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Using the Bethe ansatz, we obtain the exact solution of the master  equation for 
the totally asymmetric exclusion process on an infinite one-dimensional lattice. 
We derive explicit expressions for the conditional probabilities P(xl, . . . ,  xN; 
tl Yt,...,YN; 0) of  finding N particles on lattices sites x~,..., x u at time t with 
initial occupation y~ ,..., YN at time t = 0. 
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1. I N T R O D U C T I O N  

Driven lattice gases and particularly the one-dimensional asymmetric 
simple exclusion process (ASEP) have been intensively studied over the 
past decade for a variety of reasons. (l) The ASEP (for a definition see 
below) has been suggested already in 1968 as a model for the kinetics of 
biopolymerization. (2) Two years later this process was introduced into the 
mathematical literature ~3) where it has received considerable attention in 
the context of interacting particle systems. (4) More recently the ASEP has 
been studied mainly by physicists as a model for polymers in random 
media and as a dynamical model for interface growth. ~5) It is also a discrete 
version of the noisy Burgers equation (6) and thus of interest for the study 
of shocks ~7'8) and for traffic models. ~9) While there are exact solutions and 
a good understanding of the stationary behaviour of the system with 
(trivial) periodic and (non-trivial) open boundary conditions with injection 
and absorption of particles, (1~ 13) exact results for the dynamics of the 
model are scarce (see, e.g., refs. 4 and 14 and, for more recent work, refs. 
8, 15, 16, 33 and references therein. It is the aim of this paper to present 

lnstitut f/ir Festk6rperforschung, Forschungszent rum Jfilich, 52425 J/ilich, Germany;  e-mail: 
g.schuetz @kfa-juelich.de. 

427 

0022-4715/97/0700-0427512.50/0 @3 1997 Plenum Publishing Corporation 
822/88/1-2-29 



428 Schfitz 

a new approach to this open problem by explicitly solving the master equa- 
tion for the system defined on an infinite lattice. 

We study the ASEP with sequential updating. In the totally asym- 
metric version of this very simple model each lattice site can be occupied 
by at most one particle and particles hop with rate 1 to their right neigh- 
bouring site if this was empty. If it was occupied, the attempted move is 
rejected. This defines a Markov process with state space X = { O, 1 } s where 
a given configuration _n ~ X is the set of occupation numbers nk = O, 1 with 
the site label k ~ S. Alternatively, if one restricts oneselves to studying the 
system with an arbitrary, but finite number of particles, one may define the 
process on Y={{~Z~}, {kl}, {kl,k2},...,} which is the collection of all 
finite subsets of S. In this case one identifies a configuration n which has 
particles on sites kl ..... k u with the corresponding set in Y. Here we con- 
sider the system with finitely many particles N defined on an infinite one- 
dimensional lattice S = Z. 

A convenient presentation of the ASEP is in terms of a master equa- 
tion for the probability P(BN; t) of finding N particles on sites B~v = 
{ k  l,..., kN} ~ Y at time t. Defining the ASEP alternatively in terms of a 
master equation on the state space X rather than Y has turned out to be 
useful in previous work. (15,17,18) In this case the stochastic time evolution is 
manifestly seen to be generated by the quantum Hamiltonian of a spin-l/2 
Heisenberg chain. This suggests the use of the Bethe ansatz and the quan- 
tum group symmetry for the calculation of energy gaps (which give, e.g., 
the dynamical exponent of the system) and certain time-dependent correla- 
tion functions. For  the purposes of this paper using the coordinate 
representation Y of the state space is more transparent, as in this case the 
master equation can be solved directly and explicitly using the coordinate 
Bethe ansatz. ~'9'2~ While here we consider mainly the totally asymmetric 
case, the partially asymmetric exclusion process may be solved in the same 
way. We discuss this for the two-particle problem. 

In fact, even though the two-particle system may seem trivial, it 
exhibits already some of the characteristic behaviour of the driven system 
at finite particle density. In the undriven system (i.e., in the symmetric 
exclusion process) the diffusive spreading of a local perturbation does not 
depend on the overall density. In contrast, in the asymmetric case the center 
of mass of a loal perturbation in an otherwise homogeneous finite back- 
ground density is, from numerical work, known to spread superdif- 
fusively, (1) This implies a divergent collective diffusion constant as the 
number of particles tends to infinity. There are, however, no quantitative 
results for a system with a small number of particles. As we will show here, 
in a system of two particles this behaviour appears as an increase of the 
(collective) diffusion constant which turns out to be the single-particle 
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diffusion constant plus a term proportional  to the square of the asymmetry 
in the hopping rates. 

The paper is organized as follows: Section 2 gives the main result of the 
paper. We formulate the master equation and present a (non-constructive) 
proof that the expression derived from the Bethe ansatz in Section 3 is 
indeed the solution. This is done because the proof  is elementary and no 
reference to the Bethe ansatz is necessary. A reader not interested in the 
derivation of the solution may therefore skip Section 3 where the solution 
is constructed. As a simple application, Sections 4 and 5 focus on proper- 
ties of the two-particle system. In Section 4 we briefly study the partially 
asymmetric process where particles are allowed to move both to the right 
and to the left, but with different rates. We restrict ourselves to the exact 
solution for the two-particle system, but also explain how to obtain the 
solution for the general N-particle case. In Section 5 we obtain a very 
simple new result, which shows that already in the two-particle system the 
diffusive behaviour of the driven system is substantially different from the 
symmetric, undriven process. In Section 6 we present our conclusions. 

2. S O L U T I O N  OF T H E  M A S T E R  E Q U A T I O N  

Let P(BN; t) be the probability of finding N particles on the set of sites 
B~ = {kl,.. . ,  kN} at time t. When considering the probability P as a func- 
tion of the coordinates k~ we always assume this set to be ordered, 
ki <k,.+zVi. It is important  to note that as a function of its arguments ki 
the function P is well-defined in Z ~, i.e., also for e.g., k~ = ki+~ or ke > k~+~. 
However, in this domain P is not a probability. In other words, in the 
domain ON = k~ < k 2 < - - .  < k x ~  7/N, the function P is the probability 
defined above, whereas in ~-N\~'~ m it is defined by the master equation 
below, but is not a probability. 

For  the totally asymmetric exclusion process as described in the intro- 
duction, P ( B x ;  t) defined on ~ N x  [0, (30) satisfies the master equation 

d 
P ( k l  ,..., kN; t) 

= P(kz  - 1 ..... key; t) + . . .  + P ( k l  ..... k w -  1; t) - NP(k~ ..... key; t) (2.1) 

This has to be supplemented by boundary conditions in Z u. I f  any two 
neighbouring arguments k,., k~+~ are equal, P satisfies 

P(k l  ..... ki, ki+~ =ki,. . . ,  kN; t) = P ( k l  ..... ki,  k i+l  = k i +  1 . . . . .  kN, t) Vt~>0 

(2.2) 
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This boundary condition expresses the exclusion interaction. This is easy to 
see in the simplest case of two particles. Then (2.1) and (2.2) defined on Z 2 
read 

d 
P(kl ,  k2; t) = P(k  1 - 1, k2; t) + P(k~, k2 - 1; t) - 2P(k~, k2; t) (2.3) 

and 

P ( k , k ; t ) = P ( k , k + l ; t )  Vk and t~>O (2.4) 

which is equivalent to the following equations with P restricted to 0 2 

d 
dt e(k~, k2; t) = e ( k  I - 1, k2; t) § P(k l ,  k 2 - 1; t) - 2e(k~, k2; t) 

if k 2 - k l  > 1 (2.5) 

and 

d 
~ e ( k l , k 2 ;  t ) = P ( k , -  1, k2; t ) -  P(k~,ke;  t) if k 2 - k l  = 1 (2.6) 

The second Eq. (2.6) expresses that due to exclusion the configuration 
(k, k + l) can be reached in a single step only from the configuration 
( k - 1 ,  k +  1) and be left only in a single way (which is by moving to 
(k, k + 2)). Extending the range of validity of (2.5) to all Z 2 requires adding 
P(kl,  k 2 -  1; t ) - P ( k ~ ,  k 2 ,  t)  to (2.6). However, by demanding that (2.4) 
holds for all times, this is equivalent to adding 0. Thus (2.5) and (2.6) 
remain unchanged, i.e., the two sets of equations have the same solutions 
in the "physical" domain 0 2 . It may seem more natural to use the second 
formulation of the master equation which is in the N-particle case the 
restriction of the validity of the master equation (2.1) to the domain /2  u. 
One could then obtain a set of equations equivalent to (2.1), (2.2) by replacing 
the boundary condition (2.2) by including appropriately chosen Kronecker 
delta-functions in (2.1). However, it turns out that solving the equation is 
more straightforward and transparent in the formulation (2.1), (2.2). 

We finally note that with specified initial condition AN-- { l~ . . . . .  IN} ~ Y, 
i.e., 

P(BN; O) = 6AN ' 8N (2.7) 

the probability P(BN; t) becomes the conditional probability P(BN; 
t l AN; 0) and thus a complete solution of the problem. Also as a function 
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of the arguments li the function P is a probability only in the domain 
ll < ... <l N. 

Let us now introduce the function 

Fp(n;t)_e , ~ ( k + p - 1 )  t k+n 
k=0 p - - 1  (k+n)! 

(2.8) 

where the binomial coefficient and the factorial are defined by the F-func- 
tion, i.e., a! = F(a + 1) and 

F(b+ 1) F ( a - b +  1) 

In what follows we shall need only p, n ~ Z and t ~ [ 0, oo). We list some of 
the properties of Fp(n; t): 

(1) For integer p <<. O, Fp reduces to a finite sum, 

Fp(n;t)=e ' ~ ( - - 1 ) k \ k j ~ n n ) !  (2.10) 
k=O 

In particular, 

t n 

F0(n; t )=- -e  -t (2.11) 
n! 

(2) For the time derivative one finds 

d 
dt Fp(n; t)=Fp_,(n-- l; t)=Fp(n-- 1; t)-Fp(n; t) (2.12) 

(3) and for the time integral one gets 

, - -n- -1  
fo dtFp(n;t)=Fp+,(n+ 1 ; t ) - - (  P + P )  

= ~ Fp(k;t)-(-n-l+p) (2.13) 
k = n + l  P 

(4) At time t = 0  one has 

(-7:1) lim Fp(n; t) = 1 
t ~ 0  

(2.14) 

which vanishes for n > 0. Now we state the main result of this paper: 
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T h e o r e m .  Let F(BN, AN;t ) be the N x N  matrix with matrix 
elements F~j = Fg_j(k i - l j ;  t). Then 

P(BN; t]AN; 0) = det F(BN,  AN; l) (2.15) 

is the solution of the master Eq. (2.1) with boundary  condition (2.2) and 
with initial condition (2.7). 

The theorem states that the conditional probabili ty of finding N particles 
at time t o n  O N c ~'~N if initially (at time t = 0) they had been on sites A N c ~'~ N 
is given by the determinant (2.15). How this result was derived is explained 
in the next section. Here we give a proof  of the theorem which is independent 
of this construction. First we show that the determinant is a solution to the 
master Eq. (2.1). Then we show that it satisfies the boundary  condition 
(2.2) and finally we prove that it satisfies the initial condition (2.7). 

Proof. (i) Because of the factor e - '  in the functions Fp(n; t) the 
matrix F may be written e - ' F  and one gets 

d det F = Nt d dt e ~ det F -  N det F (2.16) 

This accounts for the term - N P  on the r.h.s, of (2.1). The time derivative 
of the determinant of  F may be written 

/~11 El2 "'" FIN l~ll El2 ' '" 1~1; F2 
d F,21 F22 F2N = F21 F22 . 

~';1 F;2 F;N FiN1 F;2 FNN, 

[ /~11 

F21 + . 

FN1 

Pll 

+ 

El2 " �9 F1N 

�9 , 
El2 "'" F1N 

. . .  

-I- ... 

The matrix elements in row i are ( F i - l ( k i -  ll), [ ' i - 2 ( k i -  12),..., F i - N ( k i -  IN)) 
and their time derivatives are (Fi l ( k i - l - l l ) ,  Fi 2 ( k i - 1 - / 2 )  ..... 

_ N ( k i -  1 --lN)),  see (2.12). Thus each determinant in the time derivative 
of Fcontr ibutes  exactly one of the terms P ( k  1 ..... k i - 1 ..... kN; t) on the r.h.s. 
of (2.1), i.e., (2.15) satisfies the master  Eq. (2.1). 
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(ii) In order to show that (2.15) satisfies the boundary condition 
(2.2) we note that according to (2.12) each column in F may be written 

(F ,_  l ( k , -  l ,) ,  r i _ 2 ( k  i - 12) ..... r~ N ( k i -  IN) ) 

= ( r i _ l ( k i +  1 - - l l ) , r  i 2(ki-t- 1 - 1 2 ) , . . . , r i _ u ( k i - ] -  1 - - IN)  ) 

- t - ( r i ( k i +  1 - l l ) ,  Fi  ~(ks+ 1 - / 2 )  ..... r i+l_N(ki -q-  1 --IN) ) (2.17) 

Assume now that k i +  ~ = ki  + 1. This gives for the r.h.s, of (2.2) 

Fo(kl  -- l l ;  t) 

Fi l (k i - -  ll; t) 

Fi(ki+ 1 - / 1 ;  t) 

F N _  l (kN -- 11 ; t) 

Fo(k 1 -- l l ;  t) 

F i l (ki  q- 1 -- l l ,  t) 

Fi(ki+ 1 -- Ii ; t) 

FN l ( k u - - / 1 ,  t) 

F o ( k l  - l l  ; t)  

F~(k i + 1 - / 1 ;  t) 
+ 

Fi(ki+ l - ll; t) 

F N -  i ( kN -- I1; t) 

F0(kl  - l l ;  t) 

Fi l(ki + 1 - / 1 ;  t) 

Fi(ki+ 1 - / 1 ;  t) 

FN l ( k N - -  l l ;  t) 

F _ l ( k l - - 1 2 ;  t) --- 

F i_ 2(ki -- l 2 ; t) . . .  

Fi l ( k i + l - / 2 ;  t) . . .  

FN 2 ( k u - - 1 2 ; t )  . . .  

F _ l ( k l - - 1 2 ;  t) 

Fi 2 ( k i + l - 1 2 ; t )  

F i -  l (ki+ 1 - 12; t) 

F N 2(kN--12", t) 

F l(kl  - / 2 ;  t) 

Fi  l ( k ~ + l  --12; t) 

F i _ l ( k i + l - 1 2 ;  t) 

F N - 2 ( k N - -  12, t) 

F l(kl  - / 2 ,  t) 

F i _ z ( k i +  1 --12, t) 
Fi l (k i+l  - 1 2 ;  t) 

FN 2(kN - / 2 ,  t) 

F 1 N(k l  -- lN; t) 

F i u ( k i - -  IN; t) 

Fi+ ! - u ( k i +  1 -- lN; t) 

Fo(k  N -  IN; t) 

�9 .. F 1 N(k l  -- lN; t) 

�9 ' '  F i_ N(ki  "q- 1 - lN; t) 

�9 .. F i+ l_N(k i+  l - l N ;  t) 

�9 .. Fo(k  N -  IN', t) 

. . � 9  

F 1 _ N ( k t - - l N ;  t) 

F i + l _ N ( k i +  1 --lN; t) 

Fi+ 1 N ( k i + I - - I N ;  t) 

Fo(k  N -  IN; t) 

Fl _ N ( k l  -- lN; t) 

F i _ N ( k  i q- 1 - - IN;  t) 
F i +  1 _N(k i_ l_ l  - -  IN; t)  

Fo(k N -  IN; t) 

( 2 . 1 8 )  
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The second determinant in the sum on the r.h.s, of this equation vanishes 
since two rows are identical. It remains the first determinant in the sum 
which is equal to the 1.h.s. of (2.2). 

(iii) It remains to show that (2.15) satisfies the correct initial condi- 
tion (2.7). We first assume that k l > l ~ .  This implies k i > l  I since 
k~ < . . .  < kN.  At t = 0, all the matrix elements Ftl = Fi l ( k i -  ll; 0) vanish, 
see (2.14), and hence the determinant vanishes. Now we assume kl = l l .  
Then in the first column FH = 1, but the other matrix elements Fil in the 
first column are still zero, since all kg are larger than ll except k 1. The 
determinant of F is therefore equal to the determinant of the matrix F ~1) 
obtained from F by omitting the first row and the first column. 

In the next step assume now first that k2 > 12. Repeating the previous 
step gives det F ( B N ,  AN; 0) = 6kl ' it 6k2 ' t2 det F (2). Iterating this procedure 
N times finally gives det F ( B N ,  AN;  O) = C~AN ' BN. 

An integral representation of the terms in the determinant is derived 
in the next section (3.14). 

3. BETHE A N S A T Z  S O L U T I O N  

For  a derivation of the solution the master Eqs. (2.1), (2.2), and (2.7), 
we first turn the differential Eqs. (2.1) into an eigenvalue problem by the 
ansatz P(BN;  t ) =  e - ~ t P ( B N ) .  In order to solve for the resulting difference 
equation we follow the strategy employed by Bethe for the solution of the 
isotropic Heisenberg spin chain (~9) and extended by Yang and Yang ~2~ to 
the anisotropic spin chain. Rather than using ki, li for the integer coor- 
dinates of the particles we shall use in this section the notation xi ,  yg ~ Z .  
For momentum labels we shall use p~. 

First we consider N = 1. The resulting equation is 

e P ( x )  = - P ( x -  1 ) + P ( x )  (3.1) 

which is readily solved by P ( x )  = e ipx with p e [0, 2n). This gives for the 
"energy" 

ep = 1 - e ip (3.2) 

and P(x ;  t) = ~2~ dpe ~p' f (p)  e ip~. The initial condition P(x;  O) = 6x, y deter- 
mines f ( p )  = e -iPy/( 2n  ) and finally yields 
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12 P(x;  t l y; O) = ~ dp e-~pt ~pye~pX 

t X - -Y  
m e  t 

( x - - y ) !  

= F o ( x -  y; t) 

(3.3) 

(3.4) 

(3.5) 

For  N = 2 one has to solve 

eP(x l ,  x2) = - P ( x l  - 1, x2) - P(Xl ,  x 2 -  1) + 2 P ( x l ,  x2) (3.6) 

P(x ,  x )  = P ( x ,  x +  1) Vx (3.7) 

The first equation is solved by Bethe's ansatz 

P( x l , x2) = A 12 eip~ x~ + ip2x 2 + A21 eip2x~ + ip~ x 2 (3.8) 

with arbitrary constants A g(pl ,  P2) and gives 

ep, ,p2 = ep~ + ep2 (3.9) 

The second Eq. (3.7) fixes the ratio $12 = A12/A21. Inserting (3.8) gives 

1 - e ~p~ 

$12 = 1 - e  ip2 (3.10) 

The range of values Pl and P2 may take needs some discussion. In the 
usual Heisenberg quantum chain one finds a bound state in the two- 
particle sector, i.e., a state with complex momenta Pl.2 = u--b iv. This is a 
solution for vanishing A12 or vanishing A21 in which case the wave func- 
tion decays exponentially in the distance X z - X ~  (see next Section). Here 
there is no non-zero p for which either A12 or A21 vanish and hence 
no bound state. We conclude that p ~ , p z ~ [ O ,  2~) and P ( x ~ , x 2 ; t ) =  
= ~ @1 j @2 e (% + % ) t f ( p l ,  p2)(e iptx, +iPzX2 -b S2,e ip2x' + i p l x 2 )  is the general 
solution of (2.1) with boundary condition (2.2). (For  obvious reasons we 
define $21 - S ~  1.) 

In order to satisfy the initial condition (2.7) one has to determine 
f ( P l ,  P2) and discuss the pole resulting from the integration over $21. 
Assuming that the particles were initially at sites Yl, Y2 it turns out that 
choosing f ( P l ,  P2) = e  ~plyl-~pzy2 and defining the position of the pole 
in $21 by p~ ~ P l  + i 0  gives the correct initial condition P ( x l ,  x2; 0 ) =  
fix~,yt fix2,y2. This gives 
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1 r 2~z f~z 
P ( X l , X 2 ; t ] y l , y 2 ; O ) = ( ~ ) 2 J o  dpl  d p 2 e - % , + %  ) ' - ip 'y ' - ip2y2 

x (  e~p' x' ~p2 X2 1 -  e~p2 ) - -  e ip2 xl + ipl x2 (3.11) 
1 -- e ip, 

= Fo(Xl--Yl; t ) F o ( x 2 - - y 2 ;  t) 

- F  l(Xl--Y2; t) F ~ ( x 2 - y , ;  t) (3.12) 

= det F ( B 2 ,  A2;  t) (3.13) 

with B 2 = {x1, x2} c ~'~2, A2 = { Y,, Y2} c ~Q2 and the posi t ion of  the pole in 
(3.11 ) defined as discussed above. 

In the same way one continues for N/> 3. One constructs a superposi- 
tion g t=  ~ Ai, ,..-,iN exp(ipi, Xl + ' "  + iPiNXN) of N-particle plane waves with 
all N! possible permutations of the wave numbers Pi and with amplitudes 
Ai,,...,iN" The ratio of any two amplitudes for plane waves where two 
momenta Pi,  Pj a r e  interchanged is Su, in the same way as in the two-par- 
ticle case (3.10). This takes care of the boundary condition (2.2) when 
(any) two particles are on nearest neighbour sites. The crucial point is that 
for higher number of particles there are no new constraints from the 
boundary condition when more than two particles are on adjacent sites. 
This can be seen by noting that satisfying the boundary condition for any 
given pair is independent of the coordinates of the remaining particles. So 
one constructs the Bethe wave function by starting from e ip, x, + ... +iPNx N 
with amplitude A12. .u  = 1 and then performing all possible permutations of 
the momenta. For  each permutation (i, j )  --* (j, i) one multiplies with a fac- 
tor Sj,. as in (3.11 ). The total "energy" e corresponding to such a wave func- 
tion is the sum of the single particle energies gPI,'",PN = ~2iN= 1 8Pi" The initial 
condition (2.7) determines the overall normalization of the wave function 
and the position of the poles arising from the integration over the various 
S o appearing in the wave function. It is satisfied by the choice 
f ( P l  ..... PN) = e (ip, e, + . . . ipNYu) and by placing the poles in the same way as 
in the two-particle case, i.e., by setting Pi--* P / +  i0 in the denominators. 

This construction provides an integral representation of the N! terms 
appearing in the determinant (2.15). Therefore the solution of the master 
equation may be written 

P ( x I  ..... XN; t l Y l  ..... YN; O) 

=~ 1~.2. j=1~3o dpje %' lPJYJ~pl , . . . ,pN(XI , . . . ,XN) (3.14) 
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with the Bethe wave function 7 t as defined above. For three particles it 
reads 

= eiPl  xl  + ip2x 2 + ip3x 3 .~_ 821 e ipzx t  + ip I x2 + ip3x 3 

+ $32 $31 e ip2 x t + ip3 x2 + ipl x3 + $21 S 31 $32 e ip3 x l + ip2 x2 + ip3 x3 

'{- 831 832 eip3 x t  + ipl x2 + ip2 x3 '}- 832 eip~ x~ + ip 3 ~2 + ip2 ~3 (3.15) 

4. THE PARTIALLY A S Y M M E T R I C  PROCESS 

Using the Bethe ansatz one may solve for the partially asymmetric 
process where particles are allowed to move with rate DL to left and with 
rate DR to the right. The strategy is the same as for the totally asymmetric 
case discussed in the preceding section. The main difference in the analysis 
is the occurrence of bound states in addition to the continuum. We shall 
discuss in some detail only the one- and two-particle systems. This is, in 
principle, sufficient to construct the general N-particle solution. 

The case of a single particle can be copied with little modification from 
the previous section. It is convenient to introduce the asymmetry q = e ~ and 
the time scale D by 

q = ~  (4.1) 

a = In q (4.2) 

D = ~  (4.3) 

After separating the time dependence the master equation reads 

eP(x) = - DRP(x- -  1) -- DLP(x + 1) + (D L + DR) P(x) (4.4) 

which is readily solved by P ( x ) = e  ipx with p c  [0, 2re). This gives for the 
"energy" 

ep=OR(1--e  tP)+ DL(1--eiP) (4.5) 

2~z e i p x .  and P ( x ; t ) = j o  dpe %tf(p)  The initial condition P(x;O)=fx ,  y 
determines f ( p )  = e iPy/(2rc) and finally yields 

P ( x ; t l y ; O ) = ~  dpe ~p~ iPYeiPX (4.6) 

=e (q+q ~)~ x y(2Dt) (4.7) 
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where In(r) is the modified Bessel function. The representation of (4.6) in 
terms of the Bessel function (4.7) is obtained by an elementary contour 
integration. It is easy to verify that both expressions (4.6) and (4.7) satisfy 
the same differential-difference equation with the same initial condition 
P(x; 01 y; 0) =6x.y.  

Note that the Bessel function diverges asymptotically , .~e 2Dr which is 
not sufficiently fast to cancel the prefactor e ( q + q  I)Dt in (4.7). The inter- 
pretation of this observation is that the probability of finding the particle 
at site x (with x kept fixed) decays exponentially with an inverse correla- 
tion time or "energy gap" Ae = D(q + q - l  2). However, by going into a 
comoving frame with velocity v = D(q - q -  1) = DR -- DL (see Section 5), 
i.e., by studying the behaviour of the distribution around x ' =  x + vt, one 
finds the usual algebraic, diffusive behaviour. 

For N = 2 one has to solve 

eP(x=, x2) = - - D R ( P ( x 1  - -  1, x2) + P ( x 1 ,  x 2 -  1) - -2P(xl ,  x2)) 

- D L ( P ( x ~ + l ,  x z ) + P ( X l , X z + l ) - 2 P ( X l , X 2 ) )  (4.8) 

P(x,  x + 1 ) _ DRP(x ,  x)  + D L P ( x  + 1, x + 1 ) Vx (4.9) 
D R + D L  

The first equation is solved by Bethe's ansatz 

P (  x I , x2) = A 12 eipl xl + ip2x2 "~- A21 e ipzxl + ipl x2 (4.10) 

with arbitrary constants Aij (Pl ,  P2) and gives for the two-particle energy 

,gp, , p z=Sp~  +8p2 (4.11) 

The second Eq. (4.9) fixes the ratio $12 =-A ~2/A2t. Inserting (4.10) gives 

DR + DLe ip~ +ip2 _ (DR + DL) e ip' 
$12 = D R + D L e i p . + i p 2 _ ( D R + D L ) e i p  ~ (4.12) 

which depends only on the momenta P~.2 and the asymmetry q. 
As discussed in the preceding section here one finds besides the con- 

tinuum p~, P2 ~ [0, 2zc) a solution corresponding to a bound state. To see 
this, we set p l = u - i ( a - v ) ,  p 2 = u - i ( a + v )  with u, v real and a = l n q .  
Clearly, in order to obtain a wave function which decays exponentially in 
x 2 - x ~  >0,  either A12 or A21 must vanish. Choosing 

cos u 
e - ~ < 1 (4.13) 

cosh a 



Exact Solution for Asymmetric Exclusion Process 439 

gives A 12 ~ DR + D L e ip' + ip2 _ ( D  R + D L ) e ip' = 0. The wave function (4.10) 
reduces then to a single expression 

P(xl, X2) OC qX, +X2ei,r t +X2)e-~Xa-x ,) (4.14) 

Using (4.11) one obtains for the "energy" of this state 

2D cosh a ( 1 cos 2 /A x 
cosh 2 a J  (4.15) 6u 

Thus the bound state has a non-vanishing energy gap 3 e  = 2D sinh 2 a/  

cosh a for any asymmetry a ~ 0. 
For  the determination of the solution of the master equation with 

initial condition fix,. y, fi:,2, y2 one proceeds in a way analogous to the totally 
asymmetric case. First we note that choosing A 12 = 1,  multiplying the time- 
dependent wave function by e x p ( -  ipl  y ~ -  ip2 Y2) and integrating P l and 
P2 from 0 to 2zc gives, at time t = 0 the correct initial value fix,. y~ Ox2. y2 plus 
a non-vanishing term from the reflected wave proportional to $21. This 
term needs to be cancelled by an appropriate choice of the amplitude 
of the bound state contribution. This may be determined by using center 
of mass coordinates R = X l W X 2 ,  R o = y  1 +Y2 and relative coordinates 
r = x z - x  1 >0,  r o = Y 2 - - y l  >0.  Solving first for the R-dependence of the 
master equation (which is trivial) one obtains then a lattice diffusion equa- 
tion in a single coordinate r with partially absorbing boundary condition. 
This equation was solved in ref. 21 and one finally finds that 

if?f? P(XI ,X2 ; t I y l , y2 ;O)=( - -~X)2  dPt dp2e-(%,+%2 )t-ipty,-ip2y2 

• (eipt x, + ip2 ~2 + $21 e ip2 ~' + ip, ~2) 

1 f :  (eZv q R-R~ e iu(R-R~ e -v(r+r~ e %t +-~ du - 1 )  

(4.16) 

= pcont + pbound (4.17) 

solves the master equation of the partially asymmetric process with two 
particles and initial condition P ( x ~ ,  x2; t l y e ,  Y2; 0 ) =  c~t, yt 6x2, y2" The first 
piece pcont in the sum is the contribution from the continuum of states 
(4.10), whereas in the second piece pbound one recognizes the contribution 
from the bound state. Using the identity 

/~ ~I~(2r) = ~ dp e ipn+(aeip+a-'e-~p)* (4.18) 
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and expanding the denominator of $21 in a geometric series in z(pl, P2) = 
(DRe Pz+DIeip~)/(DR+DL) one way rewrite (4.16) in terms of a sum of 
products of two modified Bessel functions�9 With (4.18) the bound state 
contribution takes the form 

pbound :--7~1 ff due~.tR_Ro)( 1 __~2)~r+ro--2 e (1 <2)(DR+DL)t (4.19) 

where ~(u) = z(u, -u). 
The general N-particle problem is solved by the Bethe ansatz for N 

particles and by determining the various bound state contributions. A way 
of determining the contributions from the bound states in the general case 
is by an appropriate contour integration in the complex ki planes which 
includes the poles of the reflection coefficients So.. These poles give rise to 
the bound state contributions in a general N-particle problem�9 

5. D I F F U S I O N  OF T W O  PARTICLES 

Here we want to study how the exclusion interaction affects the diffusion 
of two particles. In order to get an understanding of what is happening we 
put the particles at time t = 0 on lattice sites Yl = - 1  and Y2 = 1 and we 
study the moments of the density distribution at time t. This describes the 
diffusive broadening of an initially spatially concentrated density�9 

We introduce expectation value (nx> which is the probability of 
finding a particle on site x at time t. The moments of this density distribu- 
tion may be obtained from the Fourier transform f i ( q ) = ~ x  e iqX(nx> by 
taking derivatives w.r.t.q. Here we are interested in 

N=/~(0)  = 2  (5.1) 

i , 1 
(X> = ~/3  (0) = ~ ~ x(nx> (5.2) 

1 ,, 1 <x2> = - ~ b  (0) = ~  x2<nx> (5.3) 

from which we shall calculate the asymptotic drift velocity v and the 
asymptotic collective diffusion constant A defined by 

�9 d 
v = lim_oo ~ <X> (5.4) 

�9 d 
n -- lira 27 (< x~> -<x> ~) (5.5) 
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It may be useful to remind the reader of what these quantities are in 
case of non-interacting particles. This allows for a comparison of the inter- 
acting and the non-interacting system. For a single particle or for two non- 
interacting particles the density satisfies the diffusion equation 

d 
d t ( n x ) = D R ( n x  1 ) + D L ( n x + t ) - - ( D R + D L ) ( n x )  (5.6) 

Integrating this equation gives after a short calculation 

v =DR--DL (5.7) 

A = DR + DL (5.8) 

which is trivial in the sense that this is just a way of defining the driven 
non-interacting process. The non-trivial point is the determination of these 
quantities for the system with exclusion interaction. 

First we note that for the ASEP the density satisfies the continuity 
equation 

d 
dt ( n x ) = ( j x _ l ) - ( j x )  (5.9) 

with the current 

( j x )  =DR(nx (1 - -nx+, ) ) - -DL( (1 - -nOnx+~)  (5.10) 

Thus one gets v = ~x ( jx)  /2 = (DR -- D L) Zx  ( ( nx) -- ( nxn~ + i ) )/2 = 
(DR--DL)(1-Zx  (nxnx+l)/2). Using (4.9) one may write ~x (nxnx+l)  
= Z ~ P ( x , x + I ; t ) = Z x ( D R P ( x , x ; t ) + D L P ( X + I ,  X+I ;  t))/(DR+DL) 
= ~ P(x, x; t). Thus with the initial condition considered above one gets 

( X )  =(DR--DL) t--�89 d v ~ P ( x , x ; v  --1, 1;0) (5.11) 
x 

Using the continuity equation the diffusion constant may be written 
A = ~ x  (x+ 1/2)(jx ) - 2 v ( X )  =v+2DL+2(DR--DL--V)(X)  --(DR--DL) 
Zxx(nxnx+~) .  Now (5.11) and (4.9) lead to 

IDR+DL+(DR- -DL)  2 ~ P ( x , x ; t [  --1,1;0) A lim 
l ~ o ~  ~.  x 
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Therefore in order to determine v and D and has to calculate P0 = 
Z x P ( x , x ; t l  - 1 , 1 ; 0 )  and P l = Z x x P ( x , x ; t ]  - 1 , 1 ; 0 ) .  Each of these 
quantities can be split into three contributions arising from the two con- 
tributions from the continuum and the bound state contribution in (4.6). 

There is no contribution from the bound state to ~x  P(x, x; t l - 1 ,  
1; 0) and defining r = 2(DR + DL)t one finds 

Po = e -~(I2('v) + Ii('c)) (5.13) 

where the term proportional to 11 is the term arising from the reflected 
wave proportional to $21. 

The calculation of P1 is slightly more involved, but still straight- 
forward, and gives 

P l - -  
2(DR + DL) 

e-~( D nI3 - D L I1) + e ~I2 

D R - D L  
+ e ~(DRI 2 -DLIo )  + (1 + e-~Io) 

2(DR + De) 2(DR + DL) 

DR ~ DR --DL (5.14) 
+ D f ~+DLe-  Ii DR+DL 

where the last piece in the sum comes from the bound state and the 
arguments of the modified Bessel functions are all r. 

Putting everything together and taking the limit t ~ oo in (5.12) finally 
yields 

v = D R - D L  (5.15) 

= + D (DR -- DL) 2 
(5.16) 

On comparison with the results (5.7), (5.8) for non-interacting particles one 
notices that the exclusion interaction alone does not change the collective 
two-particle diffusion constant. In the undriven system one has A = 
DR + D e  as in the non-interacting system. In the presence of the drift, 
however, A increases to the value (5.16). This result was obtained for par- 
t ides placed initially at sites x~,2 = - 1, 1. It is however valid for any (finite) 

2 the details of the initial condition initial separation r 0. After a time to >> r0 
are washed out. 
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6. C O N C L U S I O N S  

The main result of this paper is the solution (2.15 ) of the master equation 
for the asymmetric simple exclusion process. This solution allows for a com- 
plete description of a system of finitely many particles. As a simple example 
we have investigated the collective diffusion of two single particles. We found 
that the diffusive broadening of the density profile in the driven system (5.16) 
is faster than both in the undriven and in the non-interacting case. 

The solution of the master equation may also be used for the analysis 
of quantities in systems with finite density. Consider, e.g., a system with 
constant non-zero density p with a local inhomogeneity such as a lattice 
site y where initially the density is (ny) = 1. In such a situation it would 
be interesting to study the time evolution of the density profile (which gives 
the dynamical structure function) or the temporal behaviour of density 
correlations. Using the exact solution one can obtain an exact expansion of 
these quantities in powers of p where the nth power is obtained by solving 
the n-particle problem. This can be seen as follows: Suppose one wants to 
calculate the time-dependent density profile px(t)= (nx(t)) up to second 
order in the background density p. The time derivative of the two-point 
correlation function involves a three-point correlator which is of order/9 3 

and which therefore may be neglected in the desired second order 
approximation. Leaving the three-point correlator out results in a differen- 
tial-difference equation for the two-point correlator which is identical to 
the two-particle master equation (2.1) with boundary condition (2.2). Thus 
one can calculate (nxny ~ and then by summing up two-point correlators 
one gets (nx) up to order p2. For a third order approximation one con- 
siders the three-point correlation function. If one neglects fourth order 
correlators, it satisfies the three-particle master equation. Summing up 
three-point correlators yields (nx)  up to order p 3 .  

A by-product of Section 5 is the explicit solution of the two-particle 
problem for the symmetric exclusion process. It is interesting to recall that 
in the symmetric case DR =DL the conditional probability P(xL, x2; t lyl, 
Y2; 0) determines not only the behaviour of the two-particle system, but 
also the behaviour of various time-dependent density-density correlation 
functions in N-particle systems, viz. the equal-time two-point correlator 
(n~l(t)nx2(t)) for an arbitrary initial state, ~3) the two-time correlator 
(nx,(tl) nx2(t2)) for an arbitrary initial state (22) and the (time-translationally 
invariant) four-point correlator (nx,(tl) nx2(t2) nx3(t3) nx4(t4)) averaged 
over the stationary distribution/22~ The contribution of the bound state to 
pair diffusion was discussed in ref. 23. It would be interesting to investigate 
in detail how the bound state effects the behaviour of these correlators in 
the various space-time regimes of the symmetric diffusion process. 

822/88/1-2-30 
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One puzzling problem is the behaviour of the ASEP in the presence of 
a blockage, (24'25'26) i.e., a bond in the lattice where particles hop with rate 
r # 1. Numerical and analytical studies seem to indicate that the steady 
state current in a finite, half-filled system approaches its maximal value 
Jmax = 1/4 already at a surprisingly small defect hopping rate r < 0.8.  (26,27,28) 

This raises the question of a non-analyticity in the current j(r) for r < 1 
which only an exact calculation of the steady state current can resolve. 
A perturbative expansion in r has been performed up to sixth order using 
computer algebra. (27) Each coefficient in the expansion is a rational number 
with numerators and denominators rapidly increasing with the order. 
Many non-trivial exact steady state properties of exclusion processes have 
been obtained by exact calculation for e.g. small system sizes, then guessing 
the general structure, and finally proving that the exact expressions 
obtained in this way are correct. (1~ 11.29.30, 31,32) Unfortunately, applying this 
strategy to the perturbative coefficients obtained in ref. 27 seems hopeless. 
However, a systematic perturbative expansion of the current may be 
performed using the solution (2.15) of the master equation where the nth 
order in r is obtained by the solution of the n-particle problem. This gives 
the coefficients of r n as a sum of n! fractions with slowly increasing 
denominators and numerators rather than the single fractions given in 
ref. 27. Therefore there is some hope that one might be able to guess a 
pattern in this sequence of fractions. Clearly this is a somewhat speculative 
suggestion which very well may turn out to be useless. But it seems worth 
trying to obtain exact results in this way. 
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