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To Ya. G. Sinai on the occasion of his 60th birthday 

§0. I n t r o d u c t i o n  

In this paper,  by a parti t ion we mean a division of a positive integer or a vector with positive integral 
coordinates into unordered summands of the same kind. Since Euler 's time, this object has been of interest 
to specialists in different areas of mathematics,  including number  theory, combinatorics, probability theory, 
and others. A new problem in asymptotical partition theory, which arose some t ime ago, is the question 
about the asymptotic (limit) shape, or configuration, of partit ions with respect to some statistics. Here is 
the simplest setting of this problem (see §1). Let p'~ be the uniform measure on the set of all partitions 
of the number  n: p~'(A) = p(n)  -1 , A E Tn,  where p ( .  ) is Euler 's function (partit io numerorum);  the 
question is: whether  one can normalize the partitions in such a way that,  in some properly chosen space, 
the measures pn have a weak limit on generalized partitions, and whether  this limit is singular (a J- 
measure). In the last case, the limit measure is concentrated on a limit shape. An affirmative answer 
to these questions, as well as explicit formulas for limit shapes, for a number of statistics, are presented 
below. In this paper we continue the study of similar problems (see the survey [1]) and stress their close 
relationship with the statistical physics of ideal gas. The problem of limit configuration in this context 
is especially appropriate to traditional statistics (Bose, Fermi, and others), al though it was not studied 
before, as far as I know. It can be solved by means of some variation of classical tools (see below) and is 
interpreted as a problem of limit distribution of the total energy of the system over the energy spectrum. 
Nevertheless, our passage to the limit is not literally equivalent to the case of thermodynamic  limit (N-V- 
limit): in fact, we reduce the problem of limit distribution of energy to the case of fixed volume, as energy 
tends to infinity so that  its growth does not necessarily match  the growth of the number  of particles. If the 
number of summands  (particles) is not fixed (the case similar to the statistics of photons), then the natural  
growth of the number of particles is automatically determined by the statistics. The  classical N-V-limit 
is also covered by our scheme by selecting the growth of the number  of summands  in a special way (see 
below), but  the corresponding combinatorial problems are still poorly studied; they are also related to the 
behavior of the convolution of distributions on the semigroup of partitions. 

From the mathemat ical  point of view, we are studying the weak convergence of measures in an appro- 
priate space of limit distributions (compactum ~D), and the main  s tatement  is that ,  in some cases, the 
limit of measures of a special form (for example, multiplicative measures, in particular,  uniform measures 
on partitions) on the set of partitions of a chosen number  n (---energy) coincide with the limits of a 
mixture of these measures for various n ,  and thus their limit shapes coincide as well. Strictly speaking, 
this is the merit  of using the macrocanonical ensemble with Gibbs' measure; its s tudy is simpler than 
that  of the microcanonical ensemble, because the occupation numbers become independent  with respect 
to Gibbs' measure. This idea was implicitly used in combinatorics (see [2-4]), but  the problem of limit 
shape was not posed. The above statement can be referred to as a weak equivalence of the macrocanonical 
ensemble and the microcanonical one, but, according to the remark on the difference between the limits, 
this assertion is more general than the equivalence of the ensembles in statistical mechanics. Nevertheless, 
the methods are similar: both the saddle point method (by Darwin-Fowler [5]) and the local limit theorem 
(A. Ya. Khinchin seems to be the first who used the latter way, see [6]) can be used in both cases to find 
the limits and verify the results. We must stress that  the main obstacle in the proof is the same, although 
it is overridden differently. In problems of number theory, probabilistic methods in finding the asymptotic 
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behavior of number functions were used by G. Freiman [7]. An excellent example of applying probabilistie 
methods in a problem on vector partitions and convex curves, which was solved in [8, 9], was given by 
Ya. G. Sinai [10]. 

The problem of limit shape for partitions was first posed by the author in connection with the asymptotic 
theory of classical groups and their representations, in particular, the symmetric group [1], but it should 
be considered in a more general framework of known problems of the random growth of shapes. Note that 
combinatorial schemes in combinatorics, group theory, representation theory, and additive number theory 
are much more various than ordinary models in the statistical physics of the ideal gas. In particular, the 
ergodicity of macro- and microcanonical ensembles can fail in natural problems. The stimulating nature of 
these problems becomes apparent, in particular, in the interaction of different methods of their solution. 
For example, the variational principle (see [8, 16]) that suggests finding a limit shape as the minimum of 
some functional led to a new type of variational problems (see §6). 

In this paper, we present the main statements and a series of results concerning the limit shape. Their 
detailed exposition will appear elsewhere. During his work, the author recalled his conversations with 
Ya. G. Sinai, who popularized ideas of bringing together statistical physics and traditional mathematics. 
The author also made use of discussions with R. A. Minlos and, most notably, consultations with out- 
standing mathematician R. L. Dobrushin before his untimely death in 1995, who repeatedly imparted his 
insight on statistical physics and adjacent mathematical theories to the author. Finally, thinking over 
some of these topics was stimulated by questions of listeners of the lecture course "Partitions," which was 
given by the author in au tumn 1995 at St. Petersburg State University and included a survey of these 
problems. 

§1. Setting of the Problem, Definitions, T e r m i n o l o g y  

Denote by ~Pn = {A : A }- n} the set of all partitions of a positive integer n >_ 0 into (unordered) positive 
integers, A -- (A1 , . . . ,  AN); let n(A) be the sum and let #A,  or N(A), be the number of summands. 
The set of all partitions of n with N summands is denoted by T~,N; thus, T~ = UN ~P~,N. Finally, 
~P -- Un ~P~ is the disjoint union; it can be called the macrocanonical ensemble of partitions; we also call 
T~,N (T,,) the microcanonical (canonical) ensemble. 

To A E ~P,, we assign a collection of numbers rx(A), . . . , r , ( A ) ,  where rk(A) = # { j  : Ai = k} is 
the number of summands equal to k in the partition A; we call rk(A) occupation numbers; obviously, 
{ri(A)} fully determine the partit ion A and can also be called the "distribution" of the partition. Clearly, 
n(A) = ~-~.k krk(A), #A = N(A) = ~]k r~(A). Recall that  #T, ,  = p(n) is Euler's function with the 
generating function 

OO OO 
1 

k =  1 r t=O 

To a partit ion A E ~P, we assign a function qax on [0, oo) by the following rule: 

= 0 _< t < o o .  (1 .1)  
k > t  

Clearly, ~x is a step-function continuous on the right such that f o  ~x(t) dt = n(A). The closure of the 
interior of its ordinate set is called the Young diagram of the partition .k. For a > 0, we say that the 
function 

= _a _a ( i . 2 )  
n n 

k > a t  

is the function ~x normed by a; we have fo~X( t )d t  = 1; ~ is the image of qa under the plane 
transformation (t, qa) ~ (at, qan/a). The question how to choose the scaling a will be discussed below. 
We denote the transformation A ~ ~x by r~. 

Introduce the space of triples ~D = {(a0, aoo,p(-) )}:  here a0, a ~  e R+,  and p e L~.(R+) is a 
nonnegative, monotone nonincreasing function on [0, cx~), with so + a~  + f o  p(t) dt = 1. One can regard 
the numbers a0 and a ~  as the charges of the measure at 0 and +co,  respectively, and thus ~D consists of 

91 



the measures Cto6o +~oo6oo +pd t  on [0, oo] that  have two possible a toms at the endpoints  and a monotone  
density with respect to the Lebesgue measure on (0, oo). The  measures 60 and 600 are called the trivial 
elements of ~ ,  the measures with p # 0 are called proper  elements,  and measures with a0 = c~oo = 0 are 
called continuous elements. 

We endow D with the topology of uniform convergence on compacta  on (0, oo) and the ordinary 
convergence of charges at 0 and co. 

L e m m a  1.1. 9 is a metrizable compactum in this topology. 

The  compactness  follows from the uniform boundedness  and the uniform absolute continuity of the 
monotone  functions on intervals [to, t l ] ,  to > 0. 

C o r o l l a r y .  An infinite set of normalized nonnegative Borel measures on ~) has a nonempty set of 
limit points in the weak topology of measures. 

Clearly, the image of ~P, under  the mapping  r= : ~P, ~ ~D consists of measures with zero ~0 and ~oo 
and with step density. 

Assume tha t  a probabili ty measure (statistics) #"  is defined on ~P,; then the formula r~#"(A) - 
I~"(r~'lA), A E ~), determines the image of /~"  under  the mapping  ra.  We s tudy  the following question: 
given a sequence of measures I ~n on ~P, , whether there exists a numerical sequence a ,  such that the images 
r~,l~" are weakly convergent to a measure with nontrivial support (in other words, the limit measure is 
not a charge at 0 or oo ). If this scaling exists and the limit measure  is continuous,  then the scaling is, 
in essence, unique. To be more precise, if two scalings {a,~} and {a~} lead to nontrivial  limit measures, 
then,  first, these scalings are equivalent, that  is, a , /a~  ~ 1, and,  secondly, these measures coincide. If 
the limit measure  is singular, i.e., if it is concentrated on a single continuous element  C E ~D, then this 
element is called a limit shape, or a limit configuration, of the r andom part i t ions for the statistics {/~} and 
for the scaling {an}.  Thus,  given a sequence of measures/~n on ~P~, the question is to find a numerical 
sequence a ,  such tha t  the scaled images r~'/~ ~ are weakly convergent to some measure  ~ on ~D (or to 
prove tha t  this scaling does not exist). An afftrmative answer to this question makes it possible to express 
s ta tements  of the following type: "asymptotically, for almost  all part i t ions,  the sum of summands  that  
exceed ta,~ forms a given par t  of the whole sum" (in the ergodic case) or "the probabili ty of the event 
that  this par t  belongs to a given interval is a given number"  (in the nonergodic case). A huge number  
of problems of asymptot ic  combinatorics can be reduced to this question. In the general setting, this 
question is extremely wide; we restrict ourselves to a special class of measures /~", namely, the class of 
multiplicative statistics on ~P. In terms of statistical physics, a par t i t ion A E ~P= is an assembly of particles 
(to be more  precise, of their energies) such that  its total energy is n (=  E),  and the number  of particles of 
energy k is the occupat ion number  r~(A). The  energies of particles (and hence of the whole system) are 
positive integers; this is not  restrictive in the theory of ideal gases, because these numbers  are eigenvalues 
of the Laplace opera tor  on a cube or on a torus. The  total  number  of particles is ~-~rk(A) = N(A).  In 
the case of ideal gas, the system is completely determined by the impulses of all its particles, i.e., by the 
occupat ion numbers .  The  set ~P,.N can be interpreted as the set of configurations A with given total 
energy and number  of particles, i.e., as the mierocanonical ensemble (in the unit  volume). Nevertheless, 
the set of particles with given energy is the set of points  of some lattice on the sphere with given radius, 
and thus the statistics on part i t ions must  take into account the multiplicity of the energies of particles 
(see below). A statistics (a measure) on ~P~ or ~P,,N is chosen in accordance with the problem, and its 
support  can be a par t  of ~P,, for instance ~P,,N(,). The  scaling strongly depends  on the statistics under  
consideration and determines a relation between the total  energy mad the number  of particles whose energy 
exceeds a given level. The  limit shape, as an element of the compac tum ~ ,  in the ergodic case, is the 
limit distribution of the energies of particles; and this makes it possible to express assertions of the above 
type: what  limit par t  of the total  energy corresponds to the particles with given energies. 

From the point  of view of statistical physics, we deal with a system in the uni t  volume. In our model, 
the growth of the volume means that  part i t ions into nonintegral  summands  must  be considered; to be more 
precise, the summands  must  be proport ional  to some inverse power of volume (where the power depends 
on the dimension of the problem). By scaling we can reduce this part i t ion to an ordinary one (in other 
words, the volume can be reduced to the unit) .  However, the number  of summands  must  be re-counted 
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in the new scale. Thus, the ordinary thermodynamic limit fits into our scheme with special measures on 
~n,N( , ) ,  where the function N = N ( n )  is determined by the dimension of the problem (see below). The 
case of vector partitions corresponds to the situation in which the system has other first integrals besides 
the energy. 

§2. Multipllcative Statistics. Macrocanonical E n s e m b l e  

Now we introduce a class of measures on ~P~ and show that this class is that  of restrictions, to ~P,, of 
measures on ~P that  axe said to be multiplicative. 

Consider a sequence of functions s -- {s t} ,  s t :  N --~ R+,  k = 1, . . .  , and define a multiplicative 
function of a parti t ion by F~(A) - F(A) -- 1-It sk(r t(A)) ,  where r t  -- # { i  : Ai = k} are the occupation 
numbers. Let Q ,  = ~-'~A~., F(A) be the partition function; denote by #~'" _-- pn the following measure 
o n  ~)n" 

#"{A : rt(A) = r} = Q~' ls t ( r ) ,  #"(A) = Q-~IF(A).  (2.1) 

Similarly, 

for Q , , N  = E F(A) weset # " ' N ( A ) = Q - ~ I N F ( ~  ).  
AI-n 

N(A)=N 

Thus, we have defined a class of measures on the canonical and microcanonical ensembles. Consider now 
the macrocanonical ensemble, that  is, the set of all partitions, and iritroduce on it the family of measures 
#a,z = Pz depending on a real parameter  (or on several parameters)  that also depend on the sequence 
s = { s t } ~ = , :  

#x(A) = z"(x)9"(x) - '  H s t ( r t (A ) )  = z " ( x )9 " ( z ) - lF (A ) ,  (2.2) 

where ~'(x) = ~-,~=o Q. xn (big statistical sum). We assume that the last series is convergent for 
0 _ < x < z 0 .  

By setting ~k(y) ~ r = ~r=._oSk(r)y we obtain 

= E E = E E = II = II 
,=o irk} t ,=o {,~} k=l ,=o k=l 

L e m m a  2.1.  The measures #s,x =- px are defined for x E [0, x0) and have the following properties: 

#~(~) = , - ( x ) ;  (1) ~1~ (x) = ~(~ . )  
( 2 )  the occupa t ion  numbers  r l , . . .  , regarded a3 f u n c t i o n s  on  (~), [.Lx) , for'n% a sequence o f  i ndependen t  

random variables with respect to the measures Px, x E [0, x0) ; 
oo 

(3) ~t:C E ,-reX,--1Xn,,-~ n = .Tt ) t 4 ,#  , i.e., p~ is a convez combination of measures #"  
rl=O 

All s ta tements  can be verified directly. The above families (with respect to x) of measures are said 
to be multiplicative. The generating function 5"(x), along with its decomposition if(z) = 1-I~'=l F t ( x t ) ,  
completely determines such a family. A number of important  measures on the partitions, including the 
Plancherel measure on the Young diagrams, do not belong to this class; however, as we shall see below, 
multiplicative families contain very important  examples. 

In order to embrace the general case that  includes the fixation of the number of summands,  we introduce 
a function of two variables 9"(z, z) = I-[~=1 ~ t ( z z t )  • In this case 

oo 

k = l  r=0  

As above we set 

Q.,N = ~ .  F.(~), F.(~)=IIsk(rt(~)), 
n( X )=n t 
N(A)=N 
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and obtain 

y(z,  z) = ~ . N Q n , N  ~, Z . 

n , N  

Consider the family of measures pz,z defined by 

~ z , z (  ~ ) = ~,n( X) z N (  X)~'( Z ' z ) - I F ( / ~ ) .  

As well as for family p=, we have the following assertion. 

L e m m a  2.2. (1) The measures p=,z are defined in the real domain of convergence of  the series ~(z ,  x) 
and P=,I = p=. 

(2) The restrictions of p=,= to the microcanonical ensemble are the measures p , , N  (see above). 
(3) ~=,~ = E . , N  Y(z, x)-lxnzNQn,Npn'N. 

At the same time, now the occupation numbers are not independent with respect to Px,z .  

Now we pass to the case of vector partitions. A parti t ion of a vector with positive integral components 
n = ( n l , . . .  , ha) is its division into (unordered) vectors: 

n n I + + n k n i i " = . . .  , = 

The set of  all vector partit ions of a d-dimensional vector n is denoted by Td,  n E Z d , and the set of 
partitions with N summands by ~Pd,N. Let 

:P'= 
n E Z ~ .  

The following d-dimensional matr ix is an analog of the occupation numbers: let 

A E ~ n  X (n  I . , n k ) ,  n i E Z  d,  n ~ n  i ..... k d ( X ) = # { i : n  i (k l ,  kd)} ,) ~ ) • . ~ ~ r k  I ---~ . . .  ) ) 

i 

and let the mapping ~Px from §1 be replaced by 

~ ' o d ( t l '  " ' "  ' td)  : Z rkl ..... ka(X)" 
( k l  . . . . .  kd)>( t l  . . . . .  td) 

It remains to describe an analog of the mapping r and of the compactum ~D. The  scaling is determined 
in this case by d scaling sequences {a~ : j = 1 , . . . ,  d}, n E N, and 

(.~d (~1 , . , t d )  1_ al d ,...,adndtd) . .  - . . . .  a . , ~ ( a l , , t l  . 
72 1 . . .  rtd 

The compactum ~D d is constructed similarly: its elements are formed by functions that  are monotone 
nonincreasing with respect to any argument,  being defined on coordinate octants  and integrable with 
respect to the Lebesgue measure, and by charges at the infinities. The simplest way to describe ~D d is to 
take the completion of the set of nonincreasing densities defined on the interior of R~_ in the topology of 

O 

uniform convergence on compacts  in R d . The mapping 

rd: ~9 ~ ~d  

makes it possible to pose the same questions on the weak convergence of images of the measures defined 
on T d . 

R e m a r k s .  1. The ordinate set of a function ~ ( t l ,  . . . ,  td) is a many-dimensional part i t ion (a many- 
dimensional Young diagram); however, not every diagram can be obtained in this way. 

2. Another  way of geometrizing vector partitions exists for d = 2 (it was used in [8, 0]), namely, the 
ordering of the summands n i = (k~, k~) in ascending order of ratios k~/ki2. 
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The multiplicative families on ~ can also be determined by the generating functions 

k d ) ,  
H ..... 

kl  ) . . . ,k4  

and the function of one variable 
oo 

r----O 

is the generating function of the distribution of the occupation number rka ..... k~. If A E Td~, n = 
( n l , . . .  , rid), then the measure ~ ..... z~ is determined by 

k l  , . . . ,  kd 

The measures #xl ..... z~ are defined for real x in the domain of convergence for the series representing 
9 " ( x l , . . . ,  xd), and the occupation numbers are independent with respect to these measures. We do not 
go into details and only note that  formulas for the measures on the microcanonical ensemble ~pd,N are 
just the same as in the case d = 1. 

§3. Examples of Multiplicative Measures 

We begin with a series of examples of algebraic and combinatorial nature. In these examples, ' the 
measures are originally defined on some natural objects, for instance, on a symmetric group, on set 
partitions, and so on; then these measures are transferred to ~Pn for all n .  Since these measures are 
multiplicative, it is possible to construct measures on the macrocanonical ensemble. 

On the other hand,  in physical examples, it is rather natural  to introduce measures ~ by means of a 
generating function which has the form of an Euler product or is a factorized (decomposed into an infinite 
product) function, and then to transfer these measures to canonical or microcanonical ensembles. We use 
the notation of §2. 

1. U n i f o r m  s t a t i s t i c s  on  ~P,, (an analog of the ~ o s e  s t a t i s t i c s ) .  Let pn(,~) = p(n)-~ be 
the uniform distribution on T , .  The corresponding multiplicative function F(A) is identically one, and 
sk(r) -- 1 for all k = 1, . . . .  Thus, ffk(z) -- 1/(1 - z) ,  

oo oo 

1 (3.1) 
= H H 

k = l  k = l  
oo 

k----1 

As we shall see, this statistics is just  the statistics of the two-dimensional Bose gas (see [5]); it is most 
natural from the number-theoretic point of view as well, because all partitions of n are equiprobable, and 
the partition function is Euler's function: Qn = p(n). 

l a .  However, if we consider a chosen number of summands,  then the generating function is 

1 E (3.2) = H 1 - - 
k : O  n , N  

Here the m e a s u r e  pn,N is the uniform distribution on the partitions of n with N summands (note that 
zero summands are also admit ted here); in this case 

oo 

: ~ k ( z ,  z )  - 1 - z z '  
k : l  

#=,,(A : rk(A) = r, N(A) = N) = zk"zg(1 -- zxk) .  

The factor 1/(1 - z) in (3.2) corresponds to the distribution of the number of zero summands.  It is 
substantial when explaining the condensation effect for the Bose gas. 
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2. U n i f o r m  d i s t r i b u t i o n  on  p a r t i t i o n s  w i t h  d i f f e r e n t  s u m m a n d s  ( a n a l o g  o f  t h e  F e r m i  
s t a t i s t i c s ) .  Here 

~-(~) = l - I (1 + ~ * ) =  ~ p . ( n ) ~ " ,  
k :  1 n : 0  

oo 

~,"(~) = p ~ ( . ) - ' ,  ~,~(~1 = =:-(~) I f ( 1  + ~1-,.  
k : l  

(3.3) 

2a. If a number  of summands  is chosen, then we have 

y ( z , . )  = 1-[(1 + = ~ ) =  ~ p . ( . ,  N)~"~ ~, 
k : l  a , N  

oo 

. " ,~(~1 = . ¢ ( . ,  N ) - ' ,  . . ,~(~) = x " ( % ~  17[(1 + = b - ' .  
k =O 

(3.4) 

According to the tradit ion of parti t ion theory, one can consider different classes of partitions (for exam- 
ple, partitions with given lower bound of the differences between summands,  parti t ions with summands 
in a given subset of positive integers, and so on) with uniform statistics, but  we restrict ourselves to the 
above cases and generalize them in a different direction. 

3. Bel l ' s  s t a t i s t i c s  (see [11, 12]). As a rule, partitions appear as classes of some objects under some 
equivalence relation. Let Ha be the set of all partitions of an n-tuple; let rna be the uniform distribution 
on Ha,  and let 7ra : Ha ~ ~Pa be the mapping that  assigns to a partition A E Ha the parti t ion A of n 
such that  )~ = (ki) and ki are the cardinalities of the blocks of A. The image 7rarna = f/a is the measure 
on Ta which is called Bell's statistics. Thus, it is a statistics on the equivalence classes under  the action 
of the symmetr ic  group. Obviously, 

4 

#a{~} = 1 /1 - [  "~(~)! (k!) "~(~), ~ E ~ "  
k 

The measures /~a are multiplicative, and the corresponding generating function is 

~'k(Y) = eY/k!, ~'(T,) = H ~k(:rk) = e¢ ' - l '  

This measure has been investigated in [12] in detail. 
Choosing a number of blocks, we obtain the generating function 

1 
s ~ ( " )  = ( k ! ) ' , ' !  " 

y(z, x) = e z'' 

4. H a a r ' s  s t a t i s t i c s  a n d  t h e  P o i s s o n - D i r i c h l e t  m e a s u r e s  [11, 18]. We consider the uniform 
0 0 E R+: measure ma on the symmetr ic  group Sn and its deformation m a ,  

1 0~(9 ) 0 c(g~ 
m~Cg)=  ( n + 0 _ 1 ) . . . 0  = [0]" ' [0] a = 0 ( e + 1 ) - - . ( 0 + n - 1 ) ,  

where c (g )  is the number  of cycles in the permutat ion g E S . .  For 0 = 1, we obtain the uniform 
distribution on Sn. 

The projection 7r: Sn --* [P. that  maps any permutat ion to the collection of lengths of its cycles induces 
the following measure p0 on ~Pn: 

0N(~) 
0 ( ~ )  = 1-[k rk(~)!k"~)[0]"(~) ' e c [o, 0¢). 
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For 0 = i we obtain the so-called Hai r  distribution on the partit ions (it is induced by the Ha i r  measure 
on S, ) .  All these measures are induced by multiplicative measures on ~P; the big statistical sum is 

:~(~) - ( i  - ~)0 = = = E.' ' 
k----1 k----I n----0 

i.e., Y k ( Y )  = e sy /6  • Choosing a definite number of cycles we obtain 

oo  

• 6(zy) = e °'y/6' y ( ~ ,  z) = I I  ~6(z~k)  - 1 (i - ~).0, 
k----I 

and we see that 0 plays the role of the variable z; thus, we can assume :E(x, z) = 1/(1 - z) z . 

5. M o d e l  o f  d - d i m e n s l o n a l  ideal  gas  [5]. Consider a model that is closer to quantum statistical 
physics. We restrict ourselves to the indication of the big statistical sum (that is, the generating function), 
since all other components can readily be reconstructed. Recall that  in the case of ideal gas, the energy 
of the system is the sum E = ~>-~p rp~p, where ep stands for the energy of a particle with momentum 

p E R d, i.e., 

~ = 2~ IIplI~ = ~-~ \v~Id] llqll~ 

(thus, ~p are the eigenvalues of the Laplace operator  on a Euclidean torus) [5], q E Z ~ , V is the volume, h 
is Planck's constant, m is the mass, d is the dimension, rp is the number of particles with momentum p ,  
and [[q[[2 = ql 2 + . . .  + q].  We assume that the coefficient of  [[q[[? is equal to one (for the growing volume, 
see the remark at the end of §1). 

In our notat ion we have the parti t ion of n (=  E)  into summands  each of which is the sum of d squares of 
positive integers, where the summands are considered to be  distinct, i.e., for the parameter  of a summand 
we take the corresponding vector in Z d , and the summand is the square of the norm of this vector. This 
leads us to the following generating function for the Bose statistics: 

oo  
1 

~(~) = I I  (i- ~ ) i ~ m '  (3.5) 
k----1 

where j d ( k )  is the number of representations of the number  k as the sum of d squares. Recall that  

oo 

~j~(k)z6=O(o,~-) d, 
k----O 

where 0(0, r )  = ~~,ez  e'~i""2 is the theta function. 
In the case of the Fermi statistics we obtain 

oo 

~(~) = 1 ] ( i  + ~6)j~c6) 
k = l  

If the number of particles or summands is chosen, then the corresponding generating functions are 

1 
~ ( z ,  ~) = 1-[ (i- z ~ 6 ) ~ 6 ~ ,  ~ ( z ,  ~ ) =  II(i + z ~ 6 ) ~ 6 ~ .  

According to the scheme of §2, all these functions determine certain measures p"  on the canonical ensemble 
and ;l~ on macrocanonical one; the measures #~ and p~,z are multiplicative, and hence we can apply 
our method to determine the corresponding limit shape. 

6. C la s s i ca l  g e n e r a t i n g  f u n c t i o n s .  The above examples are covered by a general function of the 
form 

c o  oo  
1 

~(~) = I I  (i- ~ 6 ) ~  or ~ (~ )  = I-[(i + ~ 6 ) ~ ,  
k = l  k = l  
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where {b~ } is any sequence of positive integers. The corresponding distribution on T ,  can be interpreted 
as follows: assume that  there are bk different types of summands  equal to k (particles with energy k), 
and all partit ions differ in the number and in the type of summands;  the distribution is assumed to be 
uniform. For the later use, as well as for the calculation of the logarithmic asymptotics for the coefficients 
of ft(z) (see Meinardus'  theorem in [13]), only the following constant  a determined by the sequence {bk} 
is substantial: let Y:~°~= 1 b~/k  s be the corresponding Dirichlet series and let it converge for all s such that 
Res  > a > 0. Note that  a = 1 for Example 1 (bk =- 1), a = 1/2 for Example 5 with d = 1 ( j l ( k )  = 1 
if k is an exact square and 0 otherwise). According to the well-known theorem (see Siegel [14]), a = d /2  
for jd(" ). 

Thus, in the d-dimensional model of the ideal gas, the generating function can be replaced by 

1 d - 2  
1- I ( l_zxk) [k0( , ) ]  ' where f l(d) = 2 ' c~ = /3 + 1 ,  d > 2.  

In particular, our fundamental  case I-I 1/(1 - x k) corresponds to fl(d) = 0, or d = 2. 

7. F i x e d  sizes o f  p a r t i t i o n s .  We only mention uniform distributions on partit ions with fixed growth 
of the number  of summands and their sizes. In this case, the corresponding diagrams belong to a rectangle 
with fixed growth of its sides; we must  consider a sequence of multiplicative measures instead of a single 
one to apply this technique. The same situation occurs in the case of quasi-Boltzmann statistics (see [4]). 
We consider an example below. 

8. V e c t o r  p a r t i t i o n s .  Let d 6 I~l and n 6 Z~ ,  let Tan be the set of all partitions of the vector 
n = ( n ~ , . . . ,  n d) into summands with positive integer coordinates, and let T d = [..J T d . 

The generating function 

1 
I I  = 

(k, ..... kd ) , eZ~ 

corresponds to the multiplicative measure that induces the uniform measure on the set T d of vector 
partitions. 

Other multiplicative measures can be generalized to the d-dimensional case as well; for example, 

ft(z) = 1-[ (1 + and so on. 
kEZ~. 

A special class is formed by strict partitions (the product  is taken over all vectors ( k , , . . . ,  kd) 6 Z~ 
with coprime (in the whole) coordinates, see [8]). Recall that  for d = 2, there exist two different geometric 
interpretations of vector partitions (see §2). As mentioned above, in statistical physics, vector partitions 
correspond to systems with additional first integrals. 

§4. M a i n  R e s u l t s  

1. W e a k  e q u i v a l e n c e  o f  e n s e m b l e s .  Here we consider only ordinary (one-dimensional) partitions 
and do not choose the number of particles. Let /~  be a multiplicative measure on T,  x 6 (0, x0). 
According to §1, first we must find a scaling sequence {a,} = a.  Then we can construct  the mapping 
ra: T - ~  ~D. 

Recall that  #~ = )~,~ ft(z) - 1 Q , z ~ # "  . 

T h e o r e m  4.1 (scaling). For the multiplicative measure induced by the generating func t ion  

ft(x) = 1 / H ( 1 -  z )Ik l, 
k 

as the scaling { a ,  } such that a nontrivial  limit of  measures lira r~px  ezists in the space ~D of  generalized 

diagrams we can take 

a ,  = n 1/(2+~). 
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In particular, for /3 = 0 we have a ,  = v/-n. 

The same scaling is appropriate for 5"(x) = I-I(1 + zk)[ ~]  . 

T h e o r e m  4.2 (singularity of the limit). Under the scaling of Theorem 1, the limit lim~_l r~/~ ezists 
and is a singular measure concentrated on some continuous curve. 

T h e o r e m  4.3 (weak equivalence of ensembles). Under the conditions of Theorem 1, the macrocanonical 
ensemble is weakly equivalent to the canonical one, i.e., 

lim r* /~  = lim r ' /~".  

2. Expl ic i t  a n s w e r s .  

T h e o r e m  4.4 (limit shape for the generalized one-dimensional Bose statistics). Let 

o o  

1 
5"(z) r l "  

1 1  (1 - ~k)tk~l 

be the generating function and let #~ be the corresponding multiplicative measure. 
Let the measures ~" on T. be induced by the measures IJz. ( I f / 3  = O, then ~" is the uniform 

distribution on 5~,,.) Introduce the mapping ra: ~,, -'* 9 for the scaling a = {a ,} ,  a ,  = n 1/(2+a) , and 
the functions 

~ ( t )  = n-C,+a)/c~+al ~ r~(k). 
k > t n a / ( 2 + l  ~) 

(Recall that rk(A) is the number of summands k in the partition A .) 
Then for any e, e > O, and a, b, 0 < a, b < ~ , there ezist no such that for all n > no we have 

g={,~ e ~P,,: sup I~x(t) - Ca(t)l < e} > 1 - ~, 

where Ca(t  ) is the function (probability density) defined by 
oo e--cu 

c a ( t )  = u a d ~ ,  (,) 
1 - -  e - c "  

and c is a constant defined by f o  Ca( t )d t  = 1. 

In particular, for /3 = 0 we have Ca(t  ) = - (v / -6 /Tr ) ln (1 -  e(~r/v~)t), c = ~ ,  or, in a more 
symmetric form, 

e - ( ' l v ~ ) z  + e -('qv'~)y = 1. (**) 

This expression was first derived by means of some formulas in [151 (see [16, 19]) by the author,  who 
later obtained this result in a more natural  way that  was generalized to a wide range of problems in the 
present paper. 

For t3 = 1, we have 

C,(t)  : - t  ln(1 - e -¢,) + c - '  Li2(e-Ct), 

where Li2 is the dilogarithm, 
oo Un  

u2(u) = E 
n----I 

The function Ca(t ) can be expressed by the series of the partial F-function [17]: 

Ca(t)  = 1 - t -c" du = ua e-Ck" du = caka+l ua e - "  du 
k = l  k = l  k t  

ca k=, ~ r(/3 + 1, ckt) ~ ~ = ,  

(a =/3 + 1 = d/2  is a simple pole of the corresponding Dirichlet series, see §3). 
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R e m a r k s .  1. The measure it" on :P,~ corresponding to /3 = (d - 2)/2,  d > 2, coincides with the 
Bose statistics of ideal gas for dimension d (the number of particles is not fixed for this "photon case"). 
Thus, the function Co(t ) in Theorem 4.4 (formula (*)) describes the density of the distribution of energy 
over the spect rum of particles; the typical energy of a particle has the order of E 2/(~+2) (E  = n) and is 
bounded for /3  > 0 (d > 2). 

2. An explicit formula for the measure tt" on T ,  can readily be obtained in terms of the Gauss 
coefficients. 

3. Multiplicative measures on the microcanonical ensembles ~Pn, N (that is, ensembles of partitions with 
chosen number  of summands)  can be obtained from the functions 

oo 

~(=) = rI(i- z=~)-tk'J.  
k = l  

To obtain the thermodynamic  limit, we must choose the growth 

N = N(n)  = vn d/(d+2) = vn 1-2/(2~+3). 

The corresponding limit shape can also be found by our method;  for d = 3, we obtain a natural  explanation 
of the Bose--Einstein condensation. However, another growth of N(n)  can be considered as well. 

Similar results can be proved in the case of partitions into mutually distinct summands  (the Fermi 
statistics). Let 

oo 

k = l  

we construct the corresponding measures /~= and it" on the macrocanonical ensemble T and on the 
canonical ensemble T , .  In the above notation, the answer can be writ ten in the same terms. 

T h e o r e m  4.5 (the limit shape for the generalized Fermi statistics). For any e, e > O, and a, b, 
0 < a, b < ~ ,  there exists no such that for n > no we have 

t ,"{~e~'.:  sup I~,(t)-c$(t)l < ~} > 1-~,  
te[,,bl 

where C~(t) is the function (probability density) given by 

oo e-CU 
c ~ ( t )  = u~ du (***) 

1 + e -c" 

with c defined by 

C ( t )dt  -- 1; 

in particular, for [3 = 0 (the uniform distribution on the partitions into mutually distinct summands) we 
have  

c~( t )=(V-~l~) ln( i+e  -(~/v~)') or e-C~/'m)"--e-C~/Vr~)~= i. 

Consider the quasi-Boltzmann statistics (see [5, 6]) 

oo 

Y(=) = e=/('-~) = I I 
e,v h" 

k=l  

It corresponds to the distribution on 2 defined by the formula for a multiplicative measure: 

x k  i 

~,~{~ : r~(~) = i} = 7 e-*'" 
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T h e o r e m  4.6. The limit shape for random partitions with the statistics pr is given by formula 

lim/a~r{A: sup I~x(t)-e-'l<e}= 1. 
x ~ l  0 < t < o o  

The same curve C(t) = e - t  is the limit shape for the measures pn (induced by la~ on ~P,, ) as n ---. oo. 

Another class of statistics arises if one bounds the growth of summands in the parti t ion and the number 
of summands. We consider the function 

SvT 
1 

EN(Z) = H l _ t x k -  E qN(n 'm) t~z '~  
1 n,rl~ 

and try to find the limit shape as n = N -* eo under the condition m = p v ~ .  This means that the 
corresponding distribution is uniform on the partitions of N whose number of summands  is at most pv/'N " 
and any summand is at most 0v/N ". The corresponding diagram belongs to the rectangle p v ~  x Ov/N, 
p 0 >  1. 

T h e o r e m  4.7. The limit shape is defined by 

1 -- e c°  1 -- e - c °  
e - e l l  + e - c x  = 1 .  

1 - -  e -c(0+p) 1 - -  e - c ( O + a )  

For p = O (square), this function is 

e - c y + e  - c x :  l - e  - c °  

with constant c defined by the condition f o  Y dz = 1. As 0 ~ oo, this function tends to that from 
Theorem 4.4 (/3 = 0), formula (**). 

Now we consider vector partitions. We present the simplest example related to the uniform distribution 
#'~ on the vector partitions ~ .  Let 

= p d ( n ) z n  ; 

k 

where x = ( z l , . . . ,  Zd), k = ( k x , . . . ,  k~), n = ( n l , . . . ,  rid), and x k = I-Iig=l z~ ' .  We define the scaling 
for the case n = ( n , . . . ,  n): 

+1) ¢P(n(d+ t) RS, t = ( q ,  , td)  --* n ( d + ' - ' t  and  - nd/  ) - '  

T h e o r e m  4.8. For any ~, e > O, and d, d > 2, we have 

t 

where 

Cd( t )=" / -dL id  exp - 7  ti , 7 = ~ ( d + l ) ( d + l ) - ~  L i a (x )=  - -  d > 2  
n d  ~ __ • 

i : l  n:l 

R e m a r k s .  1. For d = 2, the density Ca is bounded on R~_ unlike the case d = 1. 
, n i " 2. For d = 2, the vector part i t ion (hi n2) = E i (  1", n ~ )  has another geometric interpretation, namely, 

as a convex broken line that  connects (0, 0) and n = (h i ,  n2) with the vertices at integral points. This 
n i / n  2 . It remains to interpretation is related to the ordering of summands in ascending order of the ratio i i 

consider the partial sums of these vectors in the above ordering. The corresponding asymptotic problem 
was studied in [8-10]; the method of the present paper makes it possible to refine these results. 

3. The ordinate set of ~x is a (d + 1)-dimensional Young diagram; however, this diagram is not 
arbitrary, because it necessarily satisfies a certain positivity condition (since ~0x is a distribution function 
in a sense). Thus, we have found the limit shape for the uniform distribution on special d-dimensional 
Young diagrams. The problem about the limit shape of uniformly distributed many-dimensional diagrams 
is still open, even in the three-dimensional case. 
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§5. Statements of L e m m a s  

We sketch the proof of the results of §4. We use the notation of §§1-3. For the sake of simplicity, 
we consider ordinary (not vector) partitions only and multiplicative measures on T and T , ,  respectively. 
Each of these measures can be described by a generating function that  is analytic in the disk Ix I < 1 and 
expanded in an infinite product:  

oo  

= 1-[  = r, sk(r)  _> 0 .  
k r : O  

The measure bt, is defined by formula (2.1), and the measure pn by formula (2.2). The relation between 
these measures is given by 

u s  = (5.1) 
n 

where Qn is the parti t ion function (see Lemma 2.1). If the scaling a = {an} is chosen, then the mappings 
r~ : T ---* :D are well defined, and the measures p= and pn map to r :p= and r : p " .  We preserve the same 
notation for them (p) without risk of confusion, since the scaling is chosen uniquely. 

Formula (5.1) shows that  pz is a convex combination of  the measures p" .  Thus, the following statement 
is obvious. 

L e m m a  5.1. I f  the measures pn have weak limit in ~D , then the measures p= have the same limit as 
z---~l .  

By the ergodic case (point case) we mean that in which a limit measure for p~ as z ~ 1 exists and is 
singular, i.e., is concentrated on some element of ~D and is a 6-measure; this element is called the limit 
shape (configuration, distribution) of the problem. If the limit exists but  is not a 6-measure, we speak of 
the nonergodic case. (This is the case, for example, for the Haar statistics.) 

The inverse s tatement  needs "Tauberian" arguments and is nontrivial in our situation. 

L e m m a  5.2. I f  the multiplicative measures pz have weak limit in ~D as x ---* 1 and if  the limit measure 
is singular, then the measures pn have the same limit. 

The proof is substantially based on the fact that  the measures p= are multiplicative; in fact, it is a 
Tauberian-type theorem. The problem of general Tauberian theorems in this setting (for the nonergodic 
case and for nonmultiplicative measures) is of great interest and, seemingly, has not been studied. Now we 
can restrict our investigations to Gibbs' measures p~. Since they are multiplicative, the problem reduces 
to that  of probability theory (namely, to the local limit theorem). Lemma 2 states, in fact, the equivalence 
of the macrocanonical ensemble to the original canonical ensemble. 

Below we consider the generating functions of the form 

oo  oo 

~(x)=H(1-zi:) -{ka], ~(z)= 1-1(1+xk) [k'~], ,G_>O. 
k = l  k = l  

The case of functions of several arguments or that of functions 9"(z, x) = l-Ik(1 + zzk)t ka] is only more 
cumbersome. 

The scaling for these functions is completely determined by the exponent /~, as.follows. 

L e m m a  5.3. Any multiplicative measure #'~ determined by a function of the above type and transferred 
to the compactum ~D by the mapping r;  with the scaling a = {a ,} ,  a ,  = n (2+a)-1, has a singular weak 
limit C = C( .  ) E ~), that is, 

: sup c ( t ) l  < : i .  
bl ~t~_b2 

where [b~, b2] C (0, oo) is arbitrary segment in R+, i.e., 

w-l im/~ = 6¢, 
X----* 1 

1 0 2  



and C( .  ) is the limit shape. 

Lemma 5.3 is proved together  with explicit determinat ion of the weak limit. Namely, at this point  we 
face the same difficulty as in the saddle-point method.  In fact, it suffices to find the expectat ion of the 
measure p~ on ~D and to es t imate  its variance as z ~ 1. However, we must  choose z for which we can 
apply the proper ty  of being multiplicative (independent).  Consider the expression 

E ~ a ( t )  = E= a--9-" Z r k ( A ) =  E=n(A) "t-' Z rk(A), 
n 

k>ta.  k>_tn(A)~ 

7 = (2 +/3)  -1 , E~ = E u . .  (5.2) 

Since n(A) depends  on A,.we must  first choose x = x ,  such that  n(A) has the desired value. 

L e m m a  5.4.  We have 

E=rk(A) = y[In~'k(y)l'l,==k, E ,  Z krk -- E,n(A)  = x[ln 9"(z)]'. 
k 

The equation (for Y of the above type) 

Exn(A) = z[InO'(x)]' = n E N 

has a unique solution z ,  E (0, 1), and we have 

The choice of x,~ is just  the choice of a saddle-point contour  (critical point  in the Laplace method,  
and so on) for es t imat ion of the par t i t ion function. The  advantage of the probabilistic me thod  is tha t  it 
suffices to evaluate the variance instead of troublesome es t imat ions  near the saddle point  (see L e m m a  5.6 
below). 

The  above l emma makes it possible to replace n(A) by n in (5.2), and thus to find the expectat ion 
Ex~;~(t), which gives the value of the limit shape at the point  t .  

L e m m a  5.5.  For 5=(z) = 1-Ik°°=1(1 - xk) -[k'l we have 

E~.~a(t) = C(t) = / o ~  e~CU 
u # du, (5.3) 

1 - -  e - o n  

where c is a constant. 

The  l emma follows from the fact tha t  the sum 

n 1 - - 7  
k>fn'~ 

in (5.2) is an integral sum for the r ight-hand side of (5.3). 
The  same manipula t ions  can be used for the other above-mentioned functions. 
The  last l emma states tha t  the limit measure is singular, i.e., that  it is a ~-measure concentrated at 

the limit of the expectat ions C(-  ). 

L e m m a  5 . 6 .  lim Ex, [~a( t )  - C ( t ) ]  2 = 0 .  
n " - *  O O  

Realization of this scheme for more  general measures (even for multiplicative ones) encounters analytic 
difficulties, bu t  it seems that  the above scheme is adequate to many  problems of asymptot ic  combinatories,  
to applications and addit ive problems of number  theory, to some geometric applications and, possibly, to 
statistical physics. 
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§6. V a r i a t i o n a l  P r i n c i p l e  

A completely different approach to problems of asymptot ic  combinatorics and,  in particular,  to the 
problem of limit shape is possible; this approach has features of the functional integral method ,  the minimal 
action principle, and  the large deviation method  in probabil i ty theory. For the sake of definiteness, we 
suppose that  a measure /~"  on the Young diagrams is given, where the Young diagrams are defined on the 

1 ~ Z +  - L ,  and let F be an element  in ~D that  belongs to R~.. Consider sequence of lattices ~- 7.+ x r, 
its e-neighborhood U,(F) and find /z"{A : A E Ue(F)}. Under  an appropriate  scaling 7,* we can find the 
limit 

l im lira __1 In/~"{A : A E U,(F)} .  
• " " ~ 0  n - - , , o o  n "!f 

For chosen measures /~n, this limit (if it exists) defines a functional of action on curves in ~D. It is 
natural  to conjecture tha t  the limit curves for statistics /z '~ as n ~ cx~ (if these limit curves exist as well) 
provide the m a x i m u m  for this functional.  The  separate question is whether  the set of max imum points 
for this functional  coincides with the set of possible limit curves. If they do coincide, then we say that  
the variational principle holds (for the problem under  consideration). The  maximal  Value itself can be 
regarded as the entropy of the sequence p" ,  and the value of the functional on any curve as the capacity 
of this curve; see [8]. We state  here an assertion that  shows the validity of the variational principle for all 
examples of §§3-5. Nevertheless, an explicit formula for action is sometimes ra ther  cumbersome.  

Consider the uniform dis t r ibut ion on the parti t ions (diagrams) that  belong to a square; to be more pre- 
cise, we choose the square [0, 1] 5 and consider the set X .  of all monotone  nonincreasing step-functions ~ ,  
~(0) = 1, ~(1) = 0, such tha t  the steps of ~ belong to the nodes of the lattice (-~Z) 2, and  its integral 

f :  ~(t)dt takes a given value p,  0 < p < 1/2. Let #"  be the uniform distr ibut ion on X , .  Let 

f e el(f0, 1]), f ( z )dx  = p < 2 '  f (0)  = 1, f (1)  = 0, f '(x) < 0, x e [0, 1]. 

The  following theorem formulates the variational principle for this problem; the Lagrangian looks like the 
entropy. 

T h e o r e m  6.1.  The relation 

l im lira 1 f0 x ,- .0 ~ ln/~,,{~ ~ X,, : I ~ -  f l  < e} = C ( ~ l ) d t  

holds, where 

GCu) = ( 2 / u  + u)111(1 - e - c o ' + = / ' ) )  - u t u ( 1  - e - c ' )  - ( 2 / u )  l n ( 1  - e - = ' / " ) ,  (6 .1)  

and c is a critical point of the function G. 

A similar variational principle can be formulated for the entire semiaxis. In this problem (of limit shape 
for the part i t ions whose diagrams belong to the square), the variational principle holds, tha t  is, the limit 
shape is a unique solution of the variational problem indeed. 

T h e o r e m  6.2.  The limit shape from Theorem 6.1 is a unique solution of the variational mazimization 
problem with Lagrangian (6.1). 

It is interesting to compare  the Lagrangian (6.1) to tha t  related to the additional assumpt ion  that  the 
functions f are convex, i.e., f"(z)  > 0, in which case we consider only the diagrams whose upper  linear 
envelope is convex. In this case, the variational problem was s ta ted in [8], and the Lagrangian has the 
form 

fol f"(t)l/Sdt =- /r /  ~/3ds,  

where x is the curvature of the graph FI  of function f .  It was proved in [8] tha t  the variational principle 
holds in this case as well. 
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