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Abstract :  Rotor-bearings systems applied widely in industry are nonlinear dynamic 
systems of multi-degree-of-freedom. Modem concepts on design and maintenance call 
for quantitative stability analysis. Using trajectory based stability-preserving and 
dimensional-reduction, a quantitative stability analysis method for rotor systems is 
presented. At first, an n-dimensional nonlinear non-autonomous rotor system is 
decoupled into n subsystems after numerical integration. Each of them has only one- 
degree-of-freedom and contains time-varying parameters to represent all other state 
variables. In this way, n-dimensional trajectory is mapped into a set of one-dimensional 
trajectories. Dynamic central point (DCP) of a subsystem is then defined on the 
extended phase plane, namely, force-position plane. Characteristics of curves on the 
extended phase plane and the DCP's kinetic energy difference sequence for general 
motion in rotor systems are studied. The corresponding stability margins of trajectory 
are evaluated quantitatively. By means of the margin and its sensitivity analysis, the 
critical parameters of the period doubling bifurcation and the Hopf bifurcation in a 
flexible rotor supported by two short journal bearings with nonlinear suspensionare are 
determined. 
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Introduction 

Rotor-bearings systems applied widely in industry are nonlinear dynamic systems of 
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multi-degree-of-freedom. Synchronous vibration is its typical motion under unavoidable 

unbalance. Subharmonic, quasi-periodic and chaotic vibrations, caused by the loss of 

stability of synchronous motion in nonlinear rotor systems, are found in numerical analysis 

and practice. Therefore, stability study of periodic solution is of importance in both theory 

and practice. 

Conventional analysis of periodic solution is based on approximate quantitative 

methods, such as KBM method, multiple scale method, average method and perturbation 

method. A strong point of these methods is that a general picture about the property of 

solution and its relationship with certain parameter can be got with a little amount of 

calculation. But their application is restricted to weak nonlinear and low dimensional 

systems. Numerical methods for analyzing the stability of periodic solution can be divided 

into two categories. One is to transfer the problem of ordinary differential equations (ODE) 

to that of nonlinear algebraic equations, such as Garlerkin method and Chebyshev method. 

The other is the numerical integration of ODE, whose representatives are shooting method 

and cell-to-cell mapping theory. Although above methods based on Floquet theory can be 

used to analyze the stability of periodic solution and determine bifurcation value, they need a 

large amount of calculation without margin concept. Moreover, it is difficult to calculate 

Floquet multiplier in engineering. 

Modern design concepts for machines emphasize reliability and stability in addition to 

their functions, and the maintenance occasion changes from breakdown and fixed time period 

into state maintenance. This calls for quantitative stability analysis. In this paper, a method 

predicting bifurcation in nonlinear rotor systems using trajectory-based stability-preserving 

dimensional-reduction (TSPDR)  is presented, and its application in dynamic behavior 

analysis of an unbalanced rotor system with two lubricated bearings is described. 

1 T S P D R  M e t h o d  

TSPDR I1] is a linear transformation that maps the existing trajectory from R n onto a set 

of R 2 or R 1 , and ensures that the necessary and sufficient condition for stability is rigorously. 

kept in one of the images. The R 1 observing space is separated from R n integrating spaces via 

TSPDR transformation and a logical solution is to simulate disturbed trajectories in R n and 

abstract quantitative information about dynamics in R ~. 

For analyzing bounded stability, the complementary cluster center of inertia 

transformation (R" ~ R' : CCCOI) and the complementary cluster energy-barrier criterion 

(CCEBC) [2] were proposed. The fully commercialized software package based on CCEBC, 

is the unique quantitative tool for assessing power system transient stability till now and has 

been widely used by utilities in China, France, Canada and USA for system planning, 

operation, as well as for preventive and emergency controls. 

For analyzing bifurcation and nonlinear modes of absolute motion in individual 

dimensions, such as in rotor systems, coordinate-axis projection ( C A P )  method was 

proposed. It uses a unit matrix to realize the TSPDR transformation from R n to R ~. Numerical 

integration simulates trajectories in R", then each image trajectory, namely, the trajectory 
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with one-degree-of-freedom, is investigated individually, and quantitative information on the 

dynamics is abstracted from phase plane or the extended phase plane. Therefore, the task of 

studying bifurcation in higher-dimensional nonlinear rotor systems is transformed to that of 

investigating individual trajectory and abstracting quantitative information in one-dimensional 

space. In practice, only the trajectory in the concerned dimensions, not every individual 

one, is used to analyze the dynamic behavior in nonlinear rotor systems. 

TSPDR transforms various difficulties, such as dealing with DAE, nonlinear factors, 

non-autonomous factors and dimensional problems, into a sole task, namely how to extract 

the dynamic information from trajectory in R 1 ( or R 2 ). It possesses the advantages of both 

numerical integration method and (extended)  phase plane method, and upgrades the 

conventional stability methods from heuristic qualitative study to rigorous quantitative study. 

Moreover, TSPDR can be used to assess the security of algebraic variables during the 

dynamics. 

2 C h a r a c t e r i s t i c s  of  N o n l i n e a r  R o t o r  S y s t e m s  i n  R 1 

2.1 Kine t ic  e n e r g y  d i f f e r e n c e  s e q u e n c e  of d y n a m i c  c e n t r a l  po in t  

Dynamic central point (DCP) is the point through the horizontal axis during a bounded 

swing on force-position plane in R 1 , such as 01, 02, 03 and 04 shown in Figs. 1 ( a )  and 

l ( b ) ,  which are the points with extremum of kinetic energy in each swing E31 . DCP' s 

kinetic energy sequence is composed of the value of kinetic energy of DCP at the same 

direction in turns. The kinetic energy of point 01, 02, 03 and 04 are denoted by K( 01 ) ,  

K( 02) ,  K( 03 ) and K ( 0 4 ) ,  respectively. The absolute value of difference between each 

two elements in turns in DCP' s kinetic energy series forms DCP' s kinetic energy difference 

(KED) sequence, which is denoted by K13 and K24. 

2 .2 Cha rac t e r i s t i c s  of n o n l i n e a r  ro tor  sys tems  in R 1 

The general motions in nonlinear rotor systems are synchronous motion, period 

doubling and quasi-periodic vibration. The characteristics of trajectories and DCP' s KED 

sequences of them in R 1 are shown in Fig. 1 to Fig. 3. 

For different steady motions, there are two kinds of transient KED sequences. For 

synchronous vibration as steady motion, KED reaches the peak after a little period, then 

descends either in turns or in the way of fluctuation, at last it equals zero, shown in Figs. 

3 (a)  and 3 ( d ) .  For period doubling motion, one way is that it reaches the peak after a 

while, then descents until to a constant. The other way is in reverse order, that is, it reaches 

minimum value, and then increases until to a constant, shown in Figs. 3 (b)  and 3 ( e ) .  For 

quasi-periodic motion, the KED sequence differs from that of period doubling one in steady 

state. The former is a fluctuating sequence while the latter is a constant, shown in Figs. 

3 ( c )  and 3 ( f ) .  

Characteristic parameters of KED sequence for different steady motion are listed in 

Table 1. They are used to estimate if the vibration is steady and determine the type of 

trajectory. 
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Table 1 Characteristic parameters of KED sequence 

Motions K~3 AK~3 E( K~3 ) D( K~j ) AE( K~3 ) 

Synchronous 0 0 0 0 0 

Period doubling C~ 0 C1 0 0 

Quasi-Periodic QW QW C2 C3 0 

Notes: AKI3 is the absolute value of difference of each two elements in Kt3 sequence; E(K~3 ) 

and D(K~3 ) are the mean value and unbiased variance of a sample in Kl3 , respectively; AE(K13 ) 
denotes the variety of E( Kt3 ) series; C~, C 2 and C 3 are the constants; QW means quasi-periodic wave. 

3 S t a b i l i t y  Margins 

3.1 S tab i l i ty  margin of synchronous motion 
Stability margin of synchronous motion is defined by the damped exponential of KED 

sequence, which is an index of systematic dampness. The larger the damped exponential is, 

the bigger the systematic dampness is, and the more stable the system is. At first, one 

should collect the transient KED in order to calculate the damped exponential and then 
determine the envelope of it. Using the following function to fit the envelop: 

-bn z = ae (1)  

where n is the period number, z the value of KED and b the damped exponential. As a result 

the stability margin for synchronous vibration is defined as follows: 

r/ = min(bK,,,bK~), (2) 

where bK, ' and bx~ are the damped exponentials of K13 and K24 series, respectively. 

3 .2 S tab i l i ty  m a r g i n  of period doubling motion 
With the variation in controlling parameter, synchronous vibration becomes period 

doubling one via period doubling bifurcation in nonlinear rotor systems. A distinct trait of it 

is that the value of steady KED is a constant C1, which equals the absolute value of 

difference between the largest energy of the longest swing and that of the same direction 

swing in a period. It denotes the amount of low frequency element and the severity degree of 

vibration. So stability margin for period doubling vibration is defined as follows: 

7/ = - C 1. (3)  
The bigger Cx is, the smaller 7/is, which means the larger amount of sub-synchronous 

element and the severer vibration, i. e. , the worse stability of the system. When 7/equals 

zero, the sYstem runs in the critical state. 

3 .3 S tab i l i ty  margin of quasi-periodic motion 
The nonlinear rotor system may occur Hopf bifurcation with the variation in controlling 

parameter, and synchronous vibration becomes quasi-periodic one. Due to "lock model",  N 

periodic motion may appear on occasion. Quasi-periodic motion has two irrationally related 
frequencies. Trajectory shows movement of a point with extreme period in a band picture on 

the extended plane and in a limit ring on phase plane, shown in Fig. 1 ( c ) and Fig. 2 ( c ) ,  

respectively. It results in KED sequence' s fluctuation in steady state, shown in Figs. 3 ( c )  
and 3 ( f ) .  N period motion differs from quasi-period one in rigorous period. It is a close 

curve with period NT on phase plane and the KED sequence fluctuates in period N. 
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Because of the non-periodic behavior for KED sequence of quasi-periodic motion, one 

must collect the right sample lengthp, at first, which equals the length of KED sequence with 

a ( or several) near period shown in Fig. 3 ( c ) .  Abstracting each one with Pn elements from 

KED sequence in turns forms the sample series. The mean value E(K13 ) and unbiased 

variance D(K13 ) of each sample consist of mean value and unbiased variance series, 

respectively. The variation of mean value series can be expressed: 

I Ei+ 1(K13) -Ei(Kl3) [ 
AE(K,3) = (4)  

Ei ( K~3 ) 

where Ei+~ (K~3) is next to E~(K~3 ) in mean value series. 

Non-periodic degree of trajectory for quasi-periodic motion can be expressed by the 

value of E(K13 ) in steady state, which denotes the average variation of DCP' s KED. The 

fluctuating degree of DCP ' s  KED can be expressed by the value of D(K~3 ) . Therefore, 

stability margin for quasi-periodic motion has two items: 

n = (np , n~ ) ,  np = - e ( r , 3 ) ,  n~ = - D ( K , 3 ) ,  (5) 
where r/p is used to determine the critical parameter between synchronous and quasi-periodic 

motion, while r/r between period doubling and quasi-periodic motion. The smaller 7/is, the 

worse the stability of the system is. When 7/equals zero the system runs in the critical state. 

4 Predict ion of Bifurcation in Nonlinear Rotor Systems 

4.1 Sensitivity analysis based on stability margins 
Stability margin for the system under critical parameters equals zero. Therefore, 

predicting bifurcation is to determine the value of controlling parameter with zero stability 

margins. Stability margin of the system varies with the controlling parameter. The influence 

of a tiny increase ( or decrease) of parameter t~ on the stability margin 7/can be expressed by 

the sensitivity coefficients 7/ for a. However complex the system is, the sensitivity 

coefficients for any parameter concerned can be calculated a t  all time by numerical 

perturbation method. 

The stability margin 7/(t~0) for the initial parameter a0 is known, then the ~7(a0 + Act) 
can be calculated according to the perturbation of parameter Aa. So the sensitivity coefficient 

7/for ct in one order is 

S~ = (7/(ao + a a )  - , / ( a 0 ) ) / A a .  (6) 
Based on the hypothesis of linearity one can obtain the critical parameter as follows: 

aj~ = ao - ~lo/S~. ( 7 )  
Different motion with its own definition of stability margin results in a combination of 

sensitivity analysis and dichotomy to predict bifurcation in practice. 

4 .2 Examples 
A flexible rotor supported by two oil film journal bearings in parallel with nonlinear 

springs is shown in Fig. 4. On is the center of rotor gravity; O, ,02,03 are the geometric 

centers of the bearing, the rotor and the journal, respectively; m is the mass of the rotor; p 

is the mass eccentricity of the rotor; Kp is the stiffness of the shaft; t h is the rotational angle; 

to is the rotational speed of the shaft; m 0 is the mass of the bearing housing ; K1 and K 2 a r e  the 
stiffnesses of the springs supporting the bearing housings; C x is the damping coefficient of the 
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supporting structure; C 2 is the viscous damping of the rotor disk; R is the inner radius of the 

beating housing, and r is the radius of the shaft. Figure 5 shows the cross section of the oil 

film journal beating, where ( X , Y )  is the fixed coordinate and (e,~o) is the rotational 

coordinate, e the offset of the journal center and q~ the attitude angle of X-coordinate. 

Dimensionless equations of the O~, 0 2 , 0  3 a r e  as follows E41 : 

�9 2 ( 1 ,  1 a 3 1 
Y"l + a~l i + --YYlal + -TYla 2Co.a 2 (Y2 - Yl - esinq~) + a = 0,  

2~:1 x, 1 1 ot 3 1 
Xtt 1 -~- - -  q- ~ - X  1 "4- " ~ X  1 ( X  2 --  X 1 --  o~COS~0) = 0 

al al a 2Co.a 2 

, 1 (,rrb(1 - ez)5/2( (x  2 - x~)cos~o 
8 = ( 1 / 2 )  2( 1 +2z2 ) _882 

+ (Y2 - y , ) s imp - 8 )  - 4 8 b ( 1  - 6~)2((x2 - xa)sinq~ - (Y2 - y , ) c o s t p ) ) ,  (8)  

1 1 q~' 
2 28(1 - e2)a/2(z 2 - (1/16)-rr2(1 + 2 6 2 ) )  (bS(1 

1 
x ( ( x  2 - x  l ) e o s t p + ( y 2  - Y l ) s i n ~ o - e )  - -~ -~b(1  + 2 6 2 ) ( 1  - 8 2 )  2 

x ( ( x  2 - x~)simp - (Y2 - Yx)COSq ~ ) ) ,  

+ ( + ( 1 / a  ( - -  cos ,) = r 

�9 y"~ + ( 2 / j ~ / a ) y '  z + ( 1 / a  ~) (y~ - y ,  - zsin~o) = flsin 6 - f / a  ~ , 

where ..... represents ~ ,  b - A ~ 2 a,ff" al = C~ 

For the dimensionless parameters ~:, = 0. 01,  ~:2 = 0. 02,  f = 0. 3 ,  Cp~ = 2. 0 ,  Co. = 

0. 2,  ot = 1 .0 ,  A = 0. 1, fl = 0. 05,  use the dimensionless parameter a as control parameter 

to predict the bifurcation value in x~ observation space. When initial value a o is O. 2 and an 

increment Aa is 0 . 1 ,  the critical value (ao = 0. 614 3) is found through six steps, at which 

F i g .  4 

I I I I I I I I I  

L [ ]  p cvr " q " " o , ,  I~ 

J o 

Model of a flexible rotor supported by two oil journal bearings 
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period doubling bifurcation occurs in the rotor systems. The direct numerical calculation 
shows that critical parameter is 0 .65  E41 . 

For the dimensionless parameters~  = 0. 01 , f  = 0. 3,  Cp~ = 2. 0 ,  Co = O. 2 , ~  = 1. O, 

A = 0. 1, fl -- 0. 05 ,  a -- 2. 0 ,  use the dimensionless parameter ~2 as control parameter to 

predict the bifurcation value in x~ observation space. When initial value ~2o is 0 . 02  and an 

increment A~2 is 0 . 0 2 ,  the critical value (~2o = 0. 043 9)  is found through four steps, at 

which Hopf  bifurcation occurs in the rotor systems. The direct numerical calculation shows 

that critical parameter is 0 .05  E41 . As a result, the efficiency of the above method is proved. 

5 C o n c l u s i o n s  

1 ) Sensitivity analysis based on stability margins is much faster than numerical 

calculation in a trial-and-error way in determining bifurcation value. It makes stability study 

of  rotor systems upgrade from qualitative analysis to quantitative one. 

2 ) Based on trajectories and a characteristic of  this method, it has a wide application in 

high-dimensional nonlinear rotor systems and a prospect future in engineering. 
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