Extensions of the Virasoro Group and the Virasoro Algebra by Modules of Tensor Densities on S^1

V. Yu. Ovsienko and C. Roger

1. The Lie group Diff⁺(S¹) (of all orientation preserving diffeomorphisms of the circle) has a unique (up to isomorphism) nontrivial central extension defined by the Thurston-Bott cocycle [1] $B(\Phi, \Psi) = \int_{S^1} \log((\Phi \circ \Psi)') d\log(\Psi')$, where $\Phi, \Psi \in \text{Diff}^+(S^1), \Psi' = d\Psi/dx$, and x is the parameter on S^1 . The resulting group is called the *Bott-Virasoro group*.

The corresponding Lie algebra is called the Virasoro algebra. It is defined by a unique (up to isomorphism) nontrivial central extension of the Lie algebra $Vect(S^1)$ (of all smooth vector fields on the circle) by means of the Gelfand-Fuks cocycle [3] $\omega(f,g) = \int_{S^1} f'g'' dx$, where f = f(x) d/dx, g = g(x) d/dx.

2. Denote by \mathscr{F}_{λ} the Diff⁺(S¹)- and Vect(S¹)-module of tensor densities of degree λ of the form $a = a(x)(dx)^{\lambda}$, $a(x) \in C^{\infty}(S^1)$.

In this paper we study extensions of the group $\text{Diff}^+(S^1)$ and of the Lie algebra $\text{Vect}(S^1)$ by modules of tensor densities on S^1 . The obtained Lie groups and Lie algebras are analogs of the Virasoro group and the Virasoro algebra.

We calculate the group $H_c^2(\text{Diff}^+(S^1); \mathscr{F}_{\lambda})$ of differentiable cohomology in the sense of Van-Est. This means a classification of the extensions given by differentiable operators. We find four new infinite-dimensional Lie groups and give explicit formulas for nontrivial cocycles on Diff⁺(S¹).

Theorem 1.
$$H_c^2(\text{Diff}^+(S^1); \mathscr{F}_{\lambda}) = \begin{cases} \mathbb{R}, & \lambda = 0, 1, 2, 5, 7, \\ 0, & \lambda \neq 0, 1, 2, 5, 7. \end{cases}$$

3. Let us describe explicitly 2-cocycles on Diff⁺ (S^1) that define nontrivial cohomology classes. Recall that the mappings

$$l(\Phi) = \log(\Phi'), \qquad dl(\Phi) = \frac{\Phi''}{\Phi'} dx, \qquad S(\Phi) = \left[\frac{\Phi'''}{\Phi'} - \frac{3}{2} \left(\frac{\Phi''}{\Phi'}\right)^2\right] (dx)^2$$

define nontrivial 1-cocycles on Diff⁺(S¹) with values in \mathscr{F}_0 , \mathscr{F}_1 , and \mathscr{F}_2 , respectively. The cocycle S is the so-called Schwarzian derivative, and dl is the logarithmic derivative. Define an operator $D: \mathscr{F}_{\lambda} \to \mathscr{F}_{\lambda+1}$ by the formula $D(a(x)(dx)^{\lambda}) = a'(x)(dx)^{\lambda+1}$.

Theorem 2. The nontrivial 2-cocycles

$$B_{1}(\Phi, \Psi) = (l(\Phi) \circ \Psi) \cdot dl(\Psi), \qquad B_{2}(\Phi, \Psi) = (l(\Phi) \circ \Psi) \cdot S(\Psi),$$

$$B_{5}(\Phi, \Psi) = (S(\Phi) \circ \Psi) \cdot DS(\Psi) - S(\Psi) \cdot D(S(\Phi) \circ \Psi),$$

$$B_{7}(\Phi, \Psi) = 2 \begin{vmatrix} S(\Phi) \circ \Psi & S(\Psi) \\ D^{3}(S(\Phi) \circ \Psi) & D^{3}(S(\Psi)) \end{vmatrix} - 9 \begin{vmatrix} D(S(\Phi) \circ \Psi) & D(S(\Psi)) \\ D^{2}(S(\Phi) \circ \Psi) & D^{2}(S(\Psi)) \end{vmatrix}$$

$$-\frac{32}{3}(S(\Psi) + S(\Phi \circ \Psi))B_{5}(\Phi, \Psi),$$

together with $B_0(\Phi, \Psi) = B(\Phi, \Psi)$ (the Thurston-Bott cocycle), define a basis of the cohomology group $H^2_c(\text{Diff}^+(S^1); \mathscr{F}_{\lambda})$, where $\lambda = 0, 1, 2, 5, 7$.

Here the last of these cocycles (the Thurston-Bott cocycle) means a constant function on S^1 .

UDC 513.836

C. N. R. S., Centre de Physique Théorique, Marseille; Université Claude Bernard—Lion I. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 30, No. 4, pp. 86–88, October-December, 1996. Original article submitted August 20, 1995; in revised form January 24, 1996.

4. A classification of nontrivial extensions of the Lie algebra $Vect(S^1)$ is given by the following Tsujishita assertion [5] (cf. [2, p. 147 of the Russian edition]):

$$H^{2}(\operatorname{Vect}(S^{1}); \mathscr{F}_{\lambda}) = \begin{cases} \mathbb{R}^{2}, & \lambda = 0, 1, 2, \\ \mathbb{R}, & \lambda = 5, 7, \\ 0, & \lambda \neq 0, 1, 2, 5, 7 \end{cases}$$

Let us describe 2-cocycles on $Vect(S^1)$ with values in \mathscr{F}_{λ} that represent nontrivial cohomology classes.

Theorem 3. The following 8 nontrivial 2-cocycles: the Gelfand-Fuks cocycle $c_0(f,g) = \omega(f,g)$ and the cocycles

$$\bar{c}_{0}(f,g) = fg' - f'g, \qquad c_{1}(f,g) = (f'g'' - f''g') dx,$$

$$\bar{c}_{1}(f,g) = (fg'' - f''g) dx, \qquad c_{2}(f,g) = (f'g''' - f'''g')(dx)^{2},$$

$$\bar{c}_{2}(f,g) = (fg''' - f'''g)(dx)^{2}, \qquad c_{5}(f,g) = (f'''g^{(IV)} - f^{(IV)}g''')(dx)^{5},$$

$$c_{7}(f,g) = (2(f'''g^{(VI)} - f^{(VI)}g''') - 9(f^{(IV)}g^{(V)} - f^{(V)}g^{(IV)}))(dx)^{7}$$

form a basis of the cohomology group $H^2(\operatorname{Vect}(S^1); \mathscr{F}_{\lambda})$, where $\lambda = 0, 1, 2, 5, 7$.

Remark. 1. The cocycles c_0 , c_1 , c_2 , c_5 , c_7 on the Lie algebra $Vect(S^1)$ correspond to the group cocycles B_0 , B_1 , B_2 , B_5 , B_7 . The algebra cocycles \bar{c}_0 , \bar{c}_1 , \bar{c}_2 cannot be integrated to cocycles on the group Diff⁺(S¹).

2. The cocycle c_5 was found in [4].

Denote by g_i the Lie algebra given by a nontrivial cocycle c_i and by \bar{g}_i the Lie algebra given by the nontrivial cocycle \bar{c}_i .

5. We describe the central extensions of the Lie algebras \bar{g}_i and g_i . Each of the Lie algebras g_1 , g_2 , g_5 , and g_7 and \bar{g}_0 , \bar{g}_1 , and \bar{g}_2 has a nontrivial central extension given by the cocycle $c((f, a), (g, b)) = \omega(f, g)$.

Proposition 1. There are exactly two other nontrivial central extensions:

- 1) an extension, of the Lie algebra $\bar{\mathfrak{g}}_1$, given by the cocycle $c((f,a),(g,b)) = \int_{S^1} (fb ga) dx$;
- 2) an extension, of the Lie algebra \mathfrak{g}_1 , given by the cocycle $c((f,a),(g,b)) = \int_{S^1} (f'b g'a) dx$.

Now we consider central extensions of the semi-direct product.

Proposition 2.
$$H^2(\operatorname{Vect}(S^1) \triangleright \mathscr{F}_{\lambda}; \mathbb{R}) = \begin{cases} \mathbb{R}^3, & \lambda = 0, 1, \\ \mathbb{R}, & \lambda \neq 0, 1. \end{cases}$$

For $\lambda = 0$ and $\lambda = 1$, there exist two nontrivial cocycles that are not equivalent to the extension of the Gelfand-Fuks cocycle. These can be given in the form $c((f, a), (g, b)) = \int_{S^1} (f''b - g''a) dx$ and $c((f, a), (g, b)) = \int_{S^1} (adb - bda)$, respectively.

References

- 1. R. Bott, Enseign. Math., 23, No. 3-4, 209-220 (1977).
- D. B. Fuks, Cohomology of Infinite-Dimensional Lie Algebras, Consultants Bureau, New York-London, 1986.
- 3. I. M. Gelfand and D. B. Fuks, Funkts. Anal. Prilozhen., 2, No. 4, 92–93 (1968).
- 4. V. Yu. Ovsienco and C. Roger, Usp. Mat. Nauk, 47, No. 6, 141-194 (1992).
- 5. T. Tsujishita, Proc. Jpn. Acad. Ser. A Math. Sci., 53, No. 4, 134–138 (1977).

Translated by V. Yu. Ovsienko and C. Roger