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Abstract 

In the probability representation of the standard quantum mechanics, the explicit expression (and its 
quasiclassical van-Fleck approximation) for the ~classical" propagator (transition probability distribution), 
which completely describes the quantum system's evolution, is found in terms of the quantum propagator. 
An expression for the ~classical ~ propagator in terms of path integral is derived. Examples of free motion 
and harmonic oscillator are considered. The evolution equation in the Bargmann representation of the 
optical tomography approach is obtained. 

I. Introduct ion 

In [I, 2], the new formulation of quantum mechanics, in which a quantum state was described by the 
tomographic probability distribution (called "marginal distribution") instead of density matrix or the Wigner 
function was suggested and the quantum evolution equation of the generalized "classical" Fokker-Planck-type 
equation alternative to the Schr~dinger equation was found. The physical meaning of the marginal distribution 
was elucidated as the probability distribution for the position measured in an ensemble of scaled and rotated 
reference frames in the classical phase space of the system under consideration. The "classical" propagator 
describing the position probability from an initial position labeled by parameters of the initial reference frame 
of the ensemble to a final position lebeled by parameters of the final reference frame of the ensemble was 

introduced [2]. 
The quantum propagator (Green function of the evolution equation for the density matrix) was expressed 

in terms of the "classical" propagator in [3]. Properties of the "classical" propagator and its relation to 
quantum time-dependent integrals of motion [4-9] were studied in [10]. An analog of the SchrSdinger equation 
for energy levels in terms of the marginal distribution was discussed in [11]. Different examples like quantum 
dissipation and quantum top were considered in [12, 13]. An extension of the new formulation of quantum 
mechanics to the case of spin was given in [14-17]. An example of quantum diffraction in time [18] in the 
framework of the new (probability) representation of quantum mechanics was considered recently [19]. 

Feynman suggested the formulation of quantum mechanics by means of the path integral method [20]. In 
his formulation, the quantum transition-probability amplitude (Green function of the Schr6dinger evolution 
equation for the wave function) is expressed as path integral determined by the classical action of the system 

under consideration. To use the path integral method in the new (probability) representation of quantum 

mech~nicsl one needs to have a formula for the "classical" propagator in terms of the quantum propagator, 
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which is inverse of the formula for the quantum propagator in terms of the "classical" propagator derived 
in [3]; till now, this formula was not available. 

The aim of this paper is to derive the explicit relationship of the "classical" propagator (Green function 
of the evolution equation for marginal distribution) in terms of Green function of the Schr~dinger evolution 
equation. Another goal of this study is to express, in view of the relationship obtained, the "classical" 
propagator as path integral determined by the classical action. 

2.  M a r g i n a l  D i s t r i b u t i o n  a n d  W a v e  F u n c t i o n  

Let a quantum state be described by the wave function ~ (z). The nonnegative marginal distribution 
w (X,/~, u), which desribes the quant,,m state, is given by the relationship [21, 19] 

'1/ w ( X , p , v ) -  ~ ~(I/)exp \ 2 v  - --~-y du , (1) 

where the random coordinate X corresponds to the particle's position and the real parameters p and ~ label 
the reference frame in the classical phase space, in which the position is measured. The density matrix of the 
pure state p# (z, z t) in the position representation is expressed in terms of the marginal distribution (see, for 
example, [22] ) 

l,t (~, ,') = ~, (, ,)  , r  (,,') 

1 [ i ( X - p ~ ) ]  dpdX. = ~f , , , (x ,~, ,~- . ' )~,  (2) 

Thus, if one knows the density matrix of the pure state (or wave function), the marginal distribution is also 
known, in view of Eq. (1). Correspondingly, if one knows the marginal distribution, the density matrix is 
also known, in view of the inverse relationship (2). 

3. " C l a s s i c a l "  P r o p a g a t o r  

The evolution of the marginal distribution w (X, p, u, t) can be described by means of the "classical" 
propagator H (X2, p2, u2, X,, p,, v,, t2, t,), in view of the integral relationship [2] 

f H (X2, p2,v2, Xl,pl, l t l , t2,t l)lV(Xl,pl,  vl,tl ) dX1 dpx dr1. (3) tU (X21 }~2, v21 t2) 

Below, we will use also the notation H (X2, p2, v2, X1, pl, V1, t) for the "classical" propagator in the case of 
t 1 =0 ,  t2 = t .  

Having in mind the physical meaning of the "classical" propagator, we know that it must satisfy the 
nonlinear relationship 

(x3, ~3, v3, x l ,  ~1, vl, t~, tl) = f n (x3, ~ ,  v3, x~, m, v~, t3, t2) H 

|  (x2, m, ,,2, Xl,  ~1, ,,~, t,., t~) dX2 d ~  d~2 (4) 

Formula (4) describes the obvious standard property of the transition probability from an initial point X1 to 
a final point X3 via an intermediate point X2. The only pecularity of this formula consists in the fact that 
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the initial, final, and intermediate points X1, X3, X2 are considered in their own reference frames labeled by 
the paramaters Pl; t,l, pa; v3, and p2; u2, respectively. Empoying this property one produces integration 
in Eq. (4) not only over points X2 but also over the reference frames' parameters. 

In view of Eq. (I), the marginal distribution w(X,  p, v) has the property [22] 

1 
~ (aX, a~, av) = ~ (X,~,u) .  (5) 

Due to this, the "classical" propagator has the analogous property, 

II (bX, bp, bu, bX',bpt, bv',t) -- ~ l I  (X,p,v,  Xt, p',v',t) . (6) 

Equation (6) provides the connection of two Fourier components, namely, 

uF ( 1 , . ,  ~, x ' , . ' ,  ~',t) = [ u ( x , ~ , ~ , x ' , ~ ' , ~ ' , t ) e  'x  d X  (7) 
d 

and 

As a result, one has 

Hr (k, p, v, X', p', v', t) = f H (X, p, v, X', p', ~', t) �9 ikx dX.  

n ,  (k, a, v, x ' ,  ~', ~', t) = t 2 n ,  (i, ta, tv, kx',  ta', t , ' ,  t). 

(8) 

(9) 

. G r e e n  F u n c t i o n  a n d  " C l a s s i c a l "  P r o p a g a t o r  

The Green function G (z, II, t) (quantum propagator) is determlned by the relationship 

�9 0 , , t )  = f G ( ~ , y , t ) ~ ( y ,  t = o) dr.  

Elaborating Eqs. (2) and (3) for arbitrary time t, one arrives at 

[ G (z, lt, t)G* (z', z,t) ~ (y, t = 0) ~* (z, t = 0) dydz - 
J 

(io) 

1 f dX' dp' dv'dX dp w (X', p', u') 
2~ 
~ n  ( x , ~ ,  �9 - ~', x ' ,  ~', ~',t) 

| [i (X-. ~-~)]. (II) 

For the wave function in (11), we used the notation 

(y) = ~ (y, t = 0) .  

Taking into account relationship (2) for the product ~ (y, t - 0) ~* (z, t = 0) and the relationship 

w (x ' ,~ , ' , y  - z) = f w Cx',~,',,,') ,~ ( y -  ~ - ,,') dr',  

in view of relationship (9) between the Fourier components, one obtains 

II(X, tL, v,X',t~',v',t) - 1 k2G a+ ~,t G* a -  z,t  6 ( y - z  
4 7r 2 T '  T '  

|  + . a - . ' ~ - - ~ ) ]  dkdydzda. (12) 
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Equation (12) can be rewritten in the form 

II (X, t*, v, X', t~', v', t) 4~ f k'G +T  'z+kV'' - T '  
| [ik ( X ' -  X kp'v'2 p'z + p a ) ]  dkdzda (13) 

Relationships (12) and (13) provide the expression for the "classical" propagator in terms of Green function 
of the SchrSdinger evolution equation. One can see that the "classical" propagator depends on the difference 
of positions X - X'. 

. "Class ical"  P r o p a g a t o r  and  P a t h  Integra l  

The quantum propagator (Green function of the SchrSdinger evolution equation) G (z2, Zl, t2, tl) can be 

h = l ,  (14) 

presented as path integral [20] 

= f(=3, t2) G(z2, z,,t2, t,) J(=,,',) exp{iS[z(t)]} D[z ( t ) ] ,  

where the functional S [z (t)] is the classical action 

s [, (Ol = L( , ( t ) ,  ~(0,  t) d~, 

with Lagrangian L(z(t), ~(t), t) of the form (m = O) 

L(z(t),  ,~(t), ,) = ~l  _ u (-,,). 
2 

The dasdcal trajectory is given by the minimal action principle 

6S=0, 

that is equivalent to the Lagrange-Euler equation 

d OL OL 
~ 

dt O$ Oz 

The action functional can be considered as a function of several variables 

"[ ] S [z (t)] ~ ~ ( z .  - z . - ,  )2 _ U (z . ,  t . )  At 
.= ,  2At 

where 

z. =_ z (t.), t2 - tl : NAt, tn+l -- tn = At. 

Thus, path integral can be approximately considered as multidimensional integral over the variables 

~ I )  Z 2 )  , - "  ) 2~N- 

(is) 

(16) 

(17) 

(18) 
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In view of Eq. (14), relation (13) can be rewritten as the path integral representation for the "cl~ssical" 

propagator 

_ 1 fk2j(~+~.,,o)f('+k~'l~'t) exp{iS[=(t)]} V[z(t)] II (X, p, v, X', p', v', t) - 4 ~r ~ 

f(.-•12,t) | ~=p{-is[y(t)]) v Lv(t)] 

|  k~'v' 2 P% + pa)] dkdzda. (19) 

6. Free Mot ion  and Harmonic  Osci l lator 

For a free particle (11 = m = 1), Green function is of the form 

(20) G ( z , y , t ) -  l ~ e x p [  i (z  y)2"]~t " 

The "classical" propagator for free motion found in [3] has the appearance 

nf ( x , . , . ,  x',~,',.', t) = t  ( x -  x~  ~ (~ - ~,') 6 ( . -  .' + ~ ) .  (21) 

We can calculate the Udassical" propagator (21) employing relation (12), where Green function (20) for free 
motion is used. As a result, we arrive at 

(22) 

nf(x,t,,v,x',t~',v',t) 
4 ~r 2 2 ~rt 

i (a + k v _ y ) _  i (a k~ z) 
| t ~ T ~ 

+ i k ( X ' - X  + . a - p '  2 )  } dkdydzda. 

Integration in Eq. (22) over variable a gives a delta-function, namely, 

After introducing new variables 

f da ~ ( k ( ~ + . t ) + z - y ) t  

!/-[- Z ~-- S, ~/-- z--m 

and integrating over variable s, one obtains another delta-function 

f ds ==~ 5 ( k ( v + P' t ) + z - Y ) 

After integrating first over variable m and then over variable k, one arrives at the expression 

IIf (X,p,u,X' ,p ' ,u ' , t )= Itla ( X - X ' )  a ( u -  u '+  pt) 5 ( u -  u ' +  p't). (23) 
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In view of the relationships for delta-functions, 

5 ( z + y )  6(z+ z) 

one obtains the result (21). 

= 

= I t l 6 ( z ) ,  

Another example is the harmonic  oscillator, for which Green function has the form (m = w = h = 1) 

1 
a.(.,y,t)=v2 /sint exp sini'u]tj 

By using formula (12), we obtain the "classical" propagator  for the harmonic  oscillator, 

4~ 21 / k 2 
IIo,(X, tt, u ,X' , l / ,u ' , t )  - 2~ri-~intl ~ ( ~ -  z - t u  

y+z } 
- i k ( X - X ' ) - i l / k - - ~ + i k p a  dkdydzda.  (25) 

IntJ~gration in Eq. (25) over variable a gives a delta-function, namely, 

y - z  

Integration in Eq. (25) over variable s = y + z results in another  delta-function 

f ds '~ 6 ((y - z) c o t t -  kp' - kv ) 
sin t " 

Integration over variable m = y - z gives the t e rm 

kv"~ (kv'cott kp' k2 (k(vcott it) sint/ 

Employing properties of delta-function, after the last integration over variable k, one obtains 

IIos (X, l~, t,, X', l~', t/, t) = Isintl• (X - X ' )  Z ( v c o s t +  t t s in t  - t/) Z (v' cost  - #'  s int  - z,) 

= Z ( X - X ' )  Z(t, c o s t + / ~ s i n t - v ' )  Z ( p c o s t - t ,  s i n t - ~ t ' ) .  (27) 

Expression (27) is the "classical propagator" for the harmonic oscillator; it was derived using the different 

technique in [2, 3, 10]. 
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7. Quasic lass ical  A p p r o x i m a t i o n  for the  "Classical" Propagator  

Formula (13) gives exact expression for the "classical" propagator in terms of the quantum Green function 
G (z2, zl, t). On the other hand, there exists the quasiclassical van-Fleck formula for Green function of the 
SchrSdinger equation 

C(O e~S(=2,=,,t) (28) G (q) (z2,Zl , t )  = ~ 

where 
82S O~S 

O2S 82S 

0z20=1 0=] 

In formula (28), S (z2, zl, t) is the classical action, satisfying the classical Hamilton equation 

s  
--= + ~ 0', Z2) I~ s /o= ,  = 0 
at 

(29) 

for the classical system with the Hamiltonian 7~ (p, z 5, and the function C(t 5 is taken according to the 
SchrSdinger equation for Green function. 

One can use the quasidassical approximation (285 for Green function in order to obtain the "classical" 

propagator in the quasiclassical approximation. We arrive at 

nr (x , . , . ,  x', ~', v', t) 1 IC(t)l  2 

(30) 

where the notation 
kv  kv  

z 2 = a +  2 ' z l = Y '  y l = a - -  2 ' Y 2 " - z  

is used. 
Quasiclassical formula (305 is the result of calculations of the "classical" propagator in terms of path 

integral (19) for the functional of the classical action of the form 

s [ ,(t)] = s [~_(t)] + ( s  [ ,(t)] - s [~(t)]),  (31) 

where z_(t) is the classical trajectory. 
Then we used series expansion for the difference of the functional and its value at the classical trajectory. 

For linear systems with quadratic Hamiltonians, series (31) contains only two terms and the exact result for 
the "classical" propagator coincides with the result of the quasiclassical approximation. 
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8. Opt ica l  T o m o g r a p h y  in B a r g m a n n  R e p r e s e n t a t i o n  

In previous sections, we used the symplectic tomography approach. In the optical tomography ap- 
proach [23], the Wigner function is reconstructed, if one considers the marginal distribution w (X, ~o, t) 
of the homodyne observable X, the distribution being dependent on the rotation angle ~o. Till now, the 
evolution equation was obtained for the marginal distribution w (X, p, v, t) in the symplectic tomography 
approach. Since 

w ( X ,  ~,  t) = , .  ( X ,  co~ ~ , s i n  ~ ,  t)  , (32) 

the possibility to derive the evolution equation for the optical marginal distribution arises. To do this, let us 
introduce complex variables 

z = p + its ; 2 = p - i v ,  (33) 

which are similar to the variables used in the Bargmann representation of coherent states. 
The inverse of Eq. (33) reads 

z + ~ z - ~ (34) 
P--  2 ;  u --  - ~ - -  

The evolution equation for the marginal probability distribution has the appearance [1, 2] 

0 IV( 1 0 i ;  @) ( 1 @ + i t ,  a__~) ] 
, - .  ~ , , ,  - i o / o x  ~ ,  ~ - v o / o x  ag 2 w = 0. (35) 

Using for variables the notation determined by (33), we arrive at 

z+s 
~, = o .  (36)  

If one makes the substitution 
X ;- e i~~ ~ z ~ e-i~ 

w (X, z, ~, t), being the solution to Eq. (36), is the marginal distribution of the optical tomography approach, 

namely, 
,,, ( x ,  ~,, 0 - ,,, (x, e", ~-",  t) .  (37) 

Thus, if one obtains the solution to the evolution equation for the marginal distribution in the Bargmann 
representation, the marginal distribution of the symplectic tomography approach can be derived by means of 
Eq. (37), as well. Analogous substitutions can be applied for the "classical" propagator and its path integral 
representation. 

9. C o n c l u s i o n  

Formulas (12) and (13), which give the expression for the "classicM" propagator (determining the evolution 
of the quantum system in the probability representation of quantum mechanics) in terms of the quantum 
propagator (Green function of the SchrSdinger evolution equation) are the main result of this study. 

Another important result isgiven by formula (19) which desribes the "classical" propagator in terms of 
path integral determined by the functional of the classical action. Formula (13) obtained in this study is the 
inverse of the expression of the quantum propagator in terms of the "classical" propagator which was found 
in [3] (see also [10] ). 
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Thus, the invertable map of density matrix onto marginal probability distribution, which determines 
completely the quantum state, is accomplished by the invertable map of the quantum propagator onto the 
"classical" propagator, which describes completely the evolution of the quantum system. 

The discussed properties of the "classical" propagator can be used for studying evolution of states in the 
framework of the approach considered in [24]. 
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