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Abstract: Starting from deformation quantization (star-products), the quantization 
problem of Nambu Mechanics is investigated. After considering some impossibil- 
ities and pushing some analogies with field quantization, a solution to the quanti- 
zation problem is presented in the novel approach of  Zariski quantization of  fields 
(observables, functions, in this case polynomials). This quantization is based on the 
factorization over R of  polynomials in several real variables. We quantize the infinite- 
dimensional algebra of  fields generated by the polynomials by defining a deformation 
of  this algebra which is Abelian, associative and distributive. This procedure is then 
adapted to derivatives (needed for the Nambu brackets), which ensures the validity 
of  the Fundamental Identity of  Nambu Mechanics also at the quantum level. Our 
construction is in fact more general than the particular case considered here: it can be 
utilized for quite general defining identities and for much more general star-products. 

1. Introduction 

1.1 Nambu Mechanics. Nambu proposed his generalization of  Hamiltonian Mechanics 
[17] by having in mind a generalization of  the Hamilton equations of  motion which 
allows the formulation of  a statistical mechanics on 1I~ 3. He stressed that the only 
feature of  Hamiltonian Mechanics that one needs to retain for that purpose, is the 
validity of  the Liouville theorem. In that spirit, he considered the following equation 
of  motion: 

d r  
d---t = Vg( r )  A V h ( r ) ,  r = (x, y, z) E R 3, (1) 

where x, y, z are the dynamical variables and g, h are two functions of  r .  Then the 
Liouville theorem follows directly from the identity: 

V .  (Vg(r )  A Vh( r ) )  = 0 ,  

which tells us that the velocity field in Eq. (1) is divergenceless. 
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As a physical motivation for Eq. (1), Nambu has shown that the Euler equations 
for the angular momentum of a rigid body can be put into that form if the dynamical 
variables are taken to be the components of the angular momentum vector L = 
(L~:, Ly, Lz), and 9 and h are taken to be, respectively, the total kinetic energy and 
the square of the angular momentum. 

Moreover, he noticed that the evolution equation for a function f on R 3 induced 
by the equation of motion (1) can be cast into the form: 

df O(f, g, h) 
dt O(x, y, z) ' (2) 

where the right-hand side is the Jacobian of (f ,  g, h) with respect to (x, y, z). This ex- 
pression was easily generalized to n functions on R n. The Jacobian can be interpreted 
as a kind of generalized Poisson bracket: it is skew-symmetric with respect to f ,  g 
and h; it is a derivation of the algebra of smooth functions on ]~3, i.e., the Leibniz 
rule is verified in each argument. Hence there is a complete analogy with the Poisson 
bracket formulation of Hamilton equations except, at first sight, for the equivalent of 
the Jacobi identity which seems to be lacking. In fact, in the usual Poisson formula- 
tion, the Jacobi identity is the infinitesimal form of the Poisson theorem which states 
that the bracket of two integrals of motion is also an integral of motion. If we want a 
similar theorem for Nambu Mechanics there must be an infinitesimal form of it which 
will provide a generalization of the Jacobi identity. Denote by {f, g, h} the Jacobian 
appearing in Eq. (2). Let Ct: r ~ Ct(r) be the flow for Eq. (1). Then a generalization 
of the Poisson theorem would imply that et is a "canonical transformation" for the 
generalized bracket: 

{fl o et,  f2 o et,  f3 o et} = {fl ,  f2, f3} o e t .  

Differentiation of this equality with respect to t yields the desired generalization of 
the Jacobi identity: 

{{g, h, f l} ,  f2, f3} + {fl ,  {g, h, f2}, f3} + {fl ,  f2, {g, h, f3}} 

= {g ,h , { f l , f2 ,  f3}} ,  Vg, h, f l , f2 ,  f3 e C~(~3) .  

This identity and its generalization to ]~n, called Fundamental Identity (FI), was 
introduced by Flato, Frensdal [10] and Takhtajan [21] as a consistency condition for 
Nambu Mechanics (this consistency condition was also formulated in [19]) and allows 
a generalized Poisson theorem: the generalized bracket of n integrals of motion is an 
integral of motion. It turns out that the Jacobian on ]R n satisfies the FI. 

Since the publication of Nambu's paper in 1973, different aspects of this new 
geometrical structure have been studied by several authors. In [1], it is shown that 
Nambu Mechanics on ]~n can be viewed, through Dirac's constraints theory, as an 
embedding into a singular Hamiltonian system on ]R 2n. An invariant geometrical 
formulation of Nambu Mechanics has recently been given in [21] leading to the 
notion of Nambu-Poisson manifolds. Several physical systems have been formulated 
within the Nambu framework: in [5], it is shown, among others, that the SU(n)- 
isotropic harmonic oscillator and the SO(4)-Kepler systems admit a Nambu-Poisson 
structure. Other examples are discussed in [21]. 

1.2 An Overview ofZariski Quantization. Nambu also discussed the quantization of 
this new structure. This turns out to be a non-straightforward task [1, 21] and the 
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usual approaches to quantization failed to give an appropriate solution. See Sect. 2.1 
for further details. 

The aim of this paper is to present a solution for the quantization of Nambu- 
Poisson structures. This solution is based on deformation quantization and involves 
arithmetic aspects in its construction related to factorization of polynomials in several 
real variables. For that reason, the quantization scheme we shall present here is called 
Zariski Quantization. We attack directly the question of deformation of Nambu Me- 
chanics as it stands by taking only into account the defining relations (conditions a), 
b) and c) given below). This problem of quantization of n-gebras (also closely related 
to operads) is a very cute mathematical problem which we solve here independently 
of any other scheme of quantization treated before. It should also be mentioned that 
our quantization technique can be applied to a more general type of structures than 
Nambu-type structures. We shall give here a brief overview of this solution. 

Consider the Nambu bracket on ~3 given by the Jacobian: 

Ofl Of 2 Of 3 (3) 
:Sl ,S2,  s ,}  = Oz., Oz.,  ' 

aES3 

where $3 is the permutation group of {1, 2, 3} and e(a) is the sign of the permuta- 
tion ~r. When one verifies that the Jacobian satisfies the FI, all one needs are some 
specific properties of the pointwise product of functions appearing in the right-hand 
side of Eq. (3). Namely, it is Abelian, associative, distributive (with respect to addi- 
tion) and satisfies the Leibniz rule. The idea here is to look for a deformation of the 
usual product which enjoys the previously stated properties and to define a deformed 
Nambu bracket by replacing the usual product by the deformed product. Denote by 
x such a deformed product. Then the deformed bracket: 

. Of 1 coS2 Of 3 (4) 
Ox~.----~ ' 

aES3 

will define a deformation of the Jacobian function expressed by (3). 
In this desired context, the whole problem of quantizing Nambu-Poisson structures 

reduces to the construction of the deformed product • Some trivial deformations 
of the usual product provide such deformed products, but these are not interesting. 
Also one has to bear in mind a theorem by Gelfand which states that an Abelian 
involutive Banach algebra ~ is isomorphic to an algebra of continuous functions on 
the spectrum (maximal ideals) of ~ ,  endowed with the pointwise product. Hence 
we cannot expect to find a non-trivial deformation of the usual product on a dense 
subspace of C~ n) with all the desired properties. At best we would deform the 
spectrum. Moreover, Abelian algebra deformations of Abelian algebras are classified 
by the Harrison cohomology and it turns out that the second Harrison cohomology 
space is trivial for an algebra of polynomials [13]. Hence it is not possible to find 
a non-trivial Abelian algebra deformation (in the sense of Gerstenhaber [13]) of  the 
algebra of polynomials on R n. 

We shall see in Sect. 3.1 what difficulties are met when one tries to construct a 
deformed Abelian associative algebra consisting of functions on ~3. It is possible to 
construct an Abelian associative deformation of the usual pointwise product on the 
space of real polynomials on ~3 of the following form: 

f x~ g = T(/3(f) | (5) 
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where/3 maps a real polynomial on ~3 to the symmetric algebra constructed over the 
polynomials on ~3. T is an "evaluation map" which allows to go back to (deformed) 
polynomials. It replaces the (symmetric) tensor product | by a symmetrized form of 
a "partial" Moyal product on ~3 (Moyal product on a hyperplane in ~3 with deforma- 
tion parameter h). The extension of the map/3 to deformed polynomials by requiring 
that it annihilates (non-zero) powers of h, will give rise to an Abelian deformation of 
the usual product (T restores a h-dependence). In general (5) does not define an asso- 
ciative product and we look for a/3 which makes the product x ~ associative. Consider 
a real (normalized) polynomial P on R3: it can be uniquely factored into irreducible 
factors P = P I " "  Pn. Define a on the space of real (normalized) polynomials by: 
a ( P )  = P1 |  | P,~. With the choice/3 = a in (5), it can be easily shown that the 
product x ~ is associative. But the map a is not a linear map, hence the product x 
is not distributive and the Leibniz rule is not verified. Note also that, already at the 
product level (multiplicative semi-group of polynomials), the obtained deformation 
is not of the type considered by Gerstenhaber because the choice c~(h) = 0 does not 
allow base field extension from ~ to R[h]. The usual cohomological treatment of 
deformations in the sense of Gerstenhaber is therefore not applicable here. 

These difficulties are related to the fact that, from the physical point of view, the 
dynamical variables with respect to which the Nambu bracket is expressed do not 
necessarily represent point-particles (see the example for Euler equations mentioned 
in Sect. 1.1). As a matter of fact, the point-particle interpretation in Hamiltonian 
Mechanics is based on the following feature: one can construct dynamical systems 
with phase-space of arbitrarily (even) dimension by composing systems with phase- 
spaces of smaller dimensions. Remember that ~2,~ endowed with its canonical Poisson 
bracket is nothing but the direct sum of 2-dimensional spaces (~2) endowed with their 
canonical Poisson brackets. In this situation it is possible to interpret a system of n 
free particles as n systems of one free particle. Such a situation no longer prevails in 
Nambu Mechanics. The FI imposes strong constraints on Nambu-Poisson structures 
and the linear superposition of two Nambu-Poisson structures does not define in 
general a Nambu-Poisson structure (see [21]). In that sense, it seems hopeless to 
have some notion of point-particles in Nambu Mechanics and this fact suggests that 
quantization here will have more to do with a field-like approach than with a quantum- 
mechanical one, and we shall have to quantize the observables (functions) rather than 
the dynamical variables themselves. 

However a quantum-mechanical approach is possible [8] when the system under 
consideration deals with dynamical variables for which a point-particle interpretation 
is lacking, i.e., without position-momentum interpretation (e.g. the case of angular 
momentum). Here the absence of linear superposition is natural since not physically 
needed. One should then replace the Moyal product in the evaluation map by an 
invariant (in general, covariant) star-product on the dual of a Lie algebra ~. Also the 
map /3 in (5) is here linear and performs a complete factorization of monomials in 
the generators (coordinates on 0*) by: 

i I i ~  

/3(L~ ' . . .L~ ~) = L~  |  | n ~  , 

where L l , . . . ,  L~ are coordinates on ~* ~ ~n.  By imposing that the map/3 vanishes 
on the non-zero powers of h, the product x Z so obtained is associative and distributive 
and provides an Abelian algebra deformation of the algebra of polynomials on 1~* 
endowed with the usual product. Notice that in general the product • ;~ is not trivial. 
The deformed Nambu bracket constructed with a non-trivial product x Z will define 
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a deformation of the Nambu-Poisson structure on R '~. Hence in such a case there is 
no necessity for a field-like quantization, we can quantize the dynamical variables 
L1,..  �9 Ln, and remain in a quantum-mechanical context, however not a canonical 
quantization. 

When ~ is the Heisenberg algebra On with generators 1 , p l , . . .  ,Pn ,q l , . . .  ,qn 
the invariant star-product is the Moyal product on ~2~ and it turns out that the 
corresponding product x~ is nothing but the usual product, i.e. no deformation is 
obtained. Here one cannot conciliate particle-interpretation with quantization on the 
space of polynomials and one has to adopt a field-like point of view. 

In relation with what has been said above about field-like quantization for Nambu 
Mechanics and in order to get around Gelfand theorem and cohomological diffi- 
culties, we are led to consider an algebra ~ 0  (a kind of Bosonic Fock space) on 
which is defined the classical Nambu-Poisson structure: quantization is interpreted 
as a (generalized) deformation ~gh of the algebra ~'~0. More precisely, let JV" 
be an Abelian associative algebra with product (f ,  g) H f �9 g; the algebraic struc- 
ture of Nambu Mechanics is given by a trilinear map on JV" taking values in i V ' ,  
[', ', '1: (f ,  g, h) H [f, g, h] E JV" such that Vfo, f l ,  f2, f3, f4, f5 6 iV ' :  

a) [fl , f2,f3] =e(cr)[f~,l,f,,2,fo3], cr E $3; 
b) [fo" f l , f 2 , f 3 l =  f o ' [ f l , f 2 ,  f3]+[fo, f2, f3]" f l  ; 
c) [fl, f2, [f3, f4, fsll  

= [[fl, f2, f3], f4, fs] + [f3, [fl,  f2, f4], f5] + [f3, f4, [fl, f2, fs]] �9 

This is the setting for classical Nambu Mechanics where the algebra JV" is the algebra 
of smooth functions o n  I[~ 3 with the pointwise product, and the bracket is the Jacobian. 
Since we are looking for a field-like quantization, the classical Nambu Mechanics (and 
hence the Nambu bracket (3)) will be defined on a kind of Fock space algebra . ~ 0  
with p roduc t . ,  described in Sect. 3.3. The map ~ is extended to .~/d0 by linearity 
(with respect to the addition in ~ 0 )  and the classical evaluation map defined above 
will take values in ~ 0  and will simply replace the symmetric tensor product by the 
usual product and the tensor sum by the addition in -/d0. 

Then quantization will consist in "deforming" the algebra ( ~ 0 ,  ") to an Abelian 
associative algebra ( . ~ h , ' h ) ,  by requiring that c~ annihilates h and by using the 
evaluation map which replaces the symmetric tensor product by a symmetrized product 
given by a star-product. The quantum Nambu bracket [-,., "]-h will be given by 
expression (4) where the x-product is replaced by the -h-product and where the 
derivatives are defined on ~/~h. This extension will permit the FI and the Leibniz 
rule (with respect to the bracket) to be satisfied. Hence this deformed bracket on the 
algebra ~ h  will define a quantization of the classical Nambu-Poisson structure on 
-~0.  By the same procedure, one gets immediately generalizations to I~ ~, n __% 2. 

The paper is organized as follows. Here below we review briefly Nambu-Poisson 
manifolds. In Sect. 2 we discuss the problems encountered in quantization of Nambu 
Mechanics and recall the deformation quantization approach. Section 3 is devoted to 
the construction of a solution for the quantization of Nambu-Poisson structures on 
IR n, n _> 2, by introducing the Zariski quantization scheme. The paper is concluded 
by several remarks about possible extensions of this work and related mathematical 
problems. 

1.3 Nambu-Poisson Manifolds. Let us first review some basic notions on Nambu- 
Poisson manifolds (the reader is referred to [21] for further details). Let M be a m- 
dimensional C~-manifold.  Denote by A the algebra of smooth real-valued functions 
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on M. S~ stands for the group of permutations of the set { 1 , . . . ,  n}. We shall denote 
by e(a) the sign of the permutation a E Sn. 

Definition 1. A Nambu bracket of  order n (2 < n < m) on M is defined by a n-linear 
map on A taking values in A: 

{ . , . . . , . } : A  n ~ A ,  

such that the following statements are satisfied Vfo,. �9 f2n-1 C A: 

a) Skew-symmetry 

{ f ~ , . . . , f n }  = * ( ' ~ ) { f , , , , . . . , f , , , , }  , v,7 �9 s~; 

b) Leibniz rule 

{ fo f l ,  f 2 , . . . ,  fn )  = fo{fl ,  f 2 , . . . ,  f n )  + {fo, f 2 , . . . ,  f n } f l  ; (6) 

c) Fundamental Identity 

{fl, . . . ,  fn-~, {f~,..., f2n-~, }} 
= { { f l , . . - ,  f~ - l ,  fn}, f~+x, . . . ,  f2n-1} 

+{f~, { f l , . . . ,  fn-1,  f~+l}, fn+2, . . . ,  f2n-1) 

+'''+{f~,f~+l,...,f2n-2,(fl,...,f~-l,f2n-1}}. (7) 

Properties a) and b) imply that there exists a n-vector field ~ on M such that: 

{ f l , . . . ,  fn}  = ~ l (d f l , . . . , d fn ) ,  V f l , . . . ,  fn E A. (8) 

Of course the FI imposes constraints on r/, analyzed in [21]. A n-vector field on M 
is called a Nambu tensor, if its associated Nambu bracket defined by Eq. (8) satisfies 
the FI. 

Definition 2. A Nambu-Poisson manifold (M, r/) is a manifold M on which is defined 
a Nambu tensor rl. Then M is said to be endowed with a Nambu-Poisson structure. 

The dynamics associated with a Nambu bracket on M is specified by n - 1 Hamil- 
tonians H 1 , . . . ,  Hn-1 E A and the time evolution of f E A is given by: 

df  = {H1,. .  H ~ - l , f } .  (9) 
dt "' 

Suppose that the flow Ct associated with Eq. (9) exists and let Ut be the one-parameter 
group acting on A by f ~-+ Ut( f)  = f o Ct. It follows from the FI that: 

Theorem 1. The one-parameter group Ut is an automorphism of  the algebra A for 
the Nambu bracket. 

Definition 3. f c A is called an integral of  motion for the system defined by Eq. (9) 
if  it satisfies {H1,..., Hn-1,  f )  = O. 

It follows from the FI that a Poisson-like theorem exists for Nambu-Poisson manifolds: 

Theorem 2. The Nambu bracket of  n integrals of  motion is also an integral of  motion. 
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For the case n = 2, the FI is the Jacobi identity and one recovers the usual 
definition of Poisson manifold. On ~2, the canonical Poisson bracket of two functions 
~ ( f ,  9) is simply their Jacobian, and Nambu defined his bracket on ~n  as a Jacobian 
of n functions f l , . . . ,  fn E C~ n) of n variables Xl , . . .  ,Xn: 

{ f l ' ' ' ' ' f n } =  - -  COX,,,, ' 
~6S~ 

which gives the canonical Nambu bracket of order n on i~ n. Other examples of 
Nambu-Poisson structures have been found [6]. One of them is a generalization of 
linear Poisson structures and is given by the following Nambu bracket of order n on 
~ n + l  : 

{fl,''',In} = ~ e(o') ". x~,n+ , . 
Ox~ 

aES~+l 

In general any manifold endowed with a Nambu-Poisson structure of order n is locally 
foliated by Nambu-Poisson manifolds of dimension n endowed with the canonical 
Nambu-Poisson structure [12]. In particular, it is shown in [12] that any Nambu 
tensor is decomposable (this fact, conjectured in [21], was eventually discovered to 
be a consequence of an old result [22] reproduced in a textbook by Schouten [20] 
Chap. II Sects. 4 and 6, formula (6.7)). 

2. The Quantization Problem 

2.1 Difficulties with Usual Quantizations. In his 1973 paper Nambu has also stud- 
ied the quantization of his generalized mechanics. He was looking for an operator 
representation of a tfilinear bracket which is skew-symmetric and satisfies Leibniz 
rule (several combinations of conditions weaker than the preceding were discussed as 
well). The main difficulty encountered was to conciliate skew-symmetry and Leibniz 
rule at the same time. It is interesting to note that Nambu suggested the use of non- 
associative algebras in order to overcome the problems appearing with operatorial 
techniques. 

Other aspects of operatorial quantization of Nambu Mechanics were discussed 
in [1, 6, 21]. In [1], is performed an embedding of ~3 into ]~6 and the original 
Nambu Mechanics [17] is formulated in terms of the usual Hamiltonian flow with 
constraints. Under star-quantization with constraints, one gets the quantization of 
Nambu Mechanics. This explains the question of Nambu, namely: Why is it that 
classical Mechanics can be "generalized" while Quantum Mechanics is "so unique" 
and is of Heisenberg type? However this embedding is not canonical. In addition this 
approach did not take into account the FI which was introduced much later. 

In [21], a representation of the (n = 3 case) Nambu-Heisenberg commutation 
relations: 

[A1, A2, A3] - ~ e(tY)AcrxAcr2Ac~3 = c I  , 

~6Sa 

where c is a constant and I is the unit operator, was constructed. The operators A1, 
A2, A3 act on a space of states parametrized by a ring of algebraic integers E[p] in 
the quadratic number field Q[p] (where 1 + p + p2 = 0). The cases n = 5 and n = 7 
are studied in [6]. 
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A possible alternative to quantize the Nambu bracket by deformation quantization 
[2, 3] was discussed in [21] (see Sect. 2.2 for a brief review on star-products). If  one 
looks at the canonical Nambu bracket on ~3 as a trilinear differential operator D on 
A = C~(R3),  then one can define a h-deformed trilinear product on A by: 

(f l ,  f2, f3)h = exp(hD)( f l ,  f2, f3) ,  f l ,  f2, f3 E A. (10) 

The "deformed bracket" associated with the product (10) would naturally be defined 
by: 

1 
[fl,  f2, f3]h = ~.t ~ e(cr)(f.~, fa2, f,~3)h , (11) 

aES3 
leading to a deformation of the Nambu bracket. But (11) is not a deformation of 
a Nambu-Poisson structure: it does not satisfy the FL Furthermore, it is not clear 
what kind of associativity conditions one should impose on a trilinear product for 
the Leibniz rule to be valid. Anyhow, if F is a nonlinear analytic function of one 
variable, we know [15] that there is no deformation of the Nambu bracket satisfying 
the FI of the form: 

(f l ,  f2, f3)h = F(hD)( f l ,  f2, f3) ,  f l ,  f2, f3 E A. 

Note that the previous negative result does not mean that there is no (differentiable) 
deformation of Nambu-Poisson structures since general deformations of the form: 

[fl,  f2, f3]h = {fl ,  f2, f3} + Z hrD~(fl '  f2, f3) ,  
r>l 

where the D~'s are trilinear differential operators on A, have to be considered, but 
it shows that deformation quantization will not provide a straightforward solution to 
the quantization problem of Nambu-Poisson structures. Nevertheless we shall present 
a solution in Sect. 3.3 that relies heavily on deformation quantization. 

Another possible avenue for the quantization problem is to apply Feynman Path 
Integral techniques. A canonical formalism and an action principle have been defined 
for Nambu Mechanics permitting the definition of an action functional [21]. Within 
this formalism, it would be possible to formally define the path integral for Nambu 
Mechanics, but this approach is essentially equivalent to usual deformation quantiza- 
tion since the Feynman Path Integral is given by the star-exponential (see the end of 
Sect. 2.2). 

2.2 Deformation Quantization. For completeness we give here a brief review on 
deformation quantization and star-products; a full treatment can be found in [2, 3] 
and a recent review in [11]. Let M be a Poisson manifold. We denote by A the 
algebra of C ~-functions on M and by ~ ( f ,  9) the Poisson bracket of f ,  g E A. Let 
A[[u]] be the space of formal power series in the parameter v with coefficients in A. 
A star-product ,~ on M is an associative (generally non-abelian) deformation of the 
usual product of the algebra A, and is defined as follows: 

Definition 4. A star-product on M is a bilinear map ( f  , 9) ~-~ f *~ 9 from A x A to 
A[[u]], taking the form: 

f * ' g = Z u r C ~ ( f '  g ) '  Vf,  g E  A, 
r>O 

where Co(f, 9) = f 9, f ,  9 E A, and C~: A x A --+ A (r > 1) are bidifferential operators 
(bipseudodifferential operators can sometimes be considered) on A satisfying: 
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a) C ~ ( f , c ) = C ~ ( c , f ) = O , r  ~ 1, c E • ,  f E A ;  
b) Cl ( f ,g )  - C l (g , f )  = 2 ~ ( f , g ) ,  f , g  E A; 
c) ~ C~(Cs(f, g), h) = ~ C~(f, Cs(g, h)), Vt > O, f ,  g, h E A. 

~+8=t ~+8=t 
r,s>O ~,s>O 

By linearity, ,~ is extended to A[[~]] • A [ H I .  Condition a) ensures that c ,~ f = 
f ,~ c = c f ,  c E ~ (and may be omitted, in which case an equivalent star-product 
will verify it). Condition c) is equivalent to the associativity equation ( f  ,~ g) ,~ h = 
f *~ (g *~ h). Condition b) implies that the star-bracket 

[f,g].~ -- ( f  *, g -  g * ,  f ) / 2 v ,  

is a deformation of the Lie-Poisson algebra on M. Hence a star-product on M deforms 
at once the two classical structures on A, i.e. the Abelian associative algebra for the 
pointwise product of functions and the Lie algebra structure given by the Poisson 
bracket. This leads to: 

Definition 5. A deformation quantization of the Poisson manifold (M, ~ )  is a star- 
product on M. 

Definition 6. Two star-products * and .I are said to be equivalent if there exists a 
map T: A[[u]] ~ A[[y]] having the form: 

T = ~ llrTr 
r>O 

where the Tr ' s (r > 1) are differential operators vanishing on constants and To = Id, 
such that 

T f  * T  9 = T ( f  *' #) ,  f ,  g E A [ [ u ] ] .  

A star-product which is equivalent to the pointwise product of functions is said to be 
trivial. 

For physical applications, the deformation parameter ~, is taken to be ih/2. On R 2n 
the basic example of star-product is the Moyal product defined by: 

f * M g = e x p  (i--h2 ~ )  ( f ,g)  . (12) 

It corresponds to the Weyl (totally symmetric) ordering of operators in Quantum 
Mechanics. On ~2,~ endowed with its canonical Poisson bracket, other orderings can 
be considered as well and they correspond to star-products equivalent to the Moyal 
product. For example, the normal star-product (which is the exponential of "half of 
the Poisson bracket" in the variables p q- iq) is equivalent to the Moyal product. From 
now on, we implicitly set u = ih/2. 

A given Hamiltonian H E A determines the time evolution of an observable 
f E A by the Heisenberg equation: 

dft = [n ,  ft].~ �9 (13) 
dt 

The one-parameter group of time evolution associated with Eq. (13) is given by the 
star-exponential defined by: 
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( t a )  r~>o 1 ( t )  r exp, -~- = ~ ~-~ (,H) r , (14) 

where ( , H )  r = H , . . .  , H  (r factors). Then the solution to Eq. (13) can be expressed 
as:  (,-) f t = e x p ,  ~ * f * e x p ,  y . 

In many examples, the star-exponential is convergent as a series in the variable t in 
some interval (Itl < 7r for the harmonic oscillator in the Moyal case) and converges 
as a distribution on M for fixed t. Then it makes sense to consider a Fourier-Dirichlet 
expansion of  the star-exponential: 

I exp, (x) = exp(At/ih)d#(x;A), x E M, (15) 

the "measure" # being interpreted as the Fourier transform (in the distribution sense) 
of  the star-exponential in the variable t. Equation (15) permits to define [3] the 
spectrum of  the Hamiltonian H as the support A of  the measure #. In the discrete 
case where 

(x) = ~ exp(At/ih)Tra(x), x ~M,  exp, 
AcA 

the functions 7r~ on M are interpreted as eigenstates of  H associated with the eigen- 
values A, and satisfy 

�9 7r;~ = 7r;~ �9 H = ATr;~ , 7rn �9 7r;~, = (5;~;~, , ~ 7r~ = 1 . H 
)~EA 

In the Moyal case, the Feynman Path Integral can be expressed [16] as the Fourier 
transform over momentum space of  the star-exponential. In field theory, where the 
normal star-product is relevant, the Feynman Path Integral is given (up to a multi- 
plicative factor) [9] by the star-exponential. 

From the preceding, it should be clear that deformation quantization provides a 
completely autonomous quantization scheme of  a classical Hamiltonian system and 
we shall use it for the quantization of  Nambu-Poisson structures. 

3. A New Quantization Scheme: Zariski Quantization 

We saw in Sect. 2.1 that a direct application of  deformation quantization to Nambu- 
Poisson structures is not possible. Instead of  looking at the deformed Nambu bracket 
as some skew-symmetrized form of a n-linear product, we deform directly the Nambu 
bracket. Then it tums out that a solution to the quantization problem can be constructed 
in this way, based on the following simple remark: the Jacobian of  n functions on E'~ 
is a Nambu bracket because the usual product of  functions is Abelian, associative, 
distributive and respects the Leibniz rule. If  we replace the usual product in the 
Jacobian by any product having the preceding properties, we get a "modified Jacobian" 
which is still a Nambu bracket. Tha t  is to say, the "modified Jacobian" is skew- 
symmetric, it satisfies the Leibniz rule with respect to the new product and the FI 
is verified. Now if we suppose that the new product is a deformation of  the usual 
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product, then the "modified Jacobian" will be a deformation of the Nambu bracket 
providing a deformation quantization of the Nambu-Poisson structure. 

3.1 Quantization of Nambu-Poisson Structure of Order 3: The Setting. This section 
is devoted to preliminaries needed for the construction of an Abelian associative 
deformed product on ~3. The generalization to I~ '~ will be discussed later. 

First we shall make some general comments on possible candidates that one can 
consider for an Abelian deformed product. Even though ]~3 is not a symplectic mani- 
fold, we can define a "partial" Moyal product between functions in A = C~(]R3). De- 
note by (Xl, X2, X3) the coordinates in ]~3. Let o~2 be the Poisson bracket with respect 

o_O_L o_a_ of o_a_ to the variables (xl, x:), i.e. for f ,  g c A, it is defined by ~ 2 ( f ,  g) = axl ax: - o~: o~" 
Then denote by "12 the Moyal product constructed with ~ 2  and with deformation 
parameter h, that is: 

f '12 g = ~ hr r 7 ~ 1 2 ( f , g ) ,  f , g  C A. 
r_>O 

Then A[[h]] endowed with the product "12 is a non-abelian associative deformation of 
A endowed with the usual product. If, in order to get an Abelian algebra, one simply 
applies the "Jordan trick" to the non-abelian algebra (A[[h]], "12) by defining a product 
by f x g = �89 one will get a non-associative algebra. Here associativity 
is lacking, because the product x does not make a complete symmetrization with 
respect to (f l ,  f2, f3) in the expression (fl x f2) • f3. 

Somehow a kind of symmetrization, not necessarily with respect to the factors 
appearing in the product, is needed for associativity and the product we are looking 
for should share some features of the tensor product of particle-states in the Bosonic 
Fock space as is done in second quantization. It suggests to look at a map sending 
f E A to the symmetric tensor algebra Symm(A) of A and then go back to A[[h]] by 
an "evaluation map" which replaces the symmetric tensor product in Symm(A) by a 
completely symmetrized form of the Moyal product "12. 

Let us make precise the previous remark. Start with any map: 

/3: A ---* Symm(A),  

such that/3(1) = 1 and extend it to the map from A[[h]] into Symm(A) (denoted 
by the same symbol /3) by requiring that it vanishes on the non-zero powers of h. 
Define the evaluation map T: Symm(A) ~ A[[h]] as a canonical linear map whose 
restriction on A | is given by: 

1 
f l  |  | fn ~ ~ ~ f~l :~12 "'" *12 fan , (16) 

o'ESn 

where | stands for the symmetric tensor product. Then we define a map xz:  A[[h]] x 
A[[h]] ~ A[[h]] - -  the/3-product - -  by the following formula: 

f x f~g=T(/3(f) |  f , g  �9 A[[h]]. (17) 

It is clear that the/3-product is always Abelian. However, for a general map t ,  it is 
neither associative, nor distributive, nor a deformation of the usual pointwise product 
on A, or has 1 as unit element. Thus associativity ( f  x Z g) x Z h = f • ;~ (g x f~ h) of 
the/3-product reads 
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T(/3(T(~(f)  | | = T(~( f )  | | fl(h)))),  V f ,  g, h E A[[h]], 

and it is an equation for the map /3. Before giving a non-trivial example of the 
associative ~-product which is a deformation of the usual product (the expression 
"deformation" being given a broad sense as explained in the proof of Theorem 4 
below, i.e., a h-dependent product whose limit at h = 0 is the initial product), we 
summarize simple basic facts regarding this construction in the following theorem. 

Theorem 3. i) The standard unit 1 is the unit element of the ~3-product: f • 1 = f ,  
V f E A, if and only if T o/3 = idA. 

ii) I f  in addition to i), ~: A --* Symm(A) is an algebra homomorphism, then the 
~3-product on A coincides with the usual pointwise product. 

iii) I f  the t3-product is a deformation of the usual product, then the associativity con- 
dition reduces to 

T(/3(fg) | ~(h)) = T(/3(f) | ~(gh)) ,  V f ,  g, h c A. 

iv) I f  in addition to i), the t3-product is an associative deformation of the usual product, 
then it coincides with the usual product. 

v) If~3 is an algebra homomorphism and the ~-product is a deformation of the usual 
product, then the fl-product is associative. 

Proof Part i) is obvious, since it is equivalent to 

f x~ l = T ( ~ ( f ) ) =  f , V f  E A. 

For part ii), we have 

f x z  g = T(~( f )  | = T(/~(fg)) = f g ,  V f ,  g C A. 

To prove iii), simply note that if the/~-product is a deformation of the usual product, 
then/3(f  x ~ g) = ~(fg)  ( fg  stands for the usual product), and the equation follows. 

Part iv) follows from part iii) by setting h = l in the associativity condition, then 
we get: 

f x z g = T ( / 3 ( f g ) ) = f g ,  Vf,  g c A .  

Finally, part v) follows from part iii) and associativity of the | in Symm(A), 
since 

T(/3(f g) | = T((/3(f) @/3(g)) | = T (~ ( f )  @ (/3(g) | ~(h))) 

= T(/3(f) @/3(gh)). 

We shall give an example of such a map/3 for which condition v) of Theorem 3 
is satisfied, so that it gives an Abelian associative deformation of the usual product. 
For that purpose, we need to restrict A to the algebra N of polynomials on ~3, which 
will allow a more refined decomposition in the symmetric algebra, thus avoiding the 
triviality of the product. In fact, we shall factorize polynomials on [~3 into irreducible 
factors P = Pl "'" Pn and send them to elements of the form P1 | "'" | Pn in the 
symmetric algebra. This will give the desired Abelian associative deformation of the 
usual product. [] 
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R e m a r k  1. The  standard embedding of the polynomial algebra into its symmetric 
algebra by elements of degree 1 (i.e. without any decomposition at all) gives rise to 
a non-associative product because of the incompatibility between the usual product 
and the Moyal product: associativity would require that ( P Q )  �9 R + R * ( P Q )  = 
P �9 ( Q R )  + ( Q R )  �9 P ,  which fails in general. 

R e m a r k  2. Another extreme case is when every polynomial is embedded into the 
symmetric algebra via complete symmetrization (i.e. by replacing every monomial by 
the corresponding | in the symmetric algebra). In this example the /3- 
product again gives the usual product. Indeed the corresponding map/3 is obviously 
a homomorphism and, according to Theorem 3, part ii), one needs to verify that 
T( /3 (P) )  = P for all polynomials P,  that is to say, T ( Q 1  | . . .  | Qn)  = Q1 " "  Qn ,  
where Qi stands for xl, x2 or x3. This fact represents a well-known property of the 
Moyal quantization, and its proof is left to the reader. 

The choice of/3 we shall present makes a non-trivial compromise between commu- 
tativity and associativity though at this stage it lacks the property of being distributive 
(i.e. we deform at first only the semi-group structure); the construction, in the original 
phase-space setting, is nevertheless interesting in itself. This/3-product is constructed 
as follows. Let N = ]~[Xl, 372, x3] be the algebra of polynomials in the variables Xl, 
x2, x3 with real coefficients and let 

oo  

5~(N) = { ~  N ~ , 
n = l  

be its symmetric tensor algebra without scalars. Next, for any P E N define its 
maximal  monomia l  to be a monomial of the highest total degree in P,  maximal 
with respect to the lexicographical ordering induced by ( x l , x z ,  x3). We call P E 
N a normal ized  polynomial, if its maximal monomial has coefficient 1. Since the 
product of normalized polynomials is again normalized, normalized polynomials form 
a semi-group that we shall denote by N1. We should also include 0 as a normalized 
polynomial, so that 0 r N1. 

Also consider the algebra N[h]  (polynomials in h with coefficients in N) and call 
P E N[h]  a normalized polynomial if the coefficient of its lowest degree term in h is 
normalized in N. All normalized polynomials in N[h]  form a semi-group N1 h (under 
the usual product). 

Every polynomial in N1 can be uniquely factored into a product of irreducible 
normalized polynomials: 

P = PI " "  Pn  . 

Note that this factorization, as well as the set of all irreducible polynomials, depend 
on the choice of the ground field (in our case ~, the field of real numbers). Since 
we are dealing with polynomials in several variables, even over the field of complex 
numbers irreducible polynomials need not to be linear. In fact, the set of all irreducible 
polynomials in n variables over a field k plays a fundamental role in algebraic ge- 
ometry over k: it defines the so-called Zariski topology in the space k u (and in the 
corresponding projective space as well). This is why we call the concrete realization 
of the/3-product, based on the factorization of polynomials, Zariski quantization. 

We define a map 5:N1 --~ 2Vf(N) by: 

~ ( P ) = P I | 1 7 4  P G N ~ .  
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Denote by 7r: N1 h ~ N1 the homomorphism which attaches to a polynomial in N~ its 
coefficient of  degree 0 in h; it is always an element in N1 (and may be zero as well). 
This "projection onto the classical part" allows to extend 5 to the homomorphism 

a = (~ o ~r: N~ --* f ( N )  , 

which takes into account only the classical part of  the polynomial in N~.  Finally, 
denote the restriction of  the evaluation map T from Symm(A)  to S f ( N )  by the same 
symbol T:  oCt(N) ~ N[h]. Then specializing our general construction of  fl-products 
to the case fl = a we get the map x a :  N1 h x N~ ~ --~ N[h], given by the following 
formula: 

P x~  Q = T(a (P)  | a(Q)) , VP, Q E N~.  

T h e o r e m  4. The map x ~ defines an Abelian associative product on N~ which is a 
deformation of  the usual product on N1. 

Proof First, the classical part of  P x a Q is equal to 7r(P)Tr(Q) c N1 (it may be zero 
as well), since the classical part of  the Moyal product is the usual product and 7r is 
a homomorphism. This shows that indeed the map x a maps N~ x N~ into N~.  In 
particular, if P, Q E N1, then 

P x~  Qla--o = P Q ,  

so that x c~ is some deformation of the usual product. By this we mean nothing 
more than the above formula; due to the projection onto the classical part and the 
decomposition into irreducible factors, what we get is more general than a deformation 
in the sense of  Gerstenhaber; in particular "Gerstenhaber" deformations are defined 
on the base field ~[[h]]  while here (at least in the present construction) we do not 
have h-linearity. Second, a is a homomorphism, so that associativity follows from 
Theorem 3, part v). [] 

Remark 3. Note that in the definition of the evaluation map T the Moyal product 
*12 can be replaced by any star-product on ~3 without affecting the associativity and 
deformation properties of  the product x ~. In particular, one also has products x~  j) 
constructed from partial Moyal products on ( i j)-planes in IR 3. It is easy to show that 
the totally symmetrized product: (f ,  g) ~ �89 ( f  ..'x' a(12) g -I- f 7" o~(23) g + f x (ct 31) g),  is an 
Abelian, associative deformation of the usual product. 

Remark 4. Note that 1 is not a unit element for the product x ~. Indeed, in general 
it is not true that P x ~ 1 = P ,  VP E N1 n. However,  it is true when P is either an 
irreducible polynomial, or reduces completely into a product of  linear factors. 

The space N1 h endowed with the product x,~ is then an Abelian semi-group. The 
following example shows that (N1 n, x~ )  cannot be extended to an algebra in N[h]. 
Consider the polynomials P = x 2 + e2z 2, e E ]~, and Q = x 2. P is irreducible, then 

a ( P )  = x 2 + eZx 2 (considered as an element of  N ~ ), while a ( Q )  = x2 | x :  ~ N ~. 
One has (for notation simplicity, we write here �9 instead of "12) 

Px~Q 
= T((x~ + ~2x~) | x2 | x2) 

1 
= [ ( x i  + x 2  �9 x 2  + x 2  �9 + �9 + x 2  �9 x 2  �9 + 

= ( x i  + + 2 
3 
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It is easy to verify that x 2 x ~ x  2 = x~x222 and x 22 x ~ x  22 = x 4, so we have (x 2+  
2 2 e x2)  •  x 2 ~ x 2 •  x 2 + ~2(x2 •  x~). Hence • is no t  a d i s t r ibu t i ve  product 

with respect to the addition in N [ h ] .  Moreover the preceding example shows that: 
lim~--,o((xl 2 + e2x22) • a x~) r x 2 • a x22, i.e. x a is no t  a c o n t i n u o u s  product. 

These special aspects of • ~ imply the following: if we replace the usual product 
in the canonical Nambu bracket of order 3 by the product • ~ in order to get a 
deformed Nambu bracket: 

Og Og 

o.ES 3 OXo-I ~ 0Xo" 3 

we will not get a deformation of the Nambu-Poisson structure. It can be easily verified 
that the Leibniz rule (with respect to •  and the FI are not satisfied. At this point, 
these facts should not be too surprising: as mentioned in Sect. 1.2, we know that we 
cannot expect to find a non-trivial deformation of the usual product on N with all the 
nice properties. 

To summarize, we have some space N1 with the usual product, and a deformed 
product on N1 h. Along the lines of what is done for topological quantum groups [4] and 
in second quantization, let us look at "functions" on N1 (e.g. formal series). Intuitively 
we get a deformed coproduct and the dual of this space of "functions" (polynomials 
on polynomials) will then have a product and a deformed product, both of which 
will be distributive with respect to the vector space addition. Now the product of 
polynomials is again a polynomial. So in fact we are getting some deformed product 
on an algebra generated by the polynomials. We shall make this heuristic view precise 
in the next section. 

3.2 Zar i sk i  Product .  The product • on N~ defined in Sect. 3.1 is Abelian and asso- 
ciative, but is not distributive with respect to the addition in N[h] .  Hence (N~, x,~) 
is only a semi-group. We shall extend the product x,~ to an algebra ~,~h and get an 
Abelian algebra deformation of an Abelian algebra ~ 0  generated by the irreducible 
polynomials in N1. The algebra ~,~0 is actually a kind of Fock space constructed from 
the irreducible polynomials considered as building blocks. 

Let N~ ~ C Na be the set of real irreducible normalized polynomials. Let ~ 0  
be a real vector space having a basis indexed by products of elements of N~ rr, we 
denote the basis by {Z~,...,, m }, where u l , . . . ,  u m � 9  N( r~, and m > 1. The vector 
space ~;0 is made into an algebra by defining a product .z:  ~ 0  • ~ 0  ~ ~ 0  by: 

Z u l . . . u  m o z Z v l . . . v  n = Zul . . .UmVl . . . v  n , V U l , . . .  , U m , V l , . . .  Vn �9 N l , V m ,  n > 1. 

~ 0  endowed with the product .z  is the free Abelian algebra generated by the set of 
irreducible polynomials or equivalently the algebra of the semi-group N1. Note that 
the addition in ~ 0  is no t  related to the addition in N,  i.e. Zu+v r Z~ + Zv- 

Every u �9 N can be uniquely factored as follows: u = cul " " u r n ,  where c �9 
and Ul , . . . , u m E N1,  and we shall sometimes write Z u  for cZul. . .u,~ . This provides 
a multiplicative (but non-additive) injection of N into the algebra ~ o .  

Let ~ h  = ~;0[h] be the vector space of polynomials in h with coefficients in ~ 0 .  
Let the map 4: N~ ---* ~,;h be the injection of N1 h into ~ h  defined by: 

r  = Z hrZ"r ' W0 �9 Ni, �9 N, i > 1. 
r_>0 r_>0 

(18) 
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Using the injection ( we can extend the product x~ on N1 h to ~ h  by first defining 
the product on the basis elements: 

Z ~  . . . . .  "~ Zvl...vn = ( ( ( u l " ' "  urn) x ~ (vl " "  vn)) ,  (19) 

VUl, �9 �9 �9 urn, Vl , . . .  vn C N1, Vm, n > l, and then extend it to all of ~,~h by requiring 
that the product .~ annihilates the non-zero powers of h: 

( E  hrAr)  "~ ( E  hSBs) = Ao "~ Bo , VAt, Bs e ~S0, r, s _> 0. 
r_>0 8>0 

Theorem 5. The vector space ~ h  endowed with the product .~ is an Abelian algebra 
which is some deformation o f  the Abelian algebra ( ~ 0 ,  .z). 

Proof. By definition the product .~ is distributive and Abelian. The associativity of 
�9 ~ follows directly from the associativity for the product • a. For h = 0, the product 
•  is the usual product, and Eq. (19) becomes, with u = ul �9 �9 �9 and v = vl �9 �9 �9 v~: 

z ~  .~  z~lh_-0 = r  = z ~  = z ~  . z  z ~ ,  

showing that the product -~ is some deformation of the product .z .  [] 

The next step would be to define derivatives 6i, 1 < i < 3, on r and then extend 
them to r This would allow to define first the classical Nambu bracket on ~ 0 ,  
and the quantum one on ~,~. The "trivial" definition 5iZu = Zorn, Vu E N ,  where 
0i is the usual derivative with respect to x i, does not satisfy the Leibniz rule (except 
on the diagonal, a remark relevant for the deformed exponential (25)) because of the 
different nature of the addition in N and in ~-~0. 

Unfortunately, what seems to be another very natural definition of derivative 
on ~ 0  does not satisfy the Frobenius property (commutativity of the derivatives 
in several variables, a property that was trivially satisfied by the previous "trivial" 
definition for which Leibniz rule did not hold). These derivatives would be linear maps 
6i: ~,~0 -~ ~ o ,  1 < i < 3, defined as follows. For u c N~ rr, we let 5iZ~ = Z o ~ ,  
where 0i denotes the usual partial derivative of u with respect to x i. The action of 5i 
on a general basis element Z~, v E N1, is given by postulating the Leibniz rule on 
the product of irreducible polynomials v = VlVE.. .Vm: 

~ z v , ~  . . . . .  = z(o,~,)~. ~,~ + Zv,(o,~) ~ + . . .  + Z ~ , , , ~ . . . ( o , , , , , , )  �9 

Obviously, the maps 5i are derivations on the algebra ~ 0 ,  but one can easily show 
that they are not commuting maps, i.e. 5i5j ~ 5i5i, i ~ j .  This comes from the fact 
that when one takes the derivatives of an irreducible polynomial u, the polynomials 
Oiu, 1 < i < 3, do not necessarily factorize out into the same number of factors. An 
example is given in ~2 by u = (x 3 + x2y + 4x y  2 + 5y 3 + 5xy  + ~ y 2  + 4y) E N~ rr. A 
consequence of this fact is the following: If  one defines the classical Nambu bracket 
on ~ 0  by replacing, in the Jacobian, the usual product by .~ and the usual partial 
derivatives by the maps 6~, this new bracket will not satisfy the PI. There will be 
anomalies in the FI (even at this classical, or "prequantized" level) due to terms which 
cannot cancel out each other because the Frobenius property is not satisfied on ~ o .  
In order to have a family of commuting derivations which can naturally be related to 
the usual derivatives of a polynomial, we need to extend the algebra on which will 
be defined the classical Nambu bracket. This algebra will consist of Taylor series in 
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the variables (yl, y2, y3) of the translated polynomials u(x + y). One can look at this 
algebra as a jet space over the polynomials and it will be constructed in the next 
section. 

Nonetheless the algebra ~ h  with product �9 provides an Abelian deformation of 
the algebra ~,;0 and this also is interesting per se because it gives an example of a 
non-trivial Abelian deformation, however generalized and therefore not necessarily 
classified by the Harrison cohomology (defined on the sub-complex of the Hochschild 
complex consisting of symmetric cochains [13, 14]). 

3.3 Quantization of Nambu-Poisson Structure of order 3: A Solution. Let us construct 
the space , ~ 0  on which will be defined the classical Nambu-Poisson structure. On 
this space we will have an injection of the semi-group N1 (normalized polynomials 
in the variables (x 1, x 2, x3)) which will allow a natural definition of the derivative 
of an element of ,~0 .  We shall consider a space of "Taylor series" in the variables 
(yl,y2,y3) of translated polynomials x H u(x + y) with coefficients in the algebra 
~ 0  introduced in Sect. 3.2. 

Denote by ~ = o~o[yl,y2, y3], the algebra of polynomials in the variables 
(yl, y2, y3) with coefficients in ~So. Instead of the usual Taylor series 

1 ZYiYJO~ju(x)  + " "  ' u(x + y) = u(x) + Z YiO~u(x) + "~ 
i i , j  

which we multiply by (uv)(x + y) = u(x + y)v(x + y) we look at "Taylor series" in ~ ,  
for u c Nl: 

1 �9 �9 1 
J(zo)--  z .  + S , y ,  zo , .  + S,y y zo, . + . . . .  Z . (20) 

i i , j  n i 

where Oiu, Oiju, etc. are the usual derivatives of u E N~ C N with respect to the 
variables x i, x i and xJ, etc., OiZ~ =-- Zo~ and, since in general the derivatives of 
u E Na are in N,  one has to factor out the appropriate constants in Zo,~, Z o ~ ,  etc. 
(i.e. Z;~ = AZ~, u E N1, A E I~). J defines an additive map from ~S0 to ~ (to say 
that J is multiplicative is tantamount to the Leibniz property). 

Let ~ 0  be the sub-algebra of ~ generated by elements of the form (20). We 
shall denote by �9 the product in ~ 0  which is naturally induced by the product in ~ .  
In order to define the (classical) Nambu-Poisson structure on ~'~0, we need to make 
precise what is meant by the derivative of an element of ~ 0 .  Remember that the 
derivative Oiu(x + y) is again a Taylor series of the form Oiu(x) + ~ j  yJOiju(x) +. . . .  
We shall define thus the derivative Aa, 1 < a < 3, of an element of the form (20) 
by the natural extension to ~/~0 of the previous "trivial" definition, i.e., 

iZ  1 Z y i y j Z o a ~  u + . . .  , A~(J(Z~)) = J (Zo~)  = Zoo,, + Z y o ~  + 
i i , j  

(21) 

for u c N1, 1 < a < 3. One can look at definition (21) of Aa as the restriction, to the 
subset of elements of the form J(Zu), of the formal derivative with respect to ya in 
the ring ~ = ~;0[y 1, y2y3]. Since Aa(J(Z~)) = J(Zo~u), we have Ala(~0)  = ~ 0  
and we get a family of maps Aa: , ~ 0  ~ ~ 0 ,  1 < a < 3, restriction to ~ 0  of the 
derivations with respect to y~, 1 < a < 3, in ~ .  We can summarize the properties of 
Aa in: 
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L e m m a  1. The maps A a : , ~  0 ---+ ~/~0, 1 <_ a < 3, defined by Eq. (21) constitute a 
family of commuting derivations (satisfying the Leibniz rule) of the algebra ~/~o. 

Proof Follows directly from the fact that the Aa, 1 < a < 3, are the restrictions to 
the sub-algebra , ~ 0  of the formal derivatives in ya on the ring ~ = ~So[y 1, y2  y3]. 

The definition of derivatives on ~ 0  leads to the following natural definition of 
the classical Nambu bracket on the Abelian algebra ~ o :  

Definition 7. The classical Nambu bracket on ~/~o is the trilinear map taking values 
in ~/~o given by: 

( A , B , C )  H [A,B,C]o - E e(a)Acr lA~ ' VA, B , C  r ~ 0 .  (22) 
orES3 

Theorem 6. The classical Nambu bracket given in Def. 7 defines a Nambu-Poisson 
structure on ~ o .  

Proof It follows trivially from the fact that ( ~ 0 ,  ") is an Abelian algebra and from 
Lemma 1. 

Now that we have a classical Nambu-Poisson structure on ~ o ,  we shall construct 
a quantum Nambu-Poisson structure by defining some Abelian deformation (,/~h, "n) 
of ( ~ 0 ,  "). The construction is based on the map c~ introduced in Sect. 3.1 and we 
shall extend the definition of the product -~ defined in Sect. 3.2 to the present setting 
for the Nambu-Poisson structure on ~ 0 .  

Let ~[h]  be the algebra of polynomials in h with coefficients in ~ .  We consider 
the subspace ~ h  of ~ [h ]  consisting of series ~ r > 0  hrA~ for which the coefficient 
A0 is in ~ 0 .  Then we define a map "h: ~ n  x ~ n  --+ ~ [h ]  by extending the product 
�9 ~ defined by (19) (it is sufficient to define it on ~ o  since .~ annihilates the non-zero 
powers of h): 

z i oz J(Z~) .hJ(Z~)  z ~ . h z ~ + E y  ( z a ~  h "~ , = Zv+Z~ hZa~v)+...  Vu, v r N1. (23) 
i 

Actually "h defines a product on , ~ h  and we have: 

Theorem 7. The vector space ~/~h endowed with the product "h is an Abelian algebra 
which is some Abelian deformation of the Abelian algebra ( ~ 0 ,  ")- 

Proof For A = ~-~>o h~A~ and B = ~s>o h~B8 in ~ h ,  we have A . h  B = A0.h Bo 

and the coefficient of h ~ of the latter is A0 �9 B0 which is in ~ 0  since Ao, Bo c ,/~o. 
This shows that "h is actually a product on ~ h .  By definition this product is Abelian. 
Hence ( ~ h ,  "h) is an Abelian algebra. 

It is clear from the preceding that for h = 0, we have A "h B[h=o = A o .  Bo, which 
shows that the product "h is some deformation of the product . .  [] 

The derivatives Aa, 0 < a < 3, are naturally extended to ~ .  Every element 
A E ~ h  can be written as A = ~ i y I A i ,  where I = ( i l , . . .  , i~) is a multi-index 
and A1 E ~ h .  Then the product A "h B, A, B E ~ h ,  reads: 

I g B j  A ' h B = E Y  Y A t  "~ h �9 
I , J  
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Since (~,~h, "~) is an Abelian algebra and the derivative AI~ acts as a formal derivative 
with respect to ya on the product A *h B,  the usual properties (linearity, Leibniz, 
Frobenius) of  a derivative are still satisfied on ~ h .  So we can now define the quantum 
Nambu bracket on ~/~h. 

Definition 8. The quantum Nambu bracket on ~/~h is the trilinear map taking values 
in J~n defined by: 

( A , B , C )  ~ [ A , B , C ] . ,  =- E c(a)AalA~ Z~a2B"h Z]a3C ' VA, B , C  E ~/~h. 
aES3 

(24) 

Theorem 8. The quantum Nambu bracket endows ~/~h with a Nambu-Poisson struc- 
ture which is some deformation of the classical Nambu structure on ~ o  

Proof. The proof that the quantum Nambu bracket endows ~ a  with a Nambu-Poisson 
structure is similar to the one of  Theorem 6. That the quantum Nambu bracket is some 
deformation of  the classical Nambu bracket follows from Theorem 7. [] 

3.4 Generalizations. What has been done in the previous two sections can be easily 
generalized to I~ n, n > 2. The only non-straightforward modification to be done 
appears in the evaluation map (16). One has to distinguish two cases: when n is even 
and when n is odd. If  n = 2p, p > 1, then one replaces the partial Moyal product in 
(16) by the usual Moyal product on E2p. If  n = 2p + 1, p _> 1, one uses the partial 
Moyal product '1...2p on the hyperplane defined by X2p+l = 0 (as for the case n = 3, 
other possibilities can be considered). The other definitions and properties are directly 
generalized to •n. Note that the canonical Nambu-Poisson structure of  order 2 on R 2 
is the usual Poisson structure; there our procedure gives a quantization of  the Poisson 
bracket , ~  different from Moyal, however not on N[h] but on ,/~h; this quantization 
will in a sense be somewhat like in field theory. The same applies to EZn by starting 
with a sum of Poisson brackets on the various R 2. 

Our construction can be generalized to any orbit of  the coadjoint action of  a Lie 
algebra on its dual (the case of  E3 corresponds to ~u(2)*). In that case, instead of  the 
Moyal product appearing in the evaluation map, one can use a covariant star-product 
on the orbit [11]. 

4. Concluding Remarks 

We have found a quantized version of  Nambu Mechanics and we shall end this article 
with a few remarks concerning some related physical and mathematical points. We 
would like to stress that many features of  the solution proposed can be of  direct 
relevance for other quantization problems. 

4.1 Sesqui-quantization. One should notice that here we quantize a linear span of  
polynomials which are in a way our "fields." In this scheme the irreducible polynomi- 
als play a very special rrle: they generate all the polynomials and are kind of  building 
blocks in the quantum case. For example on ~2 the harmonic oscillator Hamiltonian 
H = 1(p2 + q2) cannot be considered as the sum of the two observables p2 and q2; 
it has to be considered as an irreducible element of  the algebra. The same thing is 
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true for the anharmonic oscillator with Hamiltonian �89 + q2 + Aq4), A > 0, which 
is not considered here as the sum of a free Hamiltonian with an interaction term. 
In usual Quantum Mechanics the Hermitian operator H = p2 + Q2 is the sum of 
two operators, but the physically measurable quantities (spectrality) related to these 
operators seem to ignore that the Hamiltonian is the sum of two observables. To make 
it precise, the spectrum of the harmonic oscillator Hamiltonian is discrete, while pZ 
and Q2 have both continuous positive spectra; hence a priori there is no way to relate 
these spectra. Before going further, let us mention that, as in the usual deformation 
quantization case, we have a natural definition of the spectrum of an observable in 
the Zariski Quantization. Consider the polynomial H c N1 in the variables p and q, 
and map it to its Taylor series J (ZH)  c ~/~0 given by (20), and build the deformed 
exponential function: 

exp.~ - ~  = E ~.~ ih J ( Z H ) e n " "  e h J ( Z H ) .  (25) 
n>O 

In (25) let y = O, then: 

J ( Z u ) e h  " " e h J ( Z H ) ] y =  0 = Z H e h  z . . . e h Z  Z u  = ~(H • . . .  • H)  E ~ h  , 

where ~ is defined in (18). As for the star-exponential (14) we define the spectrum of 
H to be the support of the measure appearing in the Fourier-Dirichlet expansion of 
(25) with y = 0. For H irreducible, it is easy to see that J(ZH)eh  . . .  ehJ(Zg)ly=O = 

~(H*. �9 �9 * H), where �9 is the Moyal product on ~2 with deformation parameter �89 ih. In 
that case we get the same spectrum as for the Moyal case. For completely reducible 
elements like p2 and q2, the exponential (25) reduces to the usual exponential, in 
which case the spectrum is continuous. So these three observables have the same 
spectra as in the usual case, and the Zariski Quantization scheme makes a distinction 
among them from the very beginning. Somehow this new scheme is halfway between 
first and second quantizations (hence the name "sesqui-quantization"): it is not quite 
a field theory (though a field-like formulation is possible) but shares many features 
with it (Fock space, irreducible polynomials seen as "l-particle" states, etc.). 

4.2 Zariski Star-Products. For the Poisson case, Zariski Quantization gives a quanti- 
zation which differs from the usual one in many respects. The most important one is 
that the quantum Poisson bracket is not the skew-symmetrized form of an associative 
product. But this quantized bracket can be seen as the "classical" part of another 
quantum bracket coming from an associative algebra. For ~2~, consider the Zariski- 
Poisson bracket ~ .n  built as indicated in Sect. 3.4; in definition (12) of the Moyal 
product replace ~ by ~.~ ; we get the Zariski-Moyal product f "M g = exp(v~~ 
where v is at first seen as a different parameter and later identified with �89 Due to 
the properties of "h, one gets another associative deformation of the usual product. 
The corresponding deformed bracket will then start with the (Zariski) quantum Pois- 
son bracket and provides a Lie algebra deformation. Then a theory of "star-products" 
constructed with the product *h can be developed in a straightforward way. 

4.3 General Poisson Manifolds: An Overview. The quantization presented here was 
done in an algebraic setting, the product "h being defined on the algebra ~ h  con- 
structed from polynomials on ~n.  One can consider extensions to an algebraic variety 
S. It should be possible to define a similar Abelian deformed product between poly- 
nomials on S using an embedding of S into ~n  by polynomial Dirac constraints [7] 
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that wil l  induce  on S a Poisson structure. Fur thermore  we  know f rom Nash  [18] that 
compac t  real  analytic R iemann ian  manifo lds  can  be  analyt ical ly  and i sometr ica l ly  
e m b e d d e d  into some  ~ n ;  the p roof  fo l lows  f rom his previous  result  on  dif ferent iable  
embedd ings  by showing  that there are "arbitrari ly c lose"  analyt ic  and dif ferent iable  
manifolds .  In this context ,  it is thus reasonable  to expec t  that the procedure  deve loped  
here  can be ex tended  (at least  in the compac t  case) to arbitrary di f ferent iable  mani -  
folds. Eventual ly ,  as for N a m b u  Mechanics ,  s imilar  techniques  m a y  be  appl ied to the 
quant iza t ion  o f  not  necessar i ly  regular  Poisson structures on algebraic  variet ies,  real  
analyt ic  mani fo lds  and differential  manifolds .  

4.4 Cohomology. F r o m  a mathemat ica l  point  o f  v iew,  it wou ld  be  interest ing to study 
genera l  Abe l ian  deformat ions  o f  g 0  and ~ 0  and look  for  associated c o h o m o l o g y  
complexes .  A more  detai led study of  the kind o f  "de fo rmat ion"  obta ined here  for  these 
algebras,  both  as associat ive algebras and as N a m b u  bracket  algebras,  is cer ta inly  
worthwhi le .  In v i ew of  Sect. 4.2, "quan tum"  c o h o m o l o g y  vers ions  o f  the re levant  
cohomolog ie s  should also be o f  interest. 
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