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T E S T I N G  O F  V A R I A N C E  H Y P O T H E S E S  FOR 

N O N S T A T I O N A R Y  W H I T E  G A U S S I A N  N O I S E  

E. E. Zmeeva and A. F. Terpugov UDC 519.2:53.05 

Testing of  hypotheses as to the equality and proportionality of  noise variance to specified time functions is 
discussed. 

Analysis of noise in radio communications channels is of very great importance in the design of HF and UHF radio 

communication systems. 

White Gaussian noise, in which noise measurements x i made at certain times are normally distributed independent 

random variables with zero mean value M(xi) --- 0, offers a fairly good mathematical model of noise of this kind. White 

Gaussian noise is usually understood as noise in which the variances of all x i are equal, i.e., D(xi) = o 2. However, the noise 

encountered in practice is usually not stationary, i.e., the variances D(xi) = o2i vary in time. We shall henceforth refer to such 

a process as nonstationary white noise. 

Let the noise measurements be made at equal time intervals, and let {x 1, x 2 . . . . .  XN} be the measured values. Below 

we study a mathematical model of the noise in which the joint probability density of the {xi} has the form 

p (x,, x,. xn,) = I-[ n, V N  exp ~ , -  2-~-), 
l :=l  

(1) 

and refer to it as nonstationary white Gaussian noise. 

Many problems arise in study of such processes. In this paper we shall discuss problems associated with testing of 

hypotheses as to the behavior of the noise variance o2i as a function of i, i.e., actually as a function of time. 

TESTING THE HYPOTHESIS THAT THE VARIANCE 

IS EQUAL TO A GIVEN FUNCTION 

Consider testing of a statistical hypothesis of the form: 

14o : O{x,}=f (i),. i= 1, N, 

Hi : D{xi}::iA: (i).  
(2) 

In other words, test whether the dependence of D{xi} on i has the specified form f(i). 

To test this hypothesis, we construct a statistic that embodies the following basic idea: find a statistic S whose mean 

value is equal to zero under hypothesis H 0 but always greater than zero under the alternative H 1. It is desirable that the variance 

of this statistic be equal to 1 at least in the asymptotic case N ~ oo. Then the following decision rule will appear quite natural: 

if S < C, where C is a certain threshold constant, adopt hypothesis H 0, but if S >__ C, adopt the alternative H 1. 

Let us describe the basic steps in construction of this statistic. Since the hypothesis Ho:D{xi} = f(i), is to be verified, 

it is natural to take a statistic of the form 
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N 

st= ~ (x~--I(i) )2. (3) 

Let the true variance be D{xi} = fl(i), where fl(i) is a certain arbitrary function. We find the mean value of statistic S 1. 

Expanding the square and recognizing that M{xi2 } = fl(i), M(xi 4} = 3f12(i) for Gaussian random variables, we obtain 

h'  N 

M{St IHz} = E (it ( i)--:( i))2+2 ~ [~.(i). (4) 
l ~  t /=1  

We see that the first term in (4) has the required property, since it vanishes when fl(i) = f(i) and is always positive when fl(i) 

;~ f(i). However, the second term in (4) is redundant and must be removed. Since this term owes its appearance to the 

coefficient 3 in M{x4i}, it will disappear if this coefficient becomes equal to 1. Therefore the corrected statistic has the form 

/ = I  1=!  i----1 

(5) 

Now evaluation of the mean value of this statistic gives 

N 

M{S21Ht} = ~ (fl (i)--[ (i) )2, (6) 
•----| 

from which we see that M{S2] H0} = 0; M{S 2 [HI} > 0, i.e., this statistic meets the required condition. 

To obtain the f'mal form of this statistic we calculate its variance under hypothesis H o, when D{xi} = f(i). 

Remembering that the x i are independent, we obtain 

8 N 

D(S~tHo} = T,__Z f' (o .  (7) 

For practical application it is advantageous to normalize S 2 in such a way that its variance will be 1 under hypothesis H e. 

Therefore the final form of statistic S in testing the hypothesis that the variance is equal to the given function f(i) should be 

(8) 

The following properties will be satisfied for it: 

M{SI Ho} = O; D{SI Ho} = 1; 

/r " 8 ~ f ( i )  > o .  M {sit/,} = ]~  {1, (0 - / ( 0 ) '  ~ ,=, 
(9) 

The following theorem states the problem of choosing the threshold constant C in the decision rule: 

Theorem 1. If for a certain/t > 0 

N N 

�9 O ,  <', / [,Z_ ,' ,',]'""} -- (10) 

then as N ---, oo under hypothesis H 0, S converges across the distribution to N(0, 1), i.e., to a normal random variable with 

zero mean value and unit variance. 
Without presenting the proof of this theorem, we note only that it reduces to proof of the conditions of the Lyapunov 

theorem [1]. 

We can now state the final decision rule, at least for the asymptotic case N ---, oo. 
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Let C a be determined from the condition 

CI[ 

~ 1___~. e-. , 'a d x  = ,,, 
V'2,~ (]1) 

where a is a given significance level. Then: 

- if S < C a, adopt hypothesis HO; 

- if S > C a, reject H 0 at significance level ~. 

We note further that under alternative H 1 

a J=L P Ci) +8 ,=,~ f~(i) (f Ci) - f ,  (i))2 

and the following theorem applies: 

T h e o r e m  2. If  for a certain (5 > 0 

N 
llm '~ [ t'+*~ (0 + (k (0 "f Ci)F+ ' + (2 A (O-I (0 -/'~)'+~1 

N--,.~ [_~_ N N ] i+sra 
~ I '  (o + Z(I(O - A  (o)' 
|=i t=l 

then under alternative H l the statistic 

(12) 

= 0 ,  (13) 

- 2.r ! ( o  - ~ (A (o - / (o)' 
1=1 l--I 

-a Y' (o + 8 ~ 1 '  (0 (A C0 - f ( 0 ) '  
----- 1~1 

(14) 

converges across the distribution to N(0, 1). 

Proof  of  this theorem also reduces to verification of the Lyapunov-- theorem conditions. At least in the asymptotic case 

N --, oo, it enables to write the form of the power function of the proposed criterion. 

T E S T I N G  T H E  H Y P O T H E S I S  T H A T  T H E  V A R I A N C E  

IS P R O P O R T I O N A L  T O  A G I V E N  F U N C T I O N  

Let us now consider testing of a hypothesis of the form 

H0: D { x i } = C . l ( i ) ,  i = 1 ,  N, (15) 

H,: D{xi}=A:C. f ( i ) ,  

where f(i) is a certain function and C is an unknown arbitrary constant. In other words, test the hypothesis that the dependence 

of D{xi} on i is proportional to the function f(i). 

We use the same idea as above in constructing a statistic for verification of this hypothesis: find a statistic S whose 

mean value is zero under hypothesis H o and always greater than zero under the alternative H 1. 

We construct this statistic in several steps. 

1. Let hypothesis H o be true. Since the coefficient C is unknown, it must be estimated. Since M{xi 2} = C.f(i),  we use 

least squares to obtain an estimate (~ of C from the condition 
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N A 
R= ~_~ (xl--C[(i) ) 2 =o- rain. 

t= l  A 
C 

Equating the derivative of R with respect to C to zero, we obtain 

(16) 

A N I N  
(17) 

2. We take a statistic of the form 

N A 
S , =  ~ (x}--Cl(i)  ) 2, (18) 

which will be corrected later, as a basis for construction of the statistic that we need. For brevity we denote 

N 

F,, (N) = ~] p' (i). 
1=1 

(19) 

Then statistic S 1 can be rewritten in the form 

Sl = ~ xl 
l=[ 

1 x~ / ( i )  . 
F, (N) "l=l 

(20) 

Calculating the mean value of this statistic under alternative H 1, when D{xi} = C'f(i), we find that 

N N N 

'~,f[ ( i ) ' Z P  ( Q -  ( ~ f ,  (Of( i ) )  ' 
M {S, [ H d =  C z l=, ~=, ,=, 

F, (N) 
N N N 

+ 2C,'=~17 (O.ZP,=, (0 - Z / ; =  (OP (~) 
F 2 ( N )  

+ 
(21) 

The first term satisfies the necessary inequality, since according to the Schwartz inequality [2] 

N N N 

Z f;(/)  �9 N P ( i ) - -  (Z  fi (i) f (i))~_>o 
imi  1=1 l--~l 

and equality to zero can hold only when fi(i)/f(i) = const. The second term, on the other hand, is redundant and must be 

removed. 

3. To cancel the second term we note that M{xi4[H1} = 3C2f12(i) and that the mean value of the expression 

3F, (N) xl .  ~) '~( i )  - - ~ x t f ' ( i )  
1=1 I=l 

is nothing other than the second term in (21). Subtracting this term from S 1, we obtain the new statistic 

= 3 t~=~\ F , (N) }  F , ( N )  = x l f ( i )  (22) 

whose mean value is equal to the first term in (21) and therefore satisfies the necessary condition. 

4. For subsequent correction of this statistic we find its variance under hypothesis H o. Omitting the unwieldy 

�9 paperwork, we present only the final result: 

[ 2 (  F6(N) Fs(N) 
D{S21Ho} = C* 4F, (N) --  15F2(N ) F~(N) 

12 F~' (N.).~]. 
- -  -k- F ]  ( N ) ] J  (23) 
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We now apply the final correction to the statistic. We should like to obtain not only M{S I Ho} = 0 under this hypothesis, but 

also D{SIH0} = 1. To do this we must divide S 2 by ~ ,  but then the unknown C 2 appears in the numerator. 

Therefore C 2 must be replaced by an estimate. Since M{xi 4} = 3C2f2(i) under hypothesis H o, we find the estimate ~2 of C 2 

by least squares from the condition 

Hence 

N A 
(xr --3C~f 2 (i)) 2=~ min. 

t=l  A 
C 

A N 
C 2 = ~ XI ~2 (i)/3F4 (N). 

I = l  

Replacing C 2 in (23) with its estimate and dividing S 2 by "~Y{g~0} ,  we obtain the final expression for the unknown statistic 
in the form 

1 i ( 1 + 2  P ( i ) ~  , ~.~(~x~f( i ) )  2 
3--i=l 'Pi(N)) x' 1=, 

S = K -  
N ' 

Z xt f (i) 
1=1 

IV ( K = 3F, (N) 4F, C N) - F= (N) F l (N----) F l (N)I  

(24) 

(25) 

We now present without proof the principal results of analysis of this estimate. 

Theorem 3. If as N --, oo, F4(N ) t' + oo and 

~..(~ < + ~, (N) 
F I (N) 

(26) 

then (~2 converges almost certainly to C 2 as N --- oo. 

The proof of this theorem is based on the Gaek--Regnie inequality [3] and Kronecker's lemma [3] in much the same 

way as Kolmogorov's theorem is proven in [3]. 

Theorem 4. If there exists a 5 > 0 such that 

. . )/ Z f  +'~ (0 + 2(~f+,' (0 F, (N) 
lira i--i l = 0, (27) 
u.,.=( Fe(N) 4 F s ( N ) ]  l+6t~ 

F,(N) q-4F~(N l +  FI(N)] 

then as N --, oo the random variables 

" C ' ~  ) 1 -t- ,  F , (N ) ]  (i) 
i = I  

4F6(N) nu 4 Fs( N) C'V3~22 (F'(N)q- "F,(N) FI(N)] 
N 

tiN-=: [ ~. (x~iCT(i))~(i)]/C~2F4(N) 
121 

(28) 

converge across the distribution to a bivariate normal random variable with zero mean values, unit variances, and a correlation 
coefficient 

,m (,,, <,> -- "~ '"> / V ' ( N+~ F2(N) I -~F,(N) F,(N)+4F2(N ) FI (N)J  (29) 

367 



The proof of this theorem reduces to testing the conditions of the Lyapunov theorem for the random variable c~ N + 

,G~TN with arbitrary c~ and/3. Since a and ~ are arbitrary, it follows that ~y and rtN are jointly normal [4]. 

These theorems form a basis for proof of the next theorem: 

Theorem 5. If the conditions of theorems 3 and 4 and hypothesis H 0 are satisfied, the statistic S converges across the 

distribution as N --, co to N(0, 1), i.e., to a normal random variable with zero mean value and unit variance. 

This enables us finally to formulate a criterion for testing of the hypothesis. If it is found that S < C a (11), adopt 

hypothesis H o, but reject it if S _> Ca. 

TESTING THE HYPOTHESIS OF STATIONARY 

WHITE GAUSSIAN NOISE 

Consider testing of a hypothesis of the form 

H0: D{xi} = C V i =  1, N, 

H,: D{xi}=/=C, 

where C is an unknown constant. This is the hypothesis that the variance of the white Gaussian noise does not vary with time, 

i.e., the hypothesis that the noise is stationary. 

This hypothesis is a particular case of the foregoing hypothesis, from which it can be derived by putting f(i) = 1. Since 

FK(N) = N for all K in that case, the statistic for testing this hypothesis assumes the form 

2 N , L ,+=),y. , ,  l f ,g, ,v 
S =  / ,=,  ) 3N (30) 

N 

It is easily verified that all conditions of theorems 3 and 4 are satisfied. Therefore if S < C,~, adopt the stationary-noise 

hypothesis, and if S > C,~, reject it. 
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