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Abstrac t  

The propagation losses in the fundamental mode of a bicone made of highly reflecting metal or a dielectric 
of large refraction were approximately estimated using Leontovich's boundary condition. A 400-fold con- 
centration of the energy flux density has been obtained in a cross section which is much smaller than A. 
Here, the losses are 2.5% at A = 550 nm in an Ag bicone and 12% in a semiconductor bicone with a band 
gap of ~1 eV for hu larger than the band gap. The excitation efficiency of a bicone has been estimated. 
While not too large, it can be increased significantly using the method proposed in the present paper. The 
application of the optical bicone for the multiplication of a semiconductor-laser fl'equency is discussed. The 
results obtained are also of use in scanning near-field optical microscopy and in experiments on focusing 
laser pulses of ultrahigh power. 

1. I n t r o d u c t i o n  

Semiconductor lasers have been finding extensive application in various high-tech devices. However, it is 
well known that  the characteristics of these devices would be noticeably improved for 2-4 times shorter lasing 
wavelength. Variation of the latter requires a change in the chemical composition of the compounds used in the 
fabrication of the semiconductor laser. This demands substantial modifications in semiconductor technology. 
We discuss below an alternative approach to the solution of the problem of increase in semiconductor laser 
frequency. This approach consists in the multiplication of the laser frequency. For efficient nonlinear frequency 
conversion (including multiplication), enhanced intensity of the laser radiation is needed. 

In the present paper, we discuss a biconical waveguide integrated with a laser in the same crystal, which 
provides a multiple increase in the radiation intensity. In some sense, this device is a development of the idea 
of Javan's  metal~oxide-metal diode [1]. Radiation with A = 3.39/~m was obtained by frequency multiplication 
using such a diode. 

In [2], we considered the subwavelength concentration of an electromagnetic field with a double-connected 
conical waveguide (bicone). Experiments on the excitation of convergent and divergent optical waves in the 
bicone with a vertex having a rounding radius much smaller than the wavelength were also described there. 
Our first results on this problem were presented in [3, 4]. 

Experiments on the subwavelength concentration of a microwave electromagnetic field with a so-called 
bow-tie antenna were described in [5]. The bow-tie antenna was fabricated from two metal triangles whose 
vertices were in close proximity without touching each other. The electromagnetic field is concentrated in 
the small area between the vertices of the triangles. It is clear that  the bow-tie antenna is one version of the 
biconical waveguide. 

To our knowledge, the problem of fabrication of a waveguide with vertices of cones several nanometers 
in size is solvable using state-of-the-art technology. The metallic electrodes made in the shape of triangles 
have been reported in [6]. The distance between the vertices of the triangles was 4 am, with the rounding 
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radius close to 10 nm. Such electrodes are well suited as a bow-tie antenna for the concentration of the laser 
radiation. 

It is common knowledge that  the results of microwave theory and experiments are not directly applicable in 
the optical wavelength range. The dielectric properties of metals at the optical frequencies differ substantially 
from those in the microwave range. The permit t ivi ty s of the well-reflecting metals at the optical frequencies 
is 

c - -  I '1 >> 1, ~" << s'. 

At the microwave frequencies, 
i41ra 47ccr 

a-- , -->>I. 
uy ~d 

This problem calls for special investigation, which is performed below. The propagation losses in the fun- 

damental mode of the optical bicone made of highly reflecting metal or of a dielectric of large refraction at 
wavelengths close to 1 pm, 550 nm, and in the hard UV range (40 and I0 nm) were found by the method of 

successive approximations. The excitation efficiency of a bicone was estimated. 

2. R e s u l t s  o f  C a l c u l a t i o n s  

Let us consider the approximate boundary condition for the tangential field components (Leontovich's 
boundary  condition [7, 8]) at the interface of two media, one of which having lell ~ 1 and the other having 

>> 1: 

where g is the normal to the surface. With p = 1, Isl --+ oc, and b o u n d e d / t t ,  we have/~t = 0, which coincides 
with the condition at the perfectly conducting boundary. Due to the equation 

i_ww/~ = ro t /~ ,  (2) 
c 

the equa l i ty / Jn  = 0 follows from the equality Et = 0 at the surface [8]. Actually, let us perform the following 
calculations. We take an area S at the interface and integrate Eq. (2) over this area. After transforming the 
integral of rot/~ to the contour integral, in view of the Stokes theorem, we finally obtain 

f Er " dS = / r~163 " Z dS = / s " d['= 
S S C 

(3) 

At reasonably small S, we can extract  the fac tor /~ ,  g outside the integral sign as a constant. Hence it follows 
that  H~ is also equal to zero in alternating fields (cz r 0) at the surface with/~t = 0. 

The conditions /~t = 0 and Hn = 0 appear to be the same as in a boundary problem with perfect 
conductors, which is solved as an outer problem. Thus, it is possible to use the known solutions for 

i47ra 
e = i e " = - -  >>1 

w 

as a zeroth-order approximation for other values of e, whether it be an imaginary, complex, or real negative 
quantity. 
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For Ag at A = 550 rim, we have [9] 

= -]g' l  + ie" = -12 .7  + i 0.46 

Using 

A e_iaar/c ' 
EO = Hp -- r s i n 0  

FT = H,,= He=O, 
(4) 

as a zeroth-order solution [10], one can obtain /~t from (1) and then the inward energy flux in the metal. 
Here, the true value of c should be used in (1). The real part  of the flux are the losses of a pure transverse 
(TEM) convergent wave propagating towards the vertex. 

The radial component of the field near the surface of the imperfect cone inside the bicone deduced 
employing (10) and (4) is equal to 

E r  = 2 I 'la/2 - i igl-1/2 Hr" (5) 

One should take for H~ the value of the magnetic field in a zeroth-order approximation. As a result, we have 

Re/5 _ c ~-" 
4r~ 2 I~'la/~ H~(O = 01,02). (6) 

The losses dN at the arc portions of cones of width dr, which are at a distance r from the vertex, are 

dN - -  2 2 Ic'13/2 [H~(01)sine1 + H~(02)sin02] r dr. (7) 

These losses should be normalized to the energy flux N through the bicone nappe at a distance r from the 
vertex. After that ,  one can determine the absorption coet~cient a in the following way: 

09_ 

c f EoHFr2 sin 0 dO 
2 J 

ol 
_ tan(0u/2) cr2 sin s 0t H~(01) in (8) 

2 tan(01/2) 

and 

__ ( tan(02/2 ) ~ -1  1 
1 dN c "  (sin_101 +sin_lO2)  l n t a n ( 0 1 / 2 ) ]  7" 

N - 2 Ic ' la /2  - .  ( 9 )  

The variation of the total energy flux in the TEM wave as it propagates from a section of a transverse 
radius P0 to that  of radius p is described by the formula 

N = Noe ~ln(p/p~ (10) 
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TABLE 1. Calculated Losses in the Tungsten Bicone at Two Different Wavelengths 

40 nm 0.778 

10 nm 0.9637 

N/N0, 
k ,3 Po/P = 20 

0.293 1 e -3 = 1/20 

3 . 1 0  -2 5 .2 .10 -2 e -~ 

where 
~" ( tan(02/2) ~-1  

/~ - -  2 I~tl 3/2 (sin-I 01 Jr- sin -1 02) . i n  ~ /  

For Ag and 01 = 7r/4, 02 = 37r/4, we obtain 3 = 8.2 �9 10 -3. According to formula (10), the power of the 
convergent wave propagating from the section P0 = 1 #m to the section p -- 0.05 # m  decreases by only 2.5%. 
When passing to the smaller sections, the conditions of validity of formula (1) [8] are violated. This is due 
to the variation of the surface curvature in such a way that  the normal derivatives of the field components 
inside the metal are no longer greater than the derivatives in the tangential directions, The curved surface 
has a pronounced focusing effect on the transmitted wave. 

Let us carry out a calculation for a semiconductor with an energy band gap of ml eV. We suppose that  

ct = 10, t t  = __c~A = 1.5, A = 10 -4 cm , ct = l0 s cm -1. 
27r 

The chosen values are typical for Si, Ge, and GaAs. For a cone of the same geometrical shape and sections 
which differ by a factor of 20 (1 gm and 50 nm), one obtains an attenuation of 12%. 

Let us calculate the losses in the tungsten bicone at wavelengths of 40 and 10 nm using the data  on the 
optical constants of tungsten [11]. These data are presented in the form of the real (n) and imaginary (k) 
parts of the refractive index. We calculate the permittivity by the formula 

e =  (n + ik  ) 2 = n 2 - k 2 + 2 i n k  = a t + ie ~. 

The results of the calculations are summarized in Table 1: 
To justi~ ~ the calculations performed, we appeal to the results of [12]. It has been shown there that  the 

fundamental, i.e., TEM wave, along a metal cylinder always exists since the conductivity of the metal a is 
not strictly zero. There is a reason to think that a similar situation also happens for a tungsten cone at 
wavelengths of 40 and 10 nm. We shall additionally study this problem in the future. 

Let us present some considerations on choosing the opening angles of the cones of a bicone. At 01 = 7c/4 
and 02 = 37c/4, the height of each cone is equal to the radius of the cone base. Therefore, the part  of the 
cone that  has a small diameter is not extended. The ohmic losses in such a cone are smaller than that in 
a bicone made of thin long needles. A bicone composed of blunt needles has a wave impedance Z0 of the 
order of 100 Ohms. In this context, the term "blunt" does not refer to the value of the rounding radius of 
the vertex of the cone. This radius can be as small as desired even for a blunt needle. Such a configuration is 
convenient in applications. A bicone composed of the sharp needles has a wave impedance of several hundred 
Ohms, which is less convenient. And finally, the heat flux from the tip of a blunt needle is more efficient 
than that  from the tip of a sharp needle. This circumstance may appear to be crucial in experiments on the 
generation of high power densities. 

We pass on now to the issue of the efficiency of excitation of a biconical light guide. One has to calculate 
which portion of a wave incident on the bicone is transformed into a convergent wave of the bicone. The 
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known results of the scattering theory of a plane electromagnetic wave by a sphere (Mie theory) are used in 
the following calculation. The results of this theory are adopted from [12]. 

An incident wave induces an oscillating current in a conducting sphere. One can imagine a transverse 
(with respect to the induced current) section of the sphere which is shut by the bias current. In this case, a 
volume arises where the amplitude of the electric field is high. This volume, filled with a nonlinear substance, 
serves as a source of radiation with converted frequency. 

The surfaces that  bound this section should be made conical. The vertices of the cones are closely spaced 
with respect to each other without contact. When the vertexes of the cones are in contact, the magnetic field 
is expected to be strong. This case is favorable for the magnetic interactions. 

The current amplitude is determined by the theorem on the circulation of the magnetic field 

/ /~.d/+ 47cj (11) 
c 

C 

The problem is to determine the magnetic field. The magnetic field of the wave scattered by the sphere looks 
like 

N-'~ i n 2n + 1 [b(~)rT~(3 ) + ia(~)~ (3) ] (12) ~ E o  ~ ~ i ~ t  

n = l  

Here, E0 and co are the amplitude and frequency of the field oscillations in the incident plane wave 

~_, (i) = azEo e ik~z-i"Jt , 

respectively. The sum in (12) contains all eigenmodes of a sphere, the coefficients b}[ ) being the electrical 

multipoles and a~ ) being the magnetic ones. Further on we shall restrict our consideration to the single term 

with a coefficient b~ s), i.e., to the electrical dipole. 
The zeroth-order term is absent in the sum of (12) since the sphere does not support  such a type of 

oscillation. However, there is good reason to assume that  the results obtained below will also be applicable 
to a bicone. 

Under these conditions, the magnetic field of the scattered wave is 

where 

3 b(~)rS(S) ~(s )  = __E 0 e - i~ t  i ~ 1 o11, 

= [0 sin01 h~l) (]gR) pl(cosO)sinqo_[ h l)(lcR)__ _cos , 

(13) 

(14) 

is the spherical Hankel function, H(11 ) (x) is a first-order Hankel function of half-integer index, and p l (cos  0) 
17 

is the associated Legendre polynomial. The  selection of the coordinate system is noteworthy. The z axis 
is directed along the propagation vector k of the incident plane wave, the x axis with the unit vector dx is 
aligned with/~(i),  the polar angle 0 is measured from the z axis, and the azimuthal angle ~ corresponds to 
rotat ion around the z axis and is measured from the x axis. The induced oscillating current J is aimed along 
the x axis. The circulation of the magnetic field is calculated along a contour at the surface of a sphere on 
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the plane 0 = 7r/2, i.e., on the plane z = 0. This corresponds to the 0-component of the magnetic field, i.e., 

to the coefficient of i'0 in formula (14) for ~ze~(3)11' The factor sin0 included in ms1110=~/2 takes the values 

sin(Tr/2) = 1 and sin(37r/2) = - 1 .  

The radius of the sphere Re will be considered close to 

2~c 
A =  

w 

With such a choice of Re, the argument of the function h]l)(x) is distinctly larger than unity. Because of 
this, the asymptotic formula 

h~l)(x) ~ x - i t  iz 

is found to be suitable for h~l)(x). 
formula 

The associated Legendre polynomial is obtained with the generating 

pT~, _ (1 - ~2)m/2 d~+m(~2 _ 1)n (15) 
2nn! d~n+ m 

Using formula (15) we obtain 
P11 (cos 0) = sin 0 .  

The coefficient b~ ~) at IkRel >> 1 has the form 

�9 tan(Np) - N tan p 
b~ ~) ~ - e  -~~ cosp tan(N0) + iN  

where 

(16) 

k~ 
p =  kRe,  N =  k "  

In deriving the formula for b~ ~) we took into account that  

# l - ~ P 2 = # = l .  

It is interesting to note (vis-a-vis [12]) that  the expansion coefficients a~ ) and b~ s) are the oscillating functions 

of p and n, which is clear also from the example of the b~ ~) coefficient. The swing of the oscillations is from 
unity to zero. 

The calculated amplitude of the oscillating current is expressed as follows: 

3 c E t a n ( N p ) -  N t a n p  (17) 
d 0 =  ~ i~ .  0cosp t a n ( N p ) + i N  

For highly reflecting metal at the optical frequencies, 

= -I~'1 + iJ', rc'P >> tJ'l. 
Let us assume that  

As a result, we have for the calculated amplitude of the oscillating current 

3 c 1 - i l e ' l  1/2 
Jo -- ~ / ~ E 0 -  ~ Tf~-J] cosp (1 - ]e ' lx /2 tanp)  (18) 
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for 
N = ilc'l ~/2, p = Ra  g 

C 

The function 
cosp (1 - le '11/2 t anp)  for le'l 1/2 >> 1 

(which is almost valid for Ag) has max ima  at 

Pn = 27rn + (37r/2) + Ap with Ap = Ic*F 1/2. 

After expanding cos Pn and tan  Pn near p = Pn into a power series of Ap and keeping first-order terms, one 
obtains 

3 C (1s _~_ Is 1 J0 = ~ g E0 i) 1~'11/2 (19) 

The  absolute value of the current is 

3 c It'll/2 
14] = ~ E 0  (ic, I +1) t /2 ,  (20) 

and the ampli tude of the oscillating charge 
q_~qo e-iwt 

reads 
3c E 

q0 = 4--~ 0. 

For the electric field s t rength in the gap we have the value 

E _ q o _ 3  c Eo 1 3 Eo ( ~ ) 2  
s a k~, a 2 - 4 (2~) 2 ' (21) 

where a is the lateral size of the vertex of the bicone. 
For A = 1000 nm and a = 50 nm, we have an 8-fold field enhancement  in the bicone as compared to the 

field of the incident wave and a 64-fold increase in the power flow. Unfortunately,  the numerical coefficient 
in the formula for E is ra ther  small: 

3 (27r)2 ~ 2 . 1 0  .2  . 
4 

The  intensity of radiat ion impinging on the bicone should be  enhanced by a Fabry -Pe ro t  interferometer with 
spherical mirror which is tuned to the resonance. This is commonly done in microwave experiments.  

3.  D i s c u s s i o n  

Figure 1 shows a schematic diagram in three projections of a semiconductor laser with an integrated 
(in the same crystal) bieonical waveguide and matching interferometer.  This bicone has the form of a bow 
tie in the figure. It  is appropr ia te  to use tr iangular tabs having variable thickness so as to provide fixed 
wave impedance of the bieone along the whole length. Tile biconical waveguide is separated from the ou tpu t  
facet of the laser by a gap filled with a t ransparent  medium. This gap forms an interferometer,  which 
provides a drastic increase in the intensity of the radiat ion impinging on the bicone when properly tuned. 
I t  is conceivable to fabricate the frontal surfaces of this gap as spheres. In this case, the wave impinging on 
the bicone becomes spherical also. This provides an additional increase in the efficiency of excitat ion of the 
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top view 

O 
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Fig. 1. Schematic diagram of a semiconductor laser with an integrated biconical waveguide in three projections. 

bicone. The heights of the triangles should be a multiple of A/4 to make it possible to have a resonance in 
the bicone. The conversion of the radiation frequency occurs in the nonlinear substance placed in the space 
between the vertices of the triangles. 

Several groups have presented results of successful experiments on the excitation of the fundamental wave 
of the biconical waveguide (though without a discussion of the conditions of its existence) in the near infrared 
and optical ranges. The convergent wave traveling to the vertex of a bicone has been discussed in [1, 13, 14] 
whereas a divergent wave has been discussed in [15]. 

The field-concentration effect has been discussed in [13, 14] in terms of the electrostatic theory of dielectrics 
and metals. In [2] both convergent and divergent waves have been observed and discussed in terms of the 
waveguide theory. Experiments in the far ultraviolet range await performance, being of great importance. 

4. Conc lus ions  

To summarize, using the approximate boundary condition (Leontovich's boundary condition) the existence 
of the fundamental optical mode in a bicone made of highly reflecting metal or a dielectric of large refraction 
has been demonstrated. The mode losses for a 400-fold concentration of the power flow in a cross-section with 
a diameter much smaller that  the wavelength have been estimated. These losses are 2.5~c for a silver bicone 
at a wavelength of 550 nm and 12% for a bicone fabricated from a semiconductor with a band gap of 1 eV 
provided the energy quantum exceeds slightly the energy-band gap. The excitation efficiency of the bicone 
has been estimated. This efficiency is not large. Ways to increase it substantially have been proposed. The 
application of the optical bicone for multiplication of the semiconductor-laser frequency has been considered. 
The results obtained are also of use in scanning near-field microscopy and in experiments on the focusing of 
laser pulses of ultrahigh power. Undoubtedly, in the latter experiments the bicone will be destroyed but  will 
produce a short-term (for a few femtoseconds) increase in the radiation intensity of any laser having a good 
quality spectrum. 
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