
Russian Physics Journal, Vol. 40, No. 4, 1997 

S P L I N E  A P P R O X I M A T I O N  F O R  C O R R E L A T I O N  F U N C T I O N  

W I T H  M E A S U R E M E N T S  AT R A N D O M  T I M E S  

F. F. Idrisov UDC 519.2 

We use first-order splines to approximate correlation functions for measurement times forming Poisson or 

recurrent event flows. 

The correlation function of a stationary random process is its most important characteristic, and research on a process 

usually begins by approximating this function. 

Measurements of process values are usually made over equal time intervals. Sometimes, however, there are any of a 

number of reasons this is impossible, and measurements must be taken at random times. Under these conditions, the problem 

of approximating the correlation function is substantially more difficult. 

In this paper we consider using first-order splines to approximate correlation functions when the measurement times 

form Poisson or recurrent event flows. 

CONSTRUCTION OF APPROXIMATIONS FOR POISSON 

FLOWS OF MEASUREMENT TIMES 

Let x(t) be a stationary Gaussian random process with mathematical expectation M{x(t)} = 0 and correlation function 

R(r) = M{x(t)x(t + r)}. 

In order to approximate the correlation function, we consider the case in which the correlation function is of the form 

R('Q = Rx-,  _ _ + R ,  e t c h . - :  ~ - - ( t c - -  1)%, tc---1]n,  (1) 

'~0 '~0 

over the interval (K-- 1)% < r < ~%, i.e., the correlation function has the form of a first-order spline. Of course, such a 

correlation function is hardly to be expected to occur in reality, but we need it to construct an approximation. In this case, 

approximating of the correlation function reduces to approximating the parameters R o, R 1 . . . . .  Rn. 

Suppose that the times t i at which measurements of the random process are made form a Poisson flow of events with 

constant intensity X, and assume that the measurements of the process x(t) are conducted in the interval [0,T]. We denote the 

measured values by x~ = x(q), i = 1, N. We should note that in this case, the number N of measurements is random. 

Consider a recursive approximation for the parameters R K. The parameter Ro can is usually approximated as 

N 
^ l X ,  x~ Ro "- ,. (2) NN 

/x 

Since 3,1{x j-' }= R (0) =R0, we have M{Ro}=Ro, i.e., this approximation is unbiased. 
/~ A A 

Suppose, now, we have constructed approximations 

now construct an approximation R~ for the parameter R K. 

Ro, R,, ..., R~-~, for the parameters R 0, R 1 . . . . .  R~_ 1. We can 
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Let M~ denote the set of indices (i, j) that satisfy the condition 

M~={( i ,  / ) :  (tc--1)xo<__ti--ti<tCXo}, (3) 

and consider a statistic of the form 

~,.-(tj--t3 (tj-6)~(~-t)%] S,~ = X x~ x I "I -: +-. .  
I , j  E M ~r '% ~ 0 ] (4) 

with some still undetermined coefficient 3". 
We will find the mathematical expectation for this statistic. Averaging over realizations of the process x(t) at fixed 

measurement times {ti}, we obtain 

u% - -  (t j  - -  6)  M{S~II t , }}= %~ R( t . , - t , )  ~ + 
l , j6  M K "gO 

"4" (tj -- ta) -- (,r -- 1)~o ]. 
"% J 

If we now average over the times t i as in [1], we obtain 

g ' ;  o 

M {S,} = X~ r 'r - -  ~ ~ --  ('r - -  .1) ~o ] 
'~0 "tO ' _l 

( ~ - 1 ) %  

Substituting for R(r) with (1) and evaluating the resultant integrals, we obtain 

7 1 R~]. 

A A 
In view of  this, if we have an approximation R ~ f o r  the parameter RK_ 1, we can obtain the approximation R ,  for 

the parameter R K with the equation 

(5) 

A 
from which we obtain a recurrence relation for the approximation R~ of the parameter RK: 

A 1+2"~ A 
R,, = R,,-I + 

2 + ' ~  
6 l [ , r  (6) 

+ 2 +---] ~' T~0 2~ xj x, ~ + . 
I ,J 6 M ~ "% "CO 

We now consider the problem of choosing the parameter 7. Equation (6) is a first-order f'mite'difference equation in 
A 
R~. Its solution is stable only if I(1 + 2T)/(2 + 3')1 < 1, which occurs when - 1  < 3' < 1. 

It appears that the best value for 3" will be one for which (1 + 2)/(2 + 3') = 0; which occurs when 3' = - 1/2. Now 

the approximation for the parameter R~ takes the form 

4 _ x j x , [ t J - t ' - ( ~ - l ) ~ o  , ~ % - ( t j - t , ) ]  
~,2 T'% % 2'% " t , jEM~ 

A ^ 
and it generally does not contain R~-t. Computation of its mathematical expectation shows that M{R,~}=R,r 
approximation is unbiased. It can be shown that its dispersion decreases with 1/XT. 

(7) 

i.e., the 
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C O N S T R U C T I O N  O F  A P P R O X I M A T I O N S  FOR R E C U R R E N T  

F L O W S  OF M E A S U R E M E N T  T I M E S  

Suppose, now, that the measurement times t i form a recurrent flow of events. This means that the r i = t i - ti_ 1 are 

independent, identically distributed random variables with probability density p(r). 

Let ~ = M(r) and k = 1/~', and suppose g(s) is the Laplace transform of p(r) and r ( r )  is the inverse Laplace transform 

of the function g(s)/(1 - g(s)). 

By analogy with (4), consider statistics of the form 

S i r  xj x, [.c, r%--(tj- 6) 
I , I  E M K ' "~0 

+ ( 6  - t , )  - (~ - l )  ~o ] ,  

'~0 J (8) 

which differ from statistics of the form (4) in that the parameter 7 now depends on r. Its mathematical expectation for 

realizations of the process x(t) is of  a similar form, and only the results of averaging over the measurement times q changes. 

As in [2], we can show that 

/~"r 

S,,} = x T  ~) "I. 
"r 

(x--1),~ 

+ = - v ,  - 1 ) %  / ~ 
~:( , )d~.  

J '~0 
(9) 

Substituting (1) for R(r), we f'md that 

where 

M{S,,}---LT[R,,_, (T,,A,~+C,,) +R,,( T,,C,,+B,:) ], 

K":O ")' a,= , , -~ ,~(,)a,, 
(x-l) '% 

K.r.~ ;(c )' B x =  ': - - ( x - -  1) r:('Qdx, 
(x-I).% 

K'~ 0 

(r-D~o 

(10) 

(11) 

A 
As a result, we propose the following recursive approximation R~ for the parameter R~: 

+ 

^ "I'KA,c Jr C,, ^ 
= R, , - ,  + 

R .  .ix C .  + B,~ 

1 . _  __ x ,  xl ~. L ~, _ - [ ~ % - - ( t , - - t , )  . 
"Ix Cx + Bx h i  l , j ~  % Xo 

(12) 

This approximation is stable only if I(.I~A~+C~)/( . I , : C ~ + B ~ ) [ < I ,  which is possible when 7K belongs to the 

interval 

--(B,,+C,~)/(A,~+C,~)< 7,,< (B~--C~)i(A~--C~). 

It is clear that the best value for "YK is 3'K = 

the form 

A A 
- C f f A  K, where the approximation R~ contains no terms including R ~ i  and takes 
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h A~ 1 , , - ,  r t j - t , - ( ~ -  l)~0 

_ c ~  K~o - ( t j  - t3 ]. 
A K "~o ] 

It is an unbiased approximation for the parameter  R~, i.e., its dispersion decreases in propor t ion to 1/;kT. 

(13) 

C O N S T R U C T I O N  O F  A P P R O X I M A T I O N S  IN T H E  P R E S E N C E  

OF E R R O R  IN  M E A S U R E M E N T  T I M E S  

We now consider the situation in which the times t i at which the random process x(t) is measured are known only with 

some error.  

Suppose that {q} is a Poisson flow of  events with constant intensity ),. We assume that we know not the times t i 

themselves, but the quantities z i = t i + ~Ji, where the ~i are independent normal  random variables with mathematical  

expectation M{~i} = 0 and dispersion D{~i} = ~2. From now on, we assume that a < < ~'o. 

The fundamental  difficulty presented by construction of  approximations is that tj - t i may  lie outside the interval (K 

- 1)r o < t i - t i < K~- o, even when  the times ~-j - ~i don ' t ,  i .e.,  when (K - 1)~- o < rj - z i < Kz o. In order  to assure that 

the quantities tj - t i lie in the interval [(K - 1)z o, Kz o, we reduce the size of  the differences Tj - ~i and consider the set 

(14) 

If  we take g = 1.96, we can assert that with probability 0.95,  tj - t i E [(x - 1)r 0, KZ0]; when  g = 3.29,  this 

probability rises to 0.999. Thus,  we can chose g in the interval [2, 3]. 

In order  to construct  an approximation,  we consider the function 

X, if G<x<I- -G ,  
q ) ~ ( x ) =  O, if x<G or x>I- -G,  

where  G = gax/~/'r O. 
We now consider a statistic of  the form 

1 [ .~o( tr  z~.!) -- -- (tr -- l ) xo) ]. 
I,j E M~t t % 

Averaging S K over  realizations of  the process x(0 with fixed t i and r i, we obtain 

(15) 

1 ~M [R~-I g % - ( b - t 3 t ,  oK to M {SK [ {t. ~3} ~- ),-~- 

- - ] [ ~ o ( K ~ ~  RxtJ tt (K--1) t  o + 
' :0 "CO 

+ 

Jr (16) 

We now average this expression over the measurement  times t i and the errors  ~i. For  example,  consider the quantity 

A = 
-,,2 T% ~o 'r.o 

Since rj - t i = tj - t i + (~j  - ~ i ) ,  while ~i and ~j are independent, ~ = ~j - ~i is a normal  random variable with 

M{~} = 0 and D{~} = 2a  2. As a result, averaging over {ti} and then over ~ yields 
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K7 o 

A=1-- Pl~)d~ :- ~o 
'~0 j , o  '~0 ' 'gO 

-c~ ( x - I )  

Making the substitution (Kr o - r)/r o = x, we obtain 

O0 I ,, 

�9 ~'(i / 
- - c o  0 

In view of the form of  ~OG, the substitution x - ~/7 o = z yields 

since M{~} = 0. 

Similarly, we can show that 

- - c o  G 

1 - - ( 7  

= z?az  - --g [ (1  - 0 ) 3  _ 631,  

0 

d~. 

' 
q'o . . . . .  A, 

;~2 T% % % 

l - G  

O 

Thus, f'mally, 

M{S,~}=~3Txo[R~_~( ' fA+B) + R x ( A +  T B)] .  

A 
As a result, we have the following approximation Rx for the parameter Rx: 

^ A ' ~ + B  ^ 
R ,  = a + "r B "q'-' + 

I 1 [Tf to% - - ~ j - - x t )  - - ' : t  - -  ( K - -  1),:o] 
+ A + ~B "t,"-T~ ~ xj x, + ~J . 

0 t,jEM,:tl L "co ~o 

It is clear that once again, it is best to choose 7 to satisfy the condition 3'A + B = O, i.e., 

(18)  

(19) 

B 3 ( 1 - - G ) ~ - - G  ~ 
" r = - - - - = l  

O 3 G3" A 2 ( 1 - -  ) - -  

and then the approximation itself takes the form 

A _ A 1 [ ~,t - -  "ci --  (x - -  1) % 
R~ A 2 - -  B" )3 T'co Z x l  x i  L ..... 

I,jEM~ x "CO 

B x % - -  ('cj - ~i) ].  

A "c o ] 
Similar results can also be obtained for recurrent event flows, 

(20) 

(21) 
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APPROXIMATION OF C O R R E L A T I O N  FUNCTIONS 

OF ARBITRARY FORM 

Now, let the process x(t) be a stationary random process with arbitrary correlation function R(r). 

We divide the interval of values of r that is of interest to us into segments of length r 0, and we approximate the 

parameters of R K by using the same formulas as above. We choose an approximation of the following for the desired correlation 

function R(r): 

A '~'~0 - -  "c = . -  ( , , -  1 ) . ~  
% % (22) 

As a result, we obtain a spline approximation for the correlation function in which we are interested. Now, however, 

even when XT --, oo there is an error that does not vanish, because the correlation function is not a spline. We will show how 

to compute the limiting error in the approximation of an arbitrary correlation function by a first-order spline. 

Suppose that the measurement times form a Poisson event flow and they are known exactly. We find 

K'C o 

( x - I ) %  

A A 
It can be shown that in approximating the parameters-R~with algorithm (7), R.~ converges to R~ as XT --, oo, at least 

in the sense of mean square convergence. 

The limiting mean square error in approximation of the correlation function can be represented in the form 

�9 l l t , t  o 

(~z--l)% 

The concrete form of R(r) can be used to f'md an explicit expression for the limiting mean square error in 

approximation of the correlation function. 
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