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S e m i g r o u p s  o f  D i f f e r e n c e  O p e r a t o r s  in  S p e c t r a l  A n a l y s i s  

o f  L i n e a r  D i f f e r e n t i a l  O p e r a t o r s *  

A. G.  B a s k a k o v  UDC 517.9 

Let X be a complex Banach space, and let E n d X  be the Banach algebra of bounded  linear operators 
in X .  W'e denote by ~ ' ( R ,  X)  (or simply by f l ' )  one of the following four Banach spaces: the space 
np = Lp(R, X)  (p E [1, oo]) of p th -power  integrable (for p = oo, essentially bounded)  Bochner measurable 
functions on R = ( - o o ,  oo) ranging in X (1[ • lip is the norm in Lp(R, X)) ,  the Banach space Sp = 
Sp(R, X)  (p E [1, oo)) of locally p th -power  integrable measurable  functions on R ranging in X for which 

the norm Ilxlls, = sup , eR( f :  [[x(s + t)HPds) 1/p (x e S p ( R , X ) )  is finite, the subspace C = C ( R , X )  of 
continuous functions in Loo(R, X ) ,  and the subspace Co = C0(H, X)  C C(R,  X)  of functions such that  
limttl~¢o I[x(t)H = 0 for x E C0(H, X ) .  

We consider a family of evolut ion operators  (a propagator)  6g=  {~'(t ,  s) ; - o o  < s < t < oo} C E n d X ;  
in other words, it is assumed tha t  the following conditions hold: 

1) the family ~" is s trongly cont inuous on A = {(t, s) e R 2 : s ~ t}; 
2) °k'(t, s )°g(s ,  v) = °Z/(t, r ) ,  - o o  < I- < s < t < oo ; 
3) ~]z'(t,t) = I for any t E R;  
4) sup0<t_s< 1 [[°g(t, s)H -- g < oo. 

To the family ~z" we assign a linear operator  

c Jr = X) -+ $ .  

The domain D(.LP~) is defined as follows. A function x E ~" belongs to D ( . ~ )  if and  only if there exists 
a function f E .~" such tha t  for almost  all s, t E R with s < ~ we have the relations 

L' = oz,,(t, - oa,(t, (1) 

In this case we set . .~ ,  x = f .  
Thus,  . ~  = - d / d t  + A(t):  D ( . ~ )  C J r  ~ ~ is an abstract  parabolic operator  [1, p. 165 of the 

Russian edition] provided tha t  o~, is the family of evolution operators  for the linear differential equation 

~(t) -- A(t) x(t) ,  t e R,  

where A(t):  D(A(t)) C X -+ X is a family of closed linear operators that  generate a correct Cauchy 
problem [2]. 

In the present paper ,  in the s tudy  of the linear operator  .L~'~: D(.LP~) C ~" ~ ~" -- f l ' (R,  X) we 
systematically use the semigroup {T~(t) ,  t > 0} of difference operators belonging to the Banach algebra 
End ~" and given by 

(T~(t) x)(s) = ~'(s, s - t)x(s - t),  x 6 J ,  s E R, t >_ 0. (2) 

The  main  results of the paper  are related to the following four theorems. 

T h e o r e m  1. The operator - ~  is the infinitesimal generator of the strongly continuous operator semz- 
group {Tog(t), t ~ 0} in any of the Banach spaces L v : Lp(R, Z ) ,  p e [1, oo), and Co = Co(R, Z ) .  
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T h e o r e m  2 (spectral mapping theorem). The spectrum a(.L, foe) of the operator .Z'oe and the spectrum 
{a(Toe(t))} of the difference operator Toe, t > O, are related as follows: 

a(Toe(t)) \ {0} = exp ~r(.L,"oe) t = {exp At: ~ 6 a(.L/'oe)}. 

In particular, the operator .L#oe is invertible if and only if the difference operator ~oe : I - Toe(i), which 
has the form 

( ~ o e x ) ( s )  = x (s )  - ~ / ( s ,  s - 1 )~ ( s  - 1), x ~ : ,  s ~ R,  (3) 
is invertible. 

Note that the assertion of Theorem 2 is not valid for arbitrary strongly continuous operator semi- 
groups (see [3, p. 676 of the Russian translation]). 

For a Banach space X ,  we denote by 3"(Z, X) one of the following Banach spaces of two-sided sequences 
in X: 

{ i ( )'" } l ,  = I p ( Z , x )  = x:  z ~ x I1~11, = ~ IIx(n)ll' < ~ , p ~ [1, ~), 
n E Z  

n E Z  

In the following theorem we use a pair (,~'(R, X),  ,~'(Z, X)) of Banach spaces, which can be one of the 
p~irs ( s , ,  l ~ ) ,  ( L , ,  l , ) ,  where  p e [I, ~ ) ,  (C ,  too), and (Co,  co) .  

T h e o r e m  3. The linear operator .£"oe: D(.£aoe) C Jr (R,  X) --+ ..~(R, X) is invertible if and only if the 
difference operator ~0: Jr(Z, X)  --+ gr(Z, X)  defined by the relations 

( ~ o x ) ( n )  = x(,~) - ~ ( n ,  n - 1 ) x ( n  - 1), x e : ( z ,  x ) ,  n e z ,  (4) 

is invertible. 

We say that a family of evolution operators {W(t,s),  s < t }  from the algebra E n d X  admits an 
exponential dichotomy on R with exponent t3 > 0 and coefficient M > 0 if there exists a bounded 
strongly continuous projection-valued function P : R - - ~  End X such that 1) W(t, s)P(s) = P(t)qz'(t, s) 
for t > s, t , s  ~ R; 2) II~(t,a)e(s)ll < M e x p ( - ~ ( t  - s)) for t > s; 3) for t >_ s, the restriction 
°k'(t, s) l ImO(s ) of the operator °k'(t, s) to the range ImQ(s) of the projection O(s) = I - P(s) (here 
and in the following I stands for the identity operator) is an isomorphism of the subspaces ImQ(s) 
and ImQ(t) (and we define the operator all(s, t) as the inverse mapping from ImQ(t)  into ImQ(s)); 
4) Ilk(t, s)Q(s)ll < Me x p l3 ( t - s )  for s > t (the norms are taken in E n d X ,  and the operator W(t, s) Q(s) 
is regarded as an element of EndX) .  

If P = 0 or Q = 0, then we say that for W we have a trivial dichotomy. 

T h e o r e m  4. The following assertions hold. 
1) The linear operator _L#oe: D(.L~'oe) C j r  _+ j r  is invertible if and only if the family °]Z admits an 

exponential dichotomy. 
2) The spectrum a(.~oe) of the operator .L#oe does not depend on the choice of the space ~ar(R, X) .  

These results were announced in [4]. Difference operators of the form (3)-(4) were used to study 
differential equations in [1, 5-9]. 

§1. T h e  P r o o f  of  t he  M a i n  S t a t e m e n t s  

In the proof of many of our results, the following statement is useful (which is a consequence of (1)): 

R e m a r k  1. For any ,k E C, the operator _L/'oe + )~I can be represented in the form _L:oe + h i  = 
-L#~z(x), where the family of evolution operators ~'(,~) from the algebra E n d X  has the form qz'(~)(t, s) = 
exp ,~(t -- s) ~'(t, s), s < t. 

It readily follows from the definition of an exponential dichotomy of the family aS/that the following 
assertion holds (see [1, p. 167 of the Russian edition]). 
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L e m m a  1. Let a family ~ admit an exponential dichotomy on R .  Then the corresponding linear 
operator -L#~e: D(.L#~) C o q~ = ~ ( R ,  X )  -+ ~ is (continuously) invertible, and the inverse .L#Zz ~ E End,~" 
is given by the formula 

( . L # ~ ' f ) ( t ) = f R G ( t , s ) f ( s ) d s ,  f e J  ¢ ,  t e R ,  (5) 

where the Green funct ion G: R ~- -+ E n d X  has the form 

-¢h ' ( t , s )P ( s ) ,  s < t ,  
G(t, s) = ~ ( t ,  s )Q(s) ,  s > t .  (6) 

Note that for ~ = C or Co, the equivalence between the conditions that .L:'~ is invertible and that ~/ 
admits an exponential dichotomy was established in [1, Chap. X]. 

C o r o l l a r y .  There exists an ~ 6 R such that the operator -L#~e - cd  : D(.L#~) C J~ ~ J~ is invertible. 

To prove this assertion, it suffices to note that properties 3) and 4) of the family :h' imply the existence 
of constants C > 0 and/30 • R such that  lid'(t, s)ll < C e x p ~ o ( t - s )  for s < t ,  s, t • R. If a >/30, then 
it follows from Remark 1 that  .L-"~e - c~I = .L-e,,e(_~). For the family off(_a),  we have a trivial dichotomy 
(since I[ak'(-a)(t, s)l I < Cexp(~0 - c~)(t - s),  s < t), and hence, the operator .'.~, - o~I is invertible. 

P r o o f  o f  T h e o r e m  1. Let ~¢' be the infinitesimal generator of the strongly continuous operator 
semigroup {T~,(t), t > 0 }  defined in (2). It suffices to prove that ,  for some a • R that  belongs to the 
intersection p(~¢) N p(_~'~) of the resolvent sets p(~¢) and p(-~u) of the operators s~ ¢ and .~, , ,  the 
operators ( ~ ¢ -  a I )  -1 and (.L-a~e - a I )  -~ coincide. The existence of such a number  a follows from the 
corollary to Lemma 1 and from the fact that ~¢ is the imCmitesimal generator of a strongly continuous 
operator semigroup [3]. We can always consider the operators d -  a I  and . . ~  - a I  instead of ~¢ and 
.2'~,, and so without loss of generality we can assume that  a = 0; in this case, we have ]lT~,(t)l I = 
sup,e~ Ilqz'(s, s - t ) l  I < Const exp ( - - r t ) ,  t > 0, for some " / >  0. Hence, for the family °]z'we have a trivial 
dichotomy, and it follows from Lemma 1 that  we have the representation 

/; (_~gl / ) (s )  = - ~ ( s ,  r ) / ( r ) d r ,  / • .~.  

On the other hand, for the operator .~'-~, the following relations hold (see [3, p. 354 of the Russian 
translation]): 

( . ~ ' - ~ / ) ( s )  = - ( T ~ ( t ) f ) ( s )  d t  = - ° ~ ( s ,  s - t ) / ( s  - t )  d t  

= - ~ ' ( s ,  ,-):(,-)d,- = ( . ~ g ~ I ) ( s ) ,  : • : .  

This completes the proof of the theorem. 

In the following two lemmas, the pair (~ ' (R,  X) ,  ~ ' (Z ,  X))  of Banach spaces is the same as in Theo- 
rem 3. 

L e m m a  2. If  the operator .2'o~: D ( . ~ ) C ~ ' ( R , X )  ~ J ( R , X )  is invertible, then the difference 
operator Do (see formula(4)) is also invertible, and we have the estimate 

9 K2 I I D 0 - ~ I I < _ I + 3 K + ~  II_~g~ll, K =  sup II~'(t,s)ll . 
0 < t - - s < l  

P r o o f .  Suppose that  the operator .L,a~e is invertible. Let us prove that the operator  D0 is also invertible 
and the inverse has the form 

Do~z = ~ + z,  z e : ' ( Z ,  X) ,  
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where # is the restriction of the function y = .£P~Bx E C(R, X)  to Z (the inclusion D(.L/'o~) C C(R, X) 
follows from (1)) and the linear operator B: ~ ' (Z ,  X) --+ 3"(R, X) is defined by the formulas 

(Bx)(s) = -~(s )~ / ' ( s ,  n - l)x(n - 1), z E 3 ( X , X ) ,  n E Z, s E [n - 1 ,n] .  

Here ~: R -+ N is a 1-periodic function such that  ~o(s) = 6s(1 - a) for s E [0, 1]. The operator B is well 
defined and bounded, and IIBII _< 3K.  

First, we prove that  the operator  90 is injective. If x0 E K e r g 0  = { x E o ~ ' ( Z , X )  : 9 0 x = 0 } ,  then 
xo(n) = @'(n, n - 1)x0(n - 1) for any n E Z ,  and the function z E ~ ' (R ,  X) defined by the relations 

z ( t )  = ~'( t ,  n ) z o ( n ) ,  t e [n, n + 11, n e Z,  

belongs to the kernel K e r . L ~  of the operator . . ~ .  Therefore, x = 0, and hence, x0 = 0. 
Let us prove that  the operator  90 is surjective. Let g e ~ ' ( Z , X ) ,  f = Bg E ~ ( R , X ) ,  and x = 

-L'°-~f e D(-L "°) C C(R,  X) .  Then relations (1) imply 

x ( n )  = ~ , ( n ,  n - 1 )= (n  -- 1) + ~,(~) e , ( n ,  ~ ) ~ ( s , n  - 1 ) g ( n  - 1 )ds  
--1 

= ~ ( n ,  n - i ) = ( n  -- i )  + ~ ( n ,  n -- i ) g ( n  -- i ) ,  n ~ Z .  

Hence, the relation 90(~': + g) = g holds provided that ~ E ~ ' (Z ,  X ) .  Equations (1) imply the estimates 

I le(n) l l  = I I=(n) l l  _< } g ( l l = ( ~ ) l l  + I Ig(n - 1) l l ) ,  s ~ [n - l ,  n] ,  n ~ Z .  (7) 

Therefore, ~ E l • (Z,  X)  for a ~" = Lo~ and for o ar = C ,  whereas ~ e C0(Z, X)  for o ~" = C0(N, X) .  It 
follows from (7) that  

Ilelloo = s u p  II=(n)ll <_ }K(ll=lloo + Ibllm). (s) 
n E Z  

Now we assume that  e i ther ~ ( R ,  X )  = L , ( R ,  X ) ,  p e [ i ,  oo ) ,  or ~ ( R ,  X )  = S ~ ( R ,  X ) ,  p e [ i ,  ~).  
Since (a + b)p _< 2p- l (a  p + b p) for any a, b > 0, we can integrate the p t h  powers of both sides of 
inequality (7) over the interval [n, n + 1] and obtain 

(/; ) I I=(n) l l"  ___ ½(3K) p I1=(~)11' d~ + I Ig(n - 1) l l '  , n e Z .  (9)  
--1 

Therefore, for .~ (R,  X)  = Lp(R, X)  we have the est imate 

l lell, <_ 3K( l l= l l ,  + I lglb). ( l O )  

If ~ ( a ,  X)  = Sp(R, X ) ,  then inequality (9) yields 

Ilelloo <_ 3K(ll=lls, + I l g l l ~ ) .  ( i i )  

Thus, it follows from estimates (7)-(11) that  for any choice of the space .~(R,  X ) ,  the function ~ belongs 
to the space .~ (Z ,  X ) .  Hence, the operator 90 is invertible, we have ~ + g = 9 o l g ,  and the above 
estimates imply 

119o'gll _< I1~11 + Ilgll <_ 3K( l l = l b  + Ilgll) + Ilgll 
9 -2  - -1  <_ 3K( I I -~-~I i  [IBll Ilgll + Ilgll) + IlglI -- (i + 3K + ~K il-5~' II)l lgll. 

This proves the lemma. 

L e m m a  3. If the difference operator 9o E E n d ~ ' ( Z ,  X)  is invertible, then the operator -~z  : D(.£~o~) C 
:~ --+ ,~  = J~'(R, X) is also invertible. 

P r o o f .  Assume that  the operator 90 (see (4)) is invertible. Since it is injective, it follows that the 
operator -~z  is also injective (if .L/'~zx = 0, then the restriction ~? of the function x to Z belongs to 
Ker 9o ; hence, it follows from the relations x(t) = °-][(t, n) x(n) = 0 for any t E In, n + 1] and n E 25 that 
z = 0) .  
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Leg us prove that the operator . ~  is surjective. For an arbitrary function f E ~' ,  we consider the 
function fd E o~'(Z, X) of the form re(n) = - f~+l ~'(n, r) f ( r )  dr,  n E Z.  Then there exists a function 
• r0 E fi '(Z, X) such that ~z0 = fd. We can readily verify that the function z E o ~ defined on any interval 
In, n + l] (n E Z) by the formula 

Z" z(s) = ~]z'(s,n)xo(n) - aZ/(s, r ) f ( r )  dr ,  s E [ n , n +  1], 

belongs to D(.L~,) and satisfies -~¢zx -- f (that is, relations (1) hold). This proves the lemma. 

P r o o f  o f  T h e o r e m  3. Theorem 3 immediately follows from Lemmas 2 and 3. 

P r o o f  o f  T h e o r e m  4. The sufficiency of the condition that the family ~,' admits an exponential 
dichotomy was established in Lemma 1. 

Now we assume that the operator .~¢,, is invertible. By Theorem 3, the corresponding difference 
operator ~0 E E n d ~ ' ( Z , X )  is also invertible. It follows from [11, Theorem 3] that the operator g0 is 
invertible in the Banach space /¢~(Z, X) .  On applying Theorem 3 once more, we see that the operator 
-L~cz is invertible in the space C(R,  X) ,  and hence it follows from the results of [1, Chap. X] that the 
family ~ /admi t s  an exponential dichotomy. This proves the theorem. 

R e m a r k  2. We can give another proof of the necessity of the assumption in Theorem 4 by considering 
the family ofinvertible operators {S(a).~0,~S(-a) ; a E R},  where {S(a) ; a E R} is the group of isometric 
operators given by translations of the functions from o~'(R, X) ((S(a) x)(t) = x(t  + a) ,  x E o ~ ). It follows 
from Lemma 2 that the corresponding family of difference operators 

( ~ x ) ( n )  = x(n) - ~'(n + ~,  n + ~ - t)x(,~ - 1), ~ R ,  x ~ , ~ ( Z , X ) ,  

is uniformly invertible. Hence, these operators admit a discrete exponential dichotomy on Z (see [6, p. 250 
of the Russian translation]). An exponential dichotomy of the family ~ follows from [6, p. 251 of the 
Russian translation]. 

P r o o f  o f  T h e o r e m  2. It follows from Theorem 3 in [lll that  it suffices to carry out the proof for 
the case in which o~'(R, X) is one of the Banach spaces Lp(R, X) ,  p E [1, ~ ) ,  or C0(R, X) ,  on each of 
which the semigroup {T~(t), t > 0} is strongly continuous. 

The inclusion exp a(-£~'ez)t C a(T~(t))  \ {0} is known (this holds for an arbitrary strongly continuous 
semigroup of linear operators [3, Chap. XVI]). The opposite inclusion follows from the formula 

((T~(t)  - I ) - l x ) ( s )  = E G(s, s + k t )x(s  + kt), t > 0, (12) 
kEZ 

which holds if the operator ~-L'¢t is invertible (here G is the Green function defined by formula (6)). Indeed, 
for any x E .~ ' (N,X) ,  s E R,  and t > 0 we have 

(T~z(t) - I ) (  E G(s, s + k t )x(s  + k t ) )  
kEZ 

F 
= ¢z(s, - t ) | -  E ¢Z(s - t, 

k k<_0 

+Z¢(s, 
k<O 

s + ( k -  1) t )P(s  + ( k -  1)t)x(s + (k - 1)t) 

+E~(s-t,s+(k" l)t)Q(s+(k-l)t)x(s+(k-l)t)] 
k > l  

s + kt) P(s  + kt) x(s + kt) - E ~][(s, s + kt) Q(s + k t )x(s  + kt) 
k > l  

= + = 

We can verify in a similar manner that the operator defined in (12) is a left inverse of T~z(t) - I as well. 
Thus, we have proved that if 0 @ a(.LPo~), then 1 ~ a(Toz(t)) for any t > 0. The case ,~ @ a(&°~) can 
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be reduced to the case just considered by means of the family °k'(A) (see Remark 1) and the operator 
.2o ,(x ) = .2o  _ AI and by applying the fact that -i'q~,(x) is the infinitesimal generator of the operator 
semigroup {T~,(t) exp (-At) ,  t _> 0}. The second assertion of the theorem follows from the first assertion 
and from Lemma 1. This proves the theorem. 

Corol lary .  If the operator .£#oe is invertible, then the operator ~o16 E n d 3 ( Z , X )  has the form 

(~oXZ)(n) = ~ G(n ,m)z (m) ,  z 6 .~ ' (Z,X),  n E Z.  (13) 
mEZ 

T h e o r e m  5. The spectrum cr( .~)  C C of the operator .L#~: D(.L#og) C ~--+ ,~ is the union of a set 
of lines parallel to the imaginary axis i R and contains the line 

{ A E C : R e A = x + ( ° 2 Z ) } ,  X + ( ° f f ) =  lim llnsupll~'(s,s r ) l l  
r--+oo 7" sER 

moreover, supxEa(.~,u)ReA = X+(ak'). If the dimension d imX of the Banach space X is finite, then 
a(-L#~z) has the representation 

m 

cr(-£a,,g) = U { A  E C:  ak _< ReA _< ilk}, (14) 
k = l  

where -oo < Ot 1 ~ [31 < 012 ~ /32 < "'" < a m  ~ [3m = X+(0"~) < (90 and m < d i m X .  

In particular, the spectrum of the scalar differential operator .£a = - d / d t  + a(t): D(-L -a) C ~ ' (R,  C) -+ 
# ' (R,  C), where a E SI(R, C), coincides with the set 

{ F.+,- ) A E C :  lim -1 i n f "  R e a ( a ) d a < R e A <  l i r a - s u p  Rea(a)da  . (15) 
v---}oo T sEN., s -- -- r--}c~ T sER¢ s 

Proof .  By Theorem 9, it suffices to consider the difference operator T~(1) 6 End # ' (R ,  X) and obtain 
the corresponding assertions for its spectrum (treated as a union of concentric circles). Consider the group 
of isometric linear operators {V(A), A 6 R} from the Banach algebra End ~ ( R ,  X) that have the form 

(v(~)~)( t )  = (e~ iAt )x ( t ) ,  x e : ( R ,  X),  t, A e R. 

It follows from the relations V(A)T,e(1)V(-A) = (expiA)Toe(1), A 6 R, which mean that the operator 
T,~,(1) is similar to the operators 7Tq,,(1), 7 6 T,  that the spectrum a(T,a,(1)) of the operator Tog(l) is 
the union of a family of circles centered at 0. 

Assume that some circle S(a)  = {z 6 C :  Izl = ~ } ,  ~ > 0, belongs to the resolvent set p(Toe(X)) of the 
operator T~(1), and let ~(T~(1)) be the union of two spectral sets 

or+ --- {A 6 a(T~e(1)) : IAI > ~}, ~_ = {A 6 cr(T~,,(1)) : IAI < ~ }  

Let P(~r+) and P(a_) be the corresponding Riesz projections (I  = P(cr+) + P(cr_)). 
Without loss of generality we can assume that a = 1. In this case, .L, aog is invertible, and hence, by 

Theorem 4, the family og admits an exponential dichotomy. Let us represent the projection P(~r_) in the 
form [10, p. 33 of the Russian edition] 

P ( ~ - )  = ~ ( - rx- ro~( l / )  -~ dr  = ~ ( e ~ ' I - r ~ , ( 1 ) ) - l e i ~ d ~ .  

By applying the formula (which is an analog of (13)) 

( ( e ' ~ / -  T~(1)) -~ z)(s) = ~ e-iC/+l)~G(s, s + k)x(s + k), 
k6Z 

and then by integrating the expression for P(o'_), we see that the projection P(cr_) is the multiplication 
operator of the form 

(P(~_)~)(s)  = G(~, ~)x(s) = P(~)x ( s ) ,  ~ E : ,  s ~ R ,  
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where P :  R -+ End X is the strongly continuous projection-valued function occurring in the definition of 
an exponential dichotomy of the family °Z/. 

Let dim X < e~ ; then the function P is continuous (in the uniform operator topology), and hence, the 
dimension of ranges of the projections P(s) ,  s E R, is independent  of s. This, together with the form of 
the Riesz projections, means that the number  of connected spectral components of the set cr(T~,(1)) is at 
most dim X .  Therefore, Theorem 2 implies a representation of the form (14). 

The assertion that  the line X(~Zz) + ill[ belongs to the set ~(Tee(1)) and the relation X+(cZ/) = 
supxE~,(_e,~) Re A readily follow from Theorem 2 and from the relation 

r(Tee(1)) = l i r a  HT~(n)H 1In = lira sup [[qz'(s, s - n)H 1In = e x p x + ( ~ ' ) ,  
n - - - + ~  n---}oo s i n R  

which follows from the Gelfand formula for the spectral radius [3, p. 138 of the Russian translation]. 
If .2~ = - d / d t  + a(t) ,  then d i m X  = 1, and therefore, the set ~(Tee(1)) is connected. In this case we 

$ 

have ~ ( s ,  s - r )  = exp f~_,. a(A)dA, s E N, r >_ 0. Since the operator Tee(l) is invertible and its inverse 
coincides with Tee(-1) ,  we can apply the Gelfand formula to Tee(-1) and obtain a representation of the 
form (15) for cr(.LP). This completes the proof of the theorem. 

C o r o l l a r y  1 (Massera's theorem [51). Let .~  = - d / d t  + a(t) :  D( .~)  C C(R,  C) -~ C(R, C) be a differ- 
ential operator with a continuous almost periodic function a: R --~ C. Then ~ is invertible if  and only if  
Re ao 7 £ O, where ao E C is the mean value of the function a. 

C o r o l l a r y  2. If  °]Z(s, s - t o ) ,  s E R ,  are invertible operators in E n d X ,  for some to > O, and if 
sup, ER IIq/(s, s - - t0)- l l l  < c~, then the semigroup {Tee(t), t_> 0} can be embedded in a certain strongly 
continuous group of operators (for fir = Lp, p E [1, oo), or for : = Co ), and the following inclusion 
holds: 

~(2'ee) c {~ e c :  x - ( ~ )  < Re~ < x+(~')}, 
where X _ ( ~ ' )  = - l i m r ~ o o  r - 1  hisupsER II~'(s, s + r)ll and ~ ( s ,  s + r )  = ~ ' ( s  + r ,  s) -x for  r > 0. 

A linear operator  _L-"ee: D(i"ee) C f i r -~  f i r =  f i r (R ,X)  is said to be periodic (with period w > 0) if it 
commutes with the operator  S(w) E Endf i r  or, which is the same, if ~'(t  + w, s + w) = °k'(t, s) for any 
s < t .  

T h e o r e m  6. Let .L~'ee be a periodic operator (with period 1). Then 

exp ~r(_Z"ee) \ {0} = {~ E C :  q/~ E a(qz'(1, 0)) such that I~1 = I~1}. (16) 

In particular, the operator .~ee is invertible if  and only i f  the condition a(alz'(1,0)) ¢] T = ~ is satisfied. 

P r o o f .  Since ak'(n, n - 1) = °2/(1,0) for any n E Z ,  the assertion of the theorem readily follows from 
Theorems 2 and 3 (if we note that  the spectrum of the difference operator (Uz)(n)  = ~ ( 1 ,  O)z(n - 1) 
coincides with the set on the r ight-hand side in (16)). This proves the theorem. 

C o r o l l a r y .  If  A is the infinitesimal generator of a strongly continuous semigroup {T(t), t > 0} C 
E n d X  of linear operators, then the differential operator .L#= - d / d t  + A: D(.L:') C fir(JR, X) --+ fir(R, X) 
is invertible if and only if  the condition ~r(T(1)) N 2" = O holds. In particular, if X is a Hilbert space, 
then ~ is invertibIe only i f  (1) cr(A) f] iR  = O, and (2) supxe~ I I ( a -  i),I)-111 < o~. 

P r o o f .  If X is a Hilbert space, then it follows from the Parseval formula in the Hilbert space L2(R, X) 
that the above two conditions are equivalent to the invertibility of the operator i :  = - d / d t  + A : D(.L:) C 
L2(R, X) --+ L2(R, X) .  It remains to apply Theorem 4. This proves the corollary. 

Note that  the corollary readily implies the well-known Herhard theorem [12, p. 95]. 

T h e o r e m  7. Let a family qz'C E n d X  admit an exponential dichotomy exponent/3 > 0 and coefficient 
M > O. If  a family of evolution operators ~ =  {~/(t, s), s <_ t} in E n d X  satisfies the condition 

i i - 7 (17) 
supnEz I lk (n ,  ,~ - 1) - r( ,~,  ,~ - 1)II < M 1 + ~ '  

where 3' = exp ( -¢/ ) ,  then the operator .L#~,: D(.L#r) C fir _+ fir is invertible. 
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Proof .  It follows from Theorems 3 and 4 that the operator ~0 E E n d f l ' ( Z , X )  is invertible, and 
formula (13) implies the estimate I[~o111 < ~k~zM-~ Ikl = M(1 + -/)(1 - " / ) - ' .  Hence, condition (17) 
yields the invertibility of the difference operator (~Dx) (n )  = x (n )  - ~/(n, n - 1)x(n - 1). By Theorem 3, 
the operator ._9~, - is invertible. This proves the theorem. 

§2. Discuss ion  of  the  O b t a i n e d  Resu l t s .  E x a m p l e s  and  R e m a r k s *  

The above results (especially, Theorems 1-4) make it possible to apply the theory of semigroups of 
linear operators widely in the study of linear parabolic operators with variable coefficients and hence to 
partial differential operators. For example, our considerations cover the differential operator 

. ~ =  - d / d t  + A(t): D(_L~') C Lp(R, X) -+ Lp(it, X) ,  (18) 

where X = L2(~) = L2(fl, C) and fl is a bounded smooth domain in R n. Here the family of linear 
differential operators A(t): H ~ ( ~ )  n H2m(~) C n2(~) --+ L2(fl) ( g ~ ( ~ )  and H2'n(~) are the Sobolev 
spaces [6]), t E R,  is defined by the family of differential expressions 

1~[<2m 

and by the Dirichlet boundary conditions on the boundary 0~ of the domain ~ .  The functions a~ : It x 
--+ C, I(x] _< 2m, are assumed to be elements of the space C(it ,  C~(~)) for some sufficiently large k E N 

and satisfy the Lipschitz condition when regarded as functions of the first argument with values in C k ( ~ ) .  
In addition to the above-mentioned conditions, it is assumed that the family of differential expressions It, 
t E It,  is uniformly elliptic. 

It follows from these conditions that the elliptic operators A ( t ) ,  t E I t ,  are the infinitesimal generators 
of analytic semigroups of bounded linear operators, and the assumptions of the Sobolevskii-Tanabe the- 
orem [13, p. 589 of the Russian translation], which provides the correctness of the Cauchy problem on It 
(the existence of a family of evolution operators), are satisfied. 

In conclusion, we note that in the papers [5, 9, 10], differential operators of the form - d / d t  + A( t )  
in the Banach space C(It,  X) with a function A: It --+ E n d X  were considered. Assertion (1) of The- 
orem 4 was obtained in [10, Theorem 3.3 r] under certain additional assumptions, which are eliminated, 
for fl" = C,  in [1, Chap. X], where it is not required that A(t) E E n d X ,  t e It .  In [9], it was proved 
that the exponential dichotomy condition for a family of evolution operators is equivalent to the condition 
a(T~(1))AT = ~ .  A similar assertion was presented in [15, Theorem 9.3] for elements of some C*-algebras 
generated by dynamical systems. 

Differential operators with unbounded operator coefficients were considered in [1, 6, 8]. In the paper [8], 
the equivalence of the conditions of the (uniform) injectivity for operators -L~,r and ~0 was proved. Of the 
results in [6] that are related to Theorems 1-4 most closely, we note Theorem 7.6.3, which states that the 
operator .~,~ is invertible under some assumptions that include the presence of an exponential dichotomy 
of the family ~ and the assertion (see p. 251 of the Russian edition) on an exponential dichotomy of this 
family under the exponential dichotomy condition for the operator family {ak'(t0 + n,  to + n - 1), n E Z} 
for all to E It.  We also note that it follows from [6, Theorem 7.6.5] and from Theorems 3 and 4 that 
a family ok' admits an exponential dichotomy whenever the family {qz'(n, n - 1), n E Z) admits the 
discrete dichotomy. A discrete analog of assertion 1 of Theorem 4 is given in [6, Theorem 7.6.5], and in 
the same monograph (see p. 363 of the Russian translation, comments to Chap. IX), the problem to prove 
assertion 1 of Theorem 4 was posed. 

References  

1. B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Izdat. Moskov. 
Univ., Moscow, 1978; English translation: Cambridge University Press, Cambridge, 1982. 

2. S. G. Krein, Linear Differential Equations in a Banach space, Nauka, Moscow, 1967; English translation: 
Am. Math. Soc., Providence, R.I., 1971. 

* T h e  text of this  sect ion was s u b m i t t e d  to the edi tors  of the journa l  on December  6, 1995. 

156 



3. E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Am. Math. Sot., New York, 1957. 
4. A. G. Baskakov, ~Investigation of spectral properties of the differential operator _L# = - d / d t  + A(t) by 

means of the semigroup exp_~t, t > 0," in: Intern. Conf. on Functional Equations and Applications, 
Moscow, Russia, August 14-21, 1994, pp. 8-9. 

5. J. L. Massera and J. J. Sch£ffer, Linear Differential Equations and Function Spaces, Academic Press, 
New York, 1966. 

6. D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin-Heidelberg- 
New York, 1981. 

7. A. G. Baskakov, "Spectral criteria for the almost periodicity of solutions to functional equations," 
Mat. Zametki, 24, No. 2, 195-205 (1978). 

8. V. M. Tyurin, "On the invertibility of linear differential operators in certain function spaces," Sib. 
Mat. Zh., 32, No. 3, 160-165 (1991). 

9. P. P. Zabreiko and Nguen Van Min', "The group of characteristic operators and its applications to the 
theory of linear ordinary differential equations," Dokl. Ross. Akad. Nank, 324, No. 1, 24-28 (1992). 

10. Yu. L. Daletskii and M. G. Krein, Stability of Solutions of Differential Equations in a Banach Space, 
Nauka, Moscow, 1970; English translation: Am. Math. Soc., Providence, R.I., 1974. 

11. A. G. Baskakov, "Abstract harmonic analysis and asymptotic estimates of the elements of inverse 
matrices," Mat. Zametki, 52, No. 2, 17-25 (1992). 

12. R. Nagel, One-Parameter Semigroups of Positive Operators, Lecture Notes in Math., Vol. 1184, 
Springer-Verlag, 1984. 

13. K. Iosida, Functional Analysis, Springer-Verlag, Vol. 1, Springer-Verlag, Berlin-GSttingen-Heidelberg, 
1958. 

14. N. Dunford and J. T. Schwartz, Linear Operators. General Theory, Vol. I, Interscience Publ. Co., New 
York, 1958. 

15. A. B. Antonevich, Linear Functional Equations: An Operator Approach [in Russian], Universitetskoe, 
Minsk, 1988. 

Translated by A. I. Shtern 

157 


