  

and define gp(~2 ~ ( # ) )  as the collection of  functions u with lulp < c~. We denote 
the norm of an operator A : gP(2~, ~ )  ---* gr(Z, 3-~) by IAIp~r .  Assume that u E 
~1(2~d, ~ ) .  Then we can define its Fourier transform 

~(y)  = ~ eipXu(x), 
X 

which is an element of  g~ (~d  ~ ) .  I f  U E g ] ( z d , ~ )  N g2(2~d ,~) ,  then ~ �9 
g2(~d, ~ ) ,  with lul2 = IOl2. 
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Let ~(o~g ' (#))  be the collection of all bounded linear maps on o~((p) and denote 
the norm of an operator T E c ~  by IITII. Assume u(x) takes values in ~ and 
takes values in ~ ( ~ ( # ) ) .  Then 

Tu(x )  def. Z ~ ( X  -- y)f(y) ,  

Y 

whenever defined, takes values in ~ ( # ) .  We have 

T h e o r e m .  Let [ l~(x) ] l  E g2(~d). Suppose that 

(a) The Fourier transform of 3b  r is essentially bounded 

(b) 

A 
I1~11 - B .  

Z I I ~ ( x -  y ) - ' ~ ( x ) l l  -< B, IlY]I > 0. 
Ilxll_>211yll 

For u E L l ( z  d, ~ )  n gP(Z d, o~),  set 

Tu(x)  = Z ~ ' ( x  - y)f(y).  
Y 

Then there exists a constant Ap, so that 

IIT~ilp < Apii~i i~,  1 < p < ~ .  

Therefore T can be extended to all of ~P by continuiOl. The constant AB depends only 
on p, B and d. 

For a proof, see Chapter 2 of [14]. Let, as before, 

= --A~ + V*aV.  

We will assume that 0 < 0 < ai(x, ~) < 1. Therefore, we can write S = S 0 + V * b V ,  
where 

: ~ 0  a ~  - A ~  - a x ,  and Ibil _< 1 - 0 

As a corollary of the above theorem, we have: 

Corollary A.1. For any p, 1 < p < oc, D O dc__f. V ~ o l V .  maps (gP(Zd,o~)) d into 
itself 

The following proposition shows that for p close enough to 2, the same conclusion 
is true for V ~ - I v  *. 

Proposition A.1. Let 0 < 0 <_ ai(x, ~) < 1, f E C~(Nd). Then there exists a 
p = p(O) > 2 such that V u  E gP(Tfl, j~b~), where u satisfies 

~ u  = V ~ f  (A.1) 

for any given compactly supported f .  
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Proof We can rewrite (A.1) as 

Z (~ij + DOjbj) V j u =  o Die f . (A.2) 

J 

Since the RHS is in gp(~d ,~br for any p, it suffices to show the existence of  a p > 2 
such that 

IID~ < 1. 

Since Ibl _< 1 - 0, it suffices to show that 9(P) d~. iiD011<ep)~, which takes the value 1 
at p = 2, remains close enough to 1 as p remains close to 2. This can be easily seen 
using the Riesz-Thorin interpolation. [] 
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