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Summary. — This work is concerned with the analysis of some models
for gravity wave propagation in water of variable depth. Within this
framework, particular emphasis is put on the model recently proposed
by Green and Naghdi. A detailed comparison with widely accepted
theories allows us to consider the model by Green and Naghdi essentially
as a theory closely related to the approximation of shallow water.
However, the greater generality of this model, outlined in the present
paper, opens new prospects of the possibility of achieving more satis-
factory results about gravity wave propagation.

1. — Introduction.

The study of gravity wave (water wave) propagation reveals difficulties
originated by the occurrence of the nonlinear inertia terms and of the non-
linear boundary condition over an unknown surface. The existence of these
difficulties, together with the fact that the more interesting aspects of gravity
wave propagation have two-dimensional character, motivates the develop-
ment of some methods in order to replace the three-dimensional theory of gravity
waves by approximate two-dimensional theories. In this connection, we recall
that well-known methods of approximation are essentially to introduce ome
or more adimensional parameters which, in some sense, are regarded as small.
In this way the so-called asymptotic expansions are obtained and these in turn
lead to equations well known in the current literature. ¥For a brief review of
these procedures we cite, for instance, the papers by FRIEDRICHS (!), KELLER (2),

() K. O. FriepricHS: Oomm. Pure Appl. Math., 1, 109 (1948).
(?) J. B. KELLER: Journ. Fluid Mech., 4, 607 (1958).
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PEREGRINE (34), GRIMSHAW (}) and JoHNSON (8). Although these methods of
approximation appear as useful tools in applications, they suffer from a lack
in proof of the asymptotic character of the expansion considered. Moreover,
these methods require & priori assumptions about the sealing of the variables
under study. Finally, again with respect to methods of approximation, we men-
tion bidimensional theories based on the employ of conformal transformations
which make the bottom horizontal (%#).

With a view to overcoming the incomplete nature of the methods quoted
above, in a recent paper (°) GREEN and NAGHDI attempted to derive, in a
systematic way, the equation of motion for inviscid, nonconducting, homo-
geneous and incompressible fluids within the framework of a three-dimensional
theory. In synthesis, GREEN and Nacupi start with the usual integral version
of the energy balance equation for an incompressible fluid. Then, by assuming
the invariance of the energy equation under superposed rigid-body translation,
they deduce the corresponding equations of motion together with the conti-
nuity equation. The particular feature that distinguishes the model by GREEN
and NAGHDI (GN model) from normally adopted theories relies on the assump-
tion that the vertical component of the fluid velocity depends linearly on
and the horizontal component is independent of the vertical co-ordinate. In
terms more suggestive than precise, this assumption can be phrased by saying
that, according to the GN model, the elementary constituents of the fluid are
infinitesimal vertical columns rather than the usual fluid particles. In other
words, the fluid particles which, at some initial time, belong to a vertical
(material) column will continue to belong to the same vertical column. Thus
the horizontal velocity of a particle coincides with the horizontal velocity
of the column. This description of the motion is indeed particularly suited
for a coincise account of the boundary condition (at the bed and at the unknown
free surface) and of the incompressibility.

The purpose of the present paper is twofold. First, we analyse the GN model
within the framework of the current literature regarding wave propagation in
fluid. To this end, in sect. 2, we briefly review the work by GREEN and NAGHDI,
while, in sect. 3, we introduce the well-known shallow-water theory and small-
amplitude theory. The subsequent comparison with these theories enables us
to assert that the GN model, although more general, can be framed within the
context of shallow-water theories. Second, we outline the precise limitations
to the actual range of applicability of the GN model. To do this, it is sufficient

(®) D. H. PerEGRINE: Jouwrn. Fluid Mech., 27, 815 (1967).

() D. H. PEREGRINE: in Waves on Beaches (London, 1972), p. 95.

(®) R. GriMsaaw: Journ. Fluid Mech., 42, 639 (1970).

(®) R. S. Jomxnsox: Proc. Camb. Phil. Soc., 73, 183 (1973).

() G. Ke1serL: Quart. Appl. Math., 7, 21 (1949).

(®) J. Hamicrox: Journ. Fluid Mech., 83, 289 (1977).

(®) A. E. GReEN and P. M. NagHepI: Journ. Fluid Mech., 718, 237 (1976).



GRAVITY WAVES IN WATER OF VARIABLE DEPTH 379

to consider the simple physical case of wave propagation in water of constant
depth (sect. 4). This study shows up an interesting feature of the theory,
namely a dispersion relation whose main consequences are the following. First
of all, at low frequencies we find the usual result for the velocity of propagation.
Moreover, the dispersion relation reveals the existence of a cut-off frequency
o, in the sense that the possibility of wave propagation is ruled out for fre-
quencies greater than w . Since w_ decreages with the depth of the fluid, this
conclugion allows us to infer that the column model is physically realistic when
the water is shallow or the wave is long. We conclude sect. 4 by pointing out
the possible applications of the theory by GREEN and NAGHDI, namely prop-
agation of small-amplitude waves in water of variable depth.

2. — The model of Green and Naghdi.

As far as possible, in the following we use the original notations of GREEN
and NAGHDI (?). Accordingly, #, y, #z denote the usual Cartesian orthogonal
co-ordinates whose unit vectors are e,, e,, e;, respectively. The symbols &,,
&., &, stand for the partial derivative of any quantity &£ with respect to the time
t and the co-ordinates x, y. A superimposed dot indicates the material time
derivative.

Let us consider an inviscid, homogeneous, incompressible fluid with con-
stant mass density ¢ moving over an uneven bottom specified by

(2.1) x = we, + ye,— h(z,yle, .
The free surface of the fluid is described by
(2.2) x = e, + ye, + {(2,y,1)e;.

Obviously, k(z, y) is an a priori given function, whereas the function {(z, y, t)
is unknogn for the problem under study. We choose the origin of the vertical
axis 80 that z =0 is the free surface at the equilibrium (see fig. 1). By neglecting

T~ z=0

/ =Z(x,y,1)

Fig. 1. — Geometry of the general propagation problem.
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surface tension effects, the pressure at the free surface 2 = {(=, y, t) coincides
with the atmospheric pressure p,. Owing to the motion of the fluid, the un-
known pressure P at the bed depends on z, ¥ and also on t.

Let X,, X,, X, be the (I.agrangian) co-ordinates of a fluid particles with
respect to a suitable reference configuration. The GN model relies on the as-
sumption that the horizontal component of the velocity be independent of X,
and the vertical component be a linear function of X,. This means that a
vertical column of fluid around (X,, X,) in the reference configuration remains
vertical column around (#(X,, X,, t), y(X,, X,, t)) in the present configuration,
while the vertical velocity component varies linearly along the column itself.
This viewpoint makes it natural to express the position of a particle of the
fluid in the form

(2.3) x=r+ (p+ Xple,

where r = we, | ye,, y = ({— h)/2, p = + b, X =X;. It follows at once
that the free-fluid surface (2.2) may be obtained by setting X = % in (2.3),
while the bed (2.1) corresponds to X = — 3; consequently X e[— %,4]. In
view of (2.3) the velocity ¥'= & may be written in the form

(2.4) V=v+4+ A+ Xw)e,,

v = F = ue, 4 ve, being the horizontal component of the velocity and 1 = ¢,
w = ¢. As to the physical meaning of 1 and w, we note that A(z, y, t) is the
vertical velocity of the centre of mass of the fluid column around (z, ), while
Xw is the vertical velocity of the particles within the column, relative to the
centre of mass.

Let us consider now an arbitrary fluid column occupying a region Z7*
bounded by a closed cylinder 82, whose unit outwards normal is denoted by
n, defined by an equation of the form #(X,, X,) = 0 (see fig. 2).

Letting & stand for the part of the surface z = y(z, y, f) belongiwg to F*,
we can write

(2.5) rpV-nda =fpe-v/\drdz=fﬂ(e3/\v)-dr,
o7, o7, Y

where p(z, ¥, 2, ) is the pressure and I7 is defined by
J
II=|pdz.
—h

The force acting on an infinitesimal surface element nda of the fluid is given by

(2.6) —pnda:pa(czel+Cvez_‘ea)dwdyy 2={(®,9,1)
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Fig. 2. — Fluid column #*.

at the free surface and by
(2.7) — pnda = P(h.e, + h,e,— e)dzdy, z=— h(z,y)
at the bottom. The use of eqs. (2.5)-(2.7) enables the energy balance equation

d

(2.8) o
g‘

g(% Ve gz)dv = —|pV-nda
ap*

to be written as

d 1 1
(2.9) 4 f§ 0@ (vz + e+ 2gtp) drdy =
P

:f{l’. (—v‘VC + A —{—%w)—P(v-Vh + }.—%w)dxdy—e:,-fﬂv/\dr .
2 By ]

The symbol V.= e,d/cx + e,d/cy denotes the bidimensional gradient operator.
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The equations written above are not sufficient for a complete theory since,
so far, we have not considered the equations of motion of the fluid. To this
purpose, we consider the energy balance in the form (2.9) and we assume that
it is invariant under superposed rigid-body motion. This means that the change
of frame corresponding to the trasformation ¥V -» ¥ 4 U leaves (2.9) unaltered.
Then the arbitrariness of the constant vector U allows us to write the relations

d
a ng} drdy =0,
7

2 e

f ogv da dy =J‘(p8VC + PVh)dzdy 4 esA fler ,
2 ? 0P

dtwa+mmw—ﬁP1wmw

Under suitable smoothness assumptions for the fields under study, these
equations provide the corresponding local field equations

(2.10) ¢+ oV-o=0,
(2.11) p@¥ = — VIl + p,V{ - PVh,
(2.12) oph=P—p,— ofp.

Moreover, on account of (2.10)-(2.12) the energy balance (2.9) yields
(2.13) Trog2w =II— (P +p,)g

For later purposes, it is worth remarking that, according to (2.12), the vertical
acceleration of the centre of mass A is singled out by the difference between
dynamic and hydrostatic pressure at the bottom. This feature will be returned
to in sect. 3 in connection with the shallow-water approximation.

The set of equations (2.10)-(2.13) constitutes a system of five scalar (non-
linear) equations in the five unknown functions ¢ (or ¢ =(4h), v, P, I1. Even
because of the nonlinearity, in general it is a hard task to determine the motion
of the fluid according to the GN model described above. On the other hand,
a comparison between this model and those usually adopted in the literature
is not immediate. This motivates a detailed analysis of the GN model in con-
nection with the more familiar models such as the shallow-water theory and
the small-amplitude theory. We are dealing with this argument in the next
section.



GRAVITY WAVES IN WATER OF VARIABLE DEPTH 383

3. — Some models for water wave propagation.

The key problem we are concerned with is the description of the wave motion
of a fluid. For definiteness, we say that, in general, a wave motion of a fluid,
acted upon by gravity and having a free surface, is a motion in which the
quantity ((z, y, t) varies in time (ref. (), subsect. 1430). More specific wave
motions are widely considered by several authors; for the reader’s convenience,
we list here the most common types of wave motions.

A wave motion is called a standing wave when the fluid surface changes
its shape by moving vertically without translation. A typical standing wave
is expressed by (ref. (1), subsect. 3'1)

(3.1) 8(2, 9, 1) = Re {a(a, y) exp [iwt]} .

A wave motion is called a progressive wave when there exists a frame of
reference for which the motion is time independent (**). A particular progres-
give wave is the simple harmonic progressive wave given by

(3.2) {(w, y,t) = Re{a exp[i(k-x— wi)]},

where @, k, w are constant quantities. In connection with a simple harmonic
progressive wave propagating over a basin of depth k, it is worth introducing
two adimensional parameters, namely (3)

(3.3) e=2%, o=k (k = [k|) .

In the limiting case k == co we define s¢ = ak.
With this in mind, we would like to examine the standard models a little
more closely in regard to the GN model.

i) Shallow-water theory (long-wave theory). The shallow-water theory is
based on the assumption that the vertical component of the water particle
acceleration has a mnegligible effect on the pressure p (ref. (1), subsect. 2'2).
Mathematically, this is tantamount to assuming that the dynamic pressure p
is approximately equal to the hydrostatic pressure, i.c.

(3.4) p~og({—2)+p,-

(1®) L. M. MiL~NE and C. B. E. THOMSON: Theoretical Hydrodynamics (London, 1968).
(**) J. J. STOKER: Water Waves (New York, N. Y., 1957).
(%) T. Levi Civitra: Math. Ann., 93, 264 (1925).
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This model is also commonly referred to as the theory of long wave since the
relation (3.4) (and (3.7)) can be deduced by means of a perturbation procedure
involving a formal development of all quantities in powers of the small para-
meter ¢ (ref. (%), sect. 171; (14)). However, as noted frankly by SToKER in ref. (1),
p. 31, the quoted method does not prove that (3.4) is, in some sense, an appro-
priate assumption as the formal developments are introduced in just such
a way that (3.4) would result (*).

With respect to the GN model, on account of the definitions of P and 17,
the agssumption (3.4) implies

(3.5) P~ (¢ + 1) +p,,
I~ (3og(E + b) + p )+ h).

Substitution of the relations (3.5) into (2.12), (2.13) yields
(3.6) A~0, w~0.

In view of definition (2.4), these results in turn lead to the starting point ac-
cording to which the vertical component of the acceleration is negligible. In
the meantime eqgs. (2.10), (2.11) provide the fundamental equations of the
nonlinear shallow-water theory (finite-amplitude long-wave theory)

e +V[(C+h)v]:07
v+ (v-V)o =—¢V{[,

(3.7)

in complete agreement with the analogous ones presented in the literature
(see, e.g., ref. (11), subsect 2°2). The standard linearization procedure reduces
the system (3.7) to the well-known linearized shallow-water theory differential
equations

(3.8) e+ V-(hv)=0,
v,=— gV{.

(13) H. LamB: Hydrodynamics, VI ed. (Cambridge, 1932).

(14) Further details about these perturbation procedures may be found, e.g.,in ref. (), (1),
subsect. 2'4; see also K. O. Friepricus: Comm. Pure Appl. Math., 1, 81 (1948);
J. B. KELLER: Comm. Pure Appl. Math., 1, 323 (1948).

(1%) Nevertheless, it is worth remarking that K. O. FriepricHs and D. H. HYERS:
Comm. Pure Appl. Math., 7, 517 (1954), have shown the development does yield the
existence of the solitary-wave solution.
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The classical linear hyperbolic equation (see, e.g., ref. (13), sect. 191; (%¢); (*7)
sect. 13)

(3.9) Cie— gV -[AV{] =0
follows immediately. '

ii) Small-amplitude theory (linear approximation). This model hinges
on the assumption that the variables under consideration slightly differ from
the values at hydrostatic equilibrium (still water). This is equivalent to the
requirement ¢ <1 (*¥). This model can be derived as an approximation to the
general theory by assuming that all the variables possess a suitable power
series expansion with respect to ¢ (ref. ('), subsect. 2'1). Otherwise we can
proceed as follows. The pressure at the bed P may be written in the form

P=yp, + ogh+yp;

by definition p is the difference between the dynamic and the hydrostatic
pressure. Analogously, we set

IT=p.h+ yogh* +=.

By neglecting nonlinear terms with respect to the perturbations {, v, p, =,
we obtain the differential equations of the small-amplitude wave theory within
the framework of the GN model

&+ V-(hw)y=0,

(3.10) ehv, = — V7 4 p, V{ + pVh,

$oh(lu—v, Vh)=—ogl + b,

T20h*(1 + v, Vh) = — Lhp — (p, + togh){,

where A,~ %({,,—v,-Vh), w,~(,, + v,-Vh. _

In connection with the system (3.10), we point out that it is possible to
assume ¢ < 1 independently of the shallow-water condition (3.4). In order
to explain the sense of this statement, we seek a solution of (3.10) in the form

& = Eexplik-x],

(*¢) 8. C. LoweLL: Comm. Pure Appl. Math., 2, 275 (1949).

(*") L. Laxpavu and E. LircHITz: Mécanique des fluides (Moscow, 1971).

(*®) The case h = oo cannot be considered within the framework of the GN model
(cf. sect. 4). We recall that the common approach to this case is based on the assump-
tion s0 < 1 (see, e.g., ref. (13), sect. 246; ('7), sect. 12).
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¢ being any of the quantities {, v, p, . By letting k = kn, substitution in
(3.10), , gives
E,4+ VD + (Vh+ion)- v,
oh*B, = — V(h#) + p,V(hE) + PV + (Vb — ion)(®— p, £),
while the egs. (3.10);, maintain the same form also for £. If, according to

PEREGRINE (%), we assume Vkh = O(1), it is a simple matter to see that the set
of the quantities £, like &, is solution of the system (3.10).

4. — Conclusions.

The GN model is strongly founded on the assumption that the fluid motion
could preserve the column structure at every time. Of course, if it is not the
caso, the GN model no longer holds. This fact poses limitations to the range
of applicability of the model. To this purpose, the analysis of a simple physical
gituation enables us to precisc quantitatively the limitations of the model.
Let us consider a fluid of uniform depth, h(z, y) = k, and seek a solution of the
system (3.10) in the form of a simple harmonic progressive wave, namely

(4.1) & =§,exp[i(kr — ot)].

Then the system (3.10) becomes an algebraic system for the amplitudes &,, i.e.
— il + thku, =0,

— twohu, = — ikmy -+ ikp, Ly,

(4.2) — Lo ohly = — 098, + Do,

— g0 ohly = — 1hpe— (9, -+ Logh)lo.

Besides the system (4.2), the choice (4.1) provides the further result v, = 0;
we lose no generality by setting v =0. By straightforward calculations, the
system (4.2) allows us to obtain the dispersion relation

1+ . a)z_ T
(4.3) gk‘(u +F gh=0.

If we denote by ¢, = w/k the phase velocity of the wave, the dispersion relation
(4.3) yields

. A :
— 2
(4.4) ¢, = c(l 39 w® ) ,



GRAVITY WAVES IN WATER OF VARIABLE DEPTH 387

where ¢ = (gh):. Moreover, letting ¢, = cw/[Ck be the group velocity, (4.3)
gives easily

h 2*
(4.5) ¢, = c(l—%w) .

According to (4.4) and (4.5), in general both ¢, and ¢, would depend on the
angular frequency w. Nevertheless, within a good degree of accuracy, we have
wave propagation without dispersion if the long-wave approximation (w?® < g/h
or o < 1) holds; in this case

(4.6) ¢, = ¢, = (gh)t.

Of course, the result (4.6) holds only under the assumption of horizontal bed.
Lastly, we point out that, according to (4.4), (4.5), the phase and the group
velocity ¢, ¢, are monotonic decreasing functions of w and vanish for o, =
= (3¢g/h):. The critical frequency o, is a decreasing function of the depth:
for instance w, = 1 Hz in corrispondence of A = 30 m. The GN model is the
first theory that we know in which such a behaviour occurs.

The occurrence of a critical frequency shows up the real limitations of the
GN model. We notice that the mathematical restrictions obtained are perfectly
consistent with the underlying physical model. In fact, while it is acceptable
that the column structure may be preserved within the approximation ¢ <1
(i.e. low frequencies or low depths), on the contrary the column hypothesis
is clearly unrealistic in the case o >> 1 (i.e. high frequencies or high depths).
A confirmation of this viewpoint is given by the well-known result according
to which the amplitude of a surface wave is a monotonic decreasing function
of the depth (see, e.g., ref. (12), sect. 227; (1), sect. 12). In this connection we
remark that, if o ~ 2.65, a flnid particle whose depth is half of a wave-length
would hardly feel the effect of the surface wave (ref. (°), subsect. 15°17). In
conclusion we can say that, although confined to the case of plane waves prop-
agating in a fluid of constant depth, the preceding analysis reveals the effec-
tive limitation for the validity of the GN model: it no longer holds for ¢>>1 (19).

It follows from what we have seen so far that the GN model gets its natural
setting within the framework of shallow-water theories. Actually, assuming
the equality between the hydrostatic and the dynamic pressure, the GN model
leads directly to the classical shallow-water theory. On the ground of this
observation and by considering the usual theory as an approximate model
(see KELLER (1)), the GN model, accounting for a dynamic contribution to
the pressure, appears as the natural generalization of the shallow-water theory.
Then new and more precise results about propagation of waves in fluids are

(**) As a consequence, the procedures of geometrical optics theory (see, e.g., ref. (%))
cannot be applied to the GN model.
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to be expected by applying the theory by GREEN and Nacupi. Unfortunately,
the nonlinearity makes the study of the system (2.10)-(2.13) somewhat hard.
Consequently, while looking forwards to examining the general case of finite-
amplitude waves, as a first step, we intend to analyse the GN model only within
the approximation of small-amplitude waves. This analysis will be developed
first by using suitable numerical methods and it will be the subject of a future
paper.

* % %

The research reported in this article was carried out in collaboration with
the « Laboratorio per la Matematica Applicata - C.N.R. Genova » in connection
with the project « Conservazione del suolo», subproject « Dinamica dei Li-
torali ».

® RIASSUNTO

In questo lavoro si esaminano alecuni modelli per la propagazione delle onde di gravita
in acqua di profonditd variabile. In tale contesto, particolare attenzione & rivolta al
modello proposto recentemente da Green e Naghdi. Un confronto dettagliato con teorie
largamente in uso permette di collocare tale modello nell’ambito delle teorie dell’acqua
poco profonda. Fortunatamente, la maggior gencralitad del modello di Green ¢ Naghdi,
delineata in questo lavoro, apre nuove prospettive sulla possibilitd di ottenere risultati
piu soddisfacenti per la propagazione di onde di gravita.

I'paBHTAlHOHHBIE BOJIHBI B BORE ¢ NMepPeMEHHOH TOJ/HIMHOI.

Pesiome (*). -— Ota paboTa KacaeTcs aHAMH3Aa HEKOTOPBIX MoJeNlel pacopocTpaHEHUs
TPaBHTALMOHHBIX BOJIH B BOAE C NepeMeHHOM TONMIUMHOM. B pamMkax 3Toro moaxona
ocoboe BHHMaHUE YACNACTCS MOOE/IH, HEOaBHO IpemnoxenHod I'punoM u Harau. IMoxa-
po6HOE CpaBHEHHE C OOMENPHHATEIMH TEOPHSIMH TIO3BOJISAET pACCMOTpPETh MOZenb I'puna
¥ Harau, xak TeopHio, HEMOCPEACTBEHHO CBA3AHHYIO C NPHOJIMXEHHEM MENTKOM BOIEL.
Oanako 0606meHHe 3ITOM MOZENH, NPEIIOXEHHOE B 3TOM CTAThe, OTKPBHIBAET HOBbIE
BO3MOXHOCTH TOJNIydeHHUA Oo0Jiee yAOBJIETBOPHUTENILHBIX pEe3yJIbTATOB, KacCalOLIMXCH
PACIpOCTPaHEHUS TPABHUTALMOHHBIX BOJIH.

(*) Ilepesedeno pedaryueil.



