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Snmmary. - -  This work is concerned with the analysis of some models 
for gravity wave propagation in water of variable depth. Within this 
framework, particular emphasis is put on the model recently proposed 
by Green and Naghdi. A detailed comparison with widely accepted 
theories allows us to consider the model by Green and Naghdi essentially 
as a theory closely related to the approximation of shallow water. 
Itowever, the greater generality of this model, outlined in the present 
paper, opens new prospects of the possibility of achieving more satis- 
factory results about gravity wave propagation. 

l .  - I n t r o d u c t i o n .  

The s tudy  of g rav i ty  wave (water wave) propagat ion reveals difficulties 

originat~l  by  the occurrence of the nonlinear inertia terms and of the non- 
linear boundary  condition over an unknown surface. The existence of these 

difficulties, together  with the fact  t ha t  the more interesting aspects of g rav i ty  

wave propagat ion have two-dimensional character,  motivates  the develop- 
ment  of some methods in order to replace tile three-dimensional theory  of gravi ty  

waves by  approximate  two-dimensional theories. I n  this connection, we recall 
tha t  well-known methods of approximat ion are essentially to introduce one 

or more adimensional parameters  which, in some sense, are regarded as small. 
I n  this way  the so-called asymptot ic  expansions are obtained and these in tu rn  
lead to equations well known in the current literature. For  a brief review of 
these procedures we cite, for instance, the papers by  F~EDRICHS (1), KELLER (2), 

(1) K. 0. FRLEDRICHS: Comm. Pure  A p p l .  Math . ,  1, 109 (1948). 
(2) J. B. KELLER: J o u r n .  _~'luid Mech.,  4, 607 (1958). 
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PE]ZEGRI.~E (,,4), G]~I~tS~AW (5) and Jom'~so~ (6). Although these methods of 
approximat ion appear  as useful tools in applications, they  suffer f rom a lack 
in proof of the asymptot ic  character  of the expansion considered. Moreover,  
these methods  require a pr ior i  assumptions about  the scaling of the variables 
under  study.  Finally,  again with respect  to methods  of approximation,  we men- 
t ion bidimensional theories based on the  employ of conformal t ransformations 
which make  the bo t t om horizontal  (7,8). 

Wi th  a view to overcoming the  incomplete na ture  of the methods quoted 
above, in a recent  paper  (9) G~aEE~ and ~AGtIDI a t t emp ted  to derive, in a 
systematic  way, the  equation of motion for iuviscid, nonconducting,  homo- 
geneous and incompressible fluids within the f ramework of a three-dimensional 
theory.  I n  synthesis,  GREEN and NA(~IrDI s tar t  with the usual integral version 
of the energy balance equation for an incompressible fluid. Then,  by  assuming 
the invariance of the  energy equation under  superposed rigid-body translation,  
they  deduce the corresponding equations of mot ion together  with the conti- 
nui ty  equation. The par t icular  feature  tha t  distinguishes the  model b y  Gm~]~ 
and NA~m)I (GI~ model) f rom normally adopted  theories relies on the assump- 
tion t ha t  the  vert ical  component  of the  fluid veloci ty depends l inearly on 
and the  horizontal  component  is independent  of the  vert ical  co-ordinate. I n  
terms more suggestive than precise, this assumption Can be phrased b y  saying 
tha t ,  according to the  GI~I model, the  e lementary  consti tuents of the  fluid are 
infinitesimal vert ical  columns ra ther  than  the usual fluid particles. I n  other  
words, the fluid particles which, a t  some initial time, belong to a vert ical  
(material) column will cont inue to belong to the same vert ical  column. Thus 
the horizontal  veloci ty of a part icle coincides with the  horizontal  velocity 
of the  column. This description of the  motion is indeed par t icular ly  suited 
for a coincise account  of the boundary  condition (at the bed and at  the  u n k n o w n  

free surface) and of the incompressibility. 
The purpose of the present  paper  is twofold, l~irst, we analyse the GN model 

within the f ramework of the current  l i tera ture  regarding wave propa~ation in 
fluid. To this end, in sect. 2, we briefly review the w o r k b y  GREn~" and I~AG~DI, 
while, in sect. 3, we introduce the well-known shallow-water theory  and small- 
ampli tude theory.  The subsequent  comparison with these theories enables us 
to assert  t ha t  the  GBI model, al though more general, can be f ramed within the  
context  of shallow-water theories. Second, we outline the  precise l imitations 
to the  actual  range of applicabili ty of the GI~I model. To do this, it  is sufficient 

(a) D. H. PER~.GRII~E: Journ. _Fluid Mech., 27, 815 (1967). 
(4) D. H. P~I~GRII~,: in Waves on Beaches (London, 1972), p. 95. 
(5) R. GRIMSHAW: Journ. -Fluid Mech., 42, 639 (1970). 
(9) R. S. JOENSON: Prec. Camb. Phil.  Soc., 73, 183 (1973). 
(7) G. K~IS~L: Quart. Appl.  Math., 7, 21 (1949). 
(s) ,1. HAMILTON: Journ. Fluid Mech., 83, 289 (1977). 
(9) A. E. GRE~I~I and 1 ). M. NAGHDI: Journ. -Fluid Mech., 78, 237 (1976). 
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to consider the simple physical  case of wave propagat ion in water  of constant  
depth  (sect. 4). This s tudy  shows up an interest ing fea ture  of the theory,  
namely  a dispersion relation whose main consequences are the  following. F i rs t  
of all, a t  low frequencies we find the  usual result  for the  velocity of propagation.  
Moreover, the  dispersion relat ion reveals the  existence of a cut-off f requency 
r in the  sense tha t  the  possibility of wave propagat ion is ruled out  for fre- 
quencies greater  t han  w c. Since w~ decreases with the depth  of the fluid, this 
conclusion allows us to infer t ha t  the  column model  is physical ly realistic when 
the water  is shallow or the wave is long. We conclude sect. 4 by  pointing out  
the possible applications of the  theory  by  G~EE~ and NAGHDI, namely prop- 
agation of small-amplitude waves in water  of variable depth.  

2. - The model of Green and Naghdi. 

As far  as possible, in the following we use the  original notat ions of GREE~ 
and NAG]rDI (9). Accordingly, x, y, z denote the  usual Cartesian orthogonal  
co-ordinates whose uni t  vectors  are el ,  e2, ea, respectively. The  symbols ~t, 
~ ,  ~, s tand for the  par t ia l  der ivat ive  of any  quan t i ty  ~ with respect  to the t ime 
t and the  co-ordinates x, y. A superimposed dot  indicates the material  t ime 
derivative.  

Le t  us consider an inviscid, homogeneous,  incompressible fluid with con- 
s tant  mass densi ty ~ moving over an uneven b o t t o m  specified b y  

(2.1) x = xex ~ yes--  h(x,y}%. 

The free surface of the fluid is described by  

(2.2) x = xel  + ye2 § ~(x, y,  t )eg .  

Obviously, h(x, y) is an a priori given function,  whereas the  funct ion ~(x, y, ~) 
is unknown for the  problem under  s tudy.  We choose the  origin of the  vert ical  
axis so tha t  z ~ 0 is the  free surface at  the equilibrium (see fig. 1). By  neglecting 

J 

z = O  

= l~(x,y,t) 

,Y) 

Fig. 1. - Geometry of the general propagation problem. 
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surface tension effects, the  pressure a t  the free surface z = $(x, y, t) coincides 
with the  a tmospher ic  pressure p~. Owing to the  mot ion  of the  fluid, the  ml- 

known pressure P a t  the  bed  depends on x,  y and also on t. 
Le t  X~, X2, X3 be the  (Lagrangian) co-ordinates of a fluid part icles wi th  

respect  to a suitable reference configuration. The GN model  relies on the as- 
sumpt ion  t h a t  the  horizontal  componen t  of the veloci ty  be  independent  of X3 
and the  vert ical  componen t  be a l inear funct ion of Xa. This means  t h a t  a 
ver t ical  column of fluid around (X1, X2) in the  reference configuration remains  
ver t ical  column around (x(X1,  X , ,  t), y (X1 ,  X2,  t)) in the  present  configuration, 
while the  vertic'/fl veloci ty  componen t  varies l inearly along the  column itself. 
This v iewpoint  makes  i t  na tu ra l  to express the  posit ion of a part icle  of the  
fluid in the  fo rm 

(2.3) x - -  r § (~ § XqJ)e~, 

where r ~- xe~ ~ ye2, ~f ~- ( ~ - -  h)/2, cf ---- ~ § h, X -~ X3.  I t  follows a t  once 
t h a t  the  free-fluid surface (2.2) m a y  be obta ined b y  set t ing X---- �89 in (2.3), 
while the  bed (2.1) corresponds to X =  --  ~; consequent ly  X ~ [ - -  �89 �89 I n  
view of (2.3) the  veloci ty  V----- ~ m a y  be wri t ten  in the  fo rm 

(2.4) V =  v § (~ § X'w)e3 , 

v -~ i" = ue .  + re2 being the  horizontal  componen t  of the  veloci ty  and  )~ -= y), 
w = ~. As to the  physical  meaning  of ~ and  w, we note  t ha t  ~(x, y, t) is the  
vort ical  veloci ty  of the  centre  of mass  of the fluid column around  (x, y),  while 
X w  is the  ver t ical  veloci ty  of the  part icles within the  cohtmn, relat ive to the  
cent re  of mass.  

Lot  us consider now an a rb i t r a ry  fluid column occupying a region ~ *  
bounded  b y  a closed cylinder ~ ,  whose uni t  outwards  normal  is denoted b y  
n,  defined b y  an equat ion of the  fo rm ](X1, X~) = 0 (see fig. 2). 

Le t t ing  .~ s tand  for the  p a r t  of the surface z = ~(x,  y, t) belongimg to ~* ,  
we can write 

(2.5) . I p V ' n d a  = f p e . v A d r d z - - - - :  f 1 1 ( e a A v ) . d r  , 

whore p(x ,  y, z, t) is the  pressttre and  11 is defined b y  

r 

11 = f p dz  . 
- - h  

The force act ing on an infinitesimal surface e lement  n da  of the  fluid is given b y  

(2.6) - -  p n  da ~- p . ( ~ e l  + ~e~. - -  e3) dx  d y ,  z = ~(x, y,  t) 
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J = 0  

i! (i ! !i i 
Fig. 2. - Fluid column ~*. 

= - - h  

at the free surface and by  

(2.7) -- p n d a  ~ P(hxe~ ~ h,e2 --  e3)dxdy  , z ~ - -  h(x, y) 

at  the bot tom.  The use of eqs. (2.5)-(2.7) enables the energy balance equation 

(2.8) d f Q ( I v 2 - t - g z ) d v ~ - - - f p V ' n d a  

to be wri t ten as 

of~(  ~w~ ) {2.9) d-t o~ v ' +  i2 § 2g~ dxdy = 

= f {p.(-v v: + x + lw)- -P(v .Vh + 2--1w)dxdy--e3"flIvAdr. 

The symbol V : ~  el~l~x ~ e2~l~y denotes the bidimensional gradient operator.  
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The equations wri t ten  above are not  sufficient for a complete theory  since, 
so far,  we have not  considered the  equations of mot ion of the fluid. To this 
purpose, we consider the  energy balance in the form (2.9) and we assume th a t  
it  is invar iant  under  suporposed rigid-body motion. This means tha t  the  change 
of f rame corresponding to the  t rasformat ion V - .  V + U leaves (2.9) unal tered.  
Then the  arbitrariness of the constant  vector  U allows us to write the relations 

df 
d-t ~ d x d y  : 0 ,  

~ f d-t, 9 c f v d x d y  : (p,V~ + P V h ) d x d y  + e3A d r ,  

df f d-t o~f(~ + g t ) d x d y  = ( P - - p ~ ) d x d y .  

Under  suitable smoothness assumptions for the fields under  study,  these 
equations provide the corresponding local field equations 

(2.10) 

(231) 

(2.32) 

~b + cfV-v : 0 ,  

9q)i~ : - -  V I I  + p~ V~ -~- P V h  , 

Moreover, on account  of (2.10)-(2.12) the energy balance (2.9) yields 

(2.13) 

For  la ter  purposes, it  is wor th  remarking tha t ,  according to (2.12), the  vert ical  
acceleration of the centre of mass ~ is singled out  b y  the difference between 
dynamic, and hydros ta t ic  pressure at  the bot tom.  This feature  will be re turned  
to in sect. 3 in connection with the  shallow-water approximation.  

The set of equations (2.10)-(2.13) const i tutes a system of five scalar (non- 
linear) equations in the  five unknown functions ~ (or ~ = ~ +  h), v, P ,  I I .  Even  
because of the nonlinearity,  in general it  is a ha rd  task to determine the  motion 
of the fluid according to the G ~  model described above. On the  other  hand,  
a comparison between this model and those usually adopted  in the  l i tera ture  
is not  immediate.  This mot ivates  a detailed analysis of the Gb% model in cou- 
nection with the more familiar models such as the  shallow-water theory  and 
the small-amplitude theory.  We are dealing with this argument  in the nex t  
section. 
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3. - Some mode l s  for water  w a v e  propagation.  

The key  problem we are concerned with is the  description of the wave motion 
of a fluid. For  definiteness, we say that ,  in general, a wave motion of a fluid, 
acted upon by  gravi ty  and having a free surface, is a mot ion in which the  
quan t i ty  ~(x, y, t) varies in t ime (ref. (10), subsect. 14"30). More specific wave 
motions are widely considered by  several authors;  for the reader 's  convenience, 
we list here the most  common types of wave motions. 

A wave motion is called a s tanding wave when the fluid surface changes 
its shape by  moving vert ical ly wi thout  translation.  A typical  s tanding wave 
is expressed by  (ref. (n), subseet. 3"1) 

(3.1) $(~v, y, t) = R e  (z(x,  y)  e x p  [ io~t]} .  

A wave motion is called a progressive wave when there  exists a f rame of 
reference for which the mot ion  is t ime independent  (12). A par t icular  progres- 
sive wave is the s imple  harmonic  progressive wave given b y  

(3.2) r y, t) = Re  {a exp [ i ( k .  x - -  ~ot)]} ,  

where a, k, w are constant  quantities.  In connection with a simple harmonic  
progressive wave propagat ing over  a basin of depth  h, i t  is worth introducing 
two adimensional parameters ,  namely (3) 

a 
(3 .3)  s : ~ ,  ~ = hk (k = Ikl) �9 

In  the limiting case h --:- r162 we define sa = ak. 

With this in mind,  w e  would like to examine the s tandard  models a little 
more closely in regard to the GN model. 

i) Shallow-water theory (long-wave theory) .  The shallow-water theory  is 
based on the  assumption tha t  the vert ical  component  of the water  part icle 
acceleration has a negligible effect on the  pressure p (ref. (11), subsect. 2'2). 
Mathematical ly,  this is t an t amoun t  to assuming tha t  the  dynamic  pressure p 
is approximate ly  equal to the hydros ta t ic  pressure, i.e. 

(3.~) p _~ q g ( $ -  z) + p . .  

(lo) L. M. MILNI~ and C. B. E. T]to~aso~: Theoretical Hydrodynarai~s (London, 1968). 
(11) j .  j .  STOKER: Water Waves (New York, N.Y.,  1957). 
(1.~) T. LEvi CIVITA: Math. Ann. ,  93, 264 (I925). 
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This model  is also commonly referred to as the theory  of long wave since the  
relation (3.4) (and (3.7)) can be deduced by  means of a per tu rba t ion  procedure  
involving a formal  development  of all quanti t ies in powers of the small para- 
meter  a (ref. (13), sect. 171 ; (~4)). However ,  as noted  f rankly b y  STOTCE~ in ref. (~), 
p. 31, the  quoted me thod  does not  prove t h a t  (3.4) is, in some sense, an appro- 
pr ia te  assumption as the formal  developments  are in t roduced in just  such 
a way tha t  (3.4) would result  (~5). 

Wi th  respect  to the G ~  model, on account  of the  definitions of / '  a n d / / ,  
the  assumption (3.4) implies 

(3.5) [ ~ ---eg($+ h ) + p , ,  

H~_ (~eg(~ + h) § p,)(~ + h). 

Subst i tu t ion of the relations (3.5) into (2.12), (2.]3) yields 

(3.6) ~ ~ 0 ,  ~ ~ O. 

In  view of definition (2.4), these results in turn lead to the start ing point  ac- 
cording to which the  vert ical  component  of the acceleration is negligible. I n  
the meant ime eqs. (2.10), (2.11) provide the fundamenta l  equations of the 
nonlinear shallow-water theory (finite-amplitude long-wave theory)  

(3.7) [ $~ § 2 4 7  

v ~ §  (v.V)v = - - g V ~ ,  

in complete agreement  with the analogous ones presented in the l i terature  
(see, e.g., ref. (11), subsect 2"2). The s tandard  linearization procedure  reduces 
the  system (3.7) to the  well-known linearized shallow-water theory differential 
equations 

(3.8) I $' § V. (hv) = O, 

/ v~ ---- -- gV~. 

(13) H.  LAMB: Hydrodynamics, VI ed. (Cambridge, 1932). 
(td) Further details about these perturbation procedures may be found, e.g.,ill ref. (3), (11), 
subsect. 2"4; see also K. 0. FRIEDRICnS: Comm..Pure Appl. Math., 1, 81 (1948); 
J. B. KRLLER: Comm. Pure Appl. Math., 1, 323 (1948). 
(15) Nevertheless, it is worth remarking that K. O. FRXEDRmHS and D. H. tIYRRS: 
Comm. Pure Appl. Math., 7, 517 (1954), have shown the development does yield the 
existence of the solitary-wave solution. 
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The classical hnear  hyperbol ic  equat ion (see, e.g., ref. (~3), sect. 191; (~6); (~7) 
sect. 13) 

(3.9) ~t~-- gV .[hV~] = 0 

follows immedia te ly .  

ii) Small-amplitude theory (linear approximat ion) .  This model  hinges 
on the  assumpt ion  t h a t  the  var iables  under  consideration slightly differ f rom 
the  values a t  hydros t a t i c  equil ibrium (still water) .  This is equivalent  to the  
requ i rement  e << 1 (~s). This model  can be derived as an approx ima t ion  to the  
general  theory  b y  assuming t h a t  all the  var iables  possess a sui table power  
series expansion wi th  respect  to e (ref. (zz), subsect.  2"1). Otherwise we can 
proceed as follows. The  pressure a t  the  bed P m a y  be wr i t ten  in the fo rm 

P = p. -4- ~gh -4- p ; 

b y  definition p is the  difference be tween the dynamic  and the  hydros ta t i c  
pressure.  Analogously,  we set 

B y  neglecting nonlinear t e rms  with respect  to the  per tu rba t ions  ~, v, p, z ,  
we obta in  the  differential equat ions of the  small-amplitude wave theory within 
the  f r amework  of the  GN model  

(3.10) 

$, § V. (hv)  = O, 

�89 v , . V h )  = - -  qg~ + ~ ,  

where 2t --~ �89 ( ~ , - -  v~-Vh), wt - -  $ ,  ~- vt-Vh.  
I n  connection with  the  sys t em (3.10), we poin t  out  t ha t  i t  is possible to 

assume a << 1 independent ly  of the  shal low-water  condit ion (3.4). I n  order 
to explain the  sense of this s t a t ement ,  we seek a solution of (3.10) in the  form 

---- ~ exp [ik" x] ,  

(is) S. C. LOWELL: Comm. Pure Appl. Math., 2, 275 (1949). 
(17) L. LANDAU and E. LIFCHITZ: Mdcanique des /luides (Moscow, 1971). 
(is) The case h = ~ cannot be considered within the framework of the GN model 
(ef. sect. 4). We recall that the common approach to this case is based on the assump- 
tion ea << 1 (see, e.g., ref. (xs), sect. 246; (1~), sect. 12). 
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being any  of the quantit ies ~, v, p, n. B y  let t ing k ---- k n ,  subst i tut ion in 
(3.10h.~ gives 

~t + hV.~ + (Vh + ian).~, 

eh'9, ---- -- V(h~) -5 p.V(h$) -}- ~hVh + (Vh -- ian)(~ -- p. $), 

while the  eqs. (3.10)3,~ mainta in  the  same form also for ~. If ,  according to 
PEREG~I2~E (3), w e  assume Vh = 0(1), i t  is a simple m a t t e r  to see t h a t  the  set 
of the  quanti t ies ~, like ~, is solution of the system (3.10). 

4. - Conclusions. 

The  GN model is strongly founded on the assumption tha t  the fluid motion 
could preserve the c o l u m n  s t ruc ture  at  every  time. Of course, if i t  is not  the  
case, the GN model no longer holds. This fact  poses l imitations to the range 
of applicabil i ty of the model. To this purpose, the analysis of a simple physical 
si tuation enables us to precise quant i ta t ive ly  the l imitations of the model. 
Le t  us consider a fluid of uniform depth,  h(x,  y) : h, and seek a solution of the 
system (3.10) in the form of a simple harmonic progressive wave, namely 

(4.1) : #o exp [ i ( kx  - 0)t)].  

Then the  system (3.10) becomes an algebraic system for the ampli tudes ~o, i .e.  

(~.2) 

- -  i e~o  + ihkuo : 0 ,  

- -  i0)ohuo : - -  ik:ro + ikp .r  , 

- ~0) 'eh~,o  = - -  eg~o + ~ o ,  

Besides the  system (4.2), the choice (4.1) provides the fur ther  result  v, : 0; 
we lose no general i ty  by  set t ing v ~ 0. B y  s t ra ightforward calculations, the 
system (4.2) allows us to obtain the d i sper s ion  relat ion 

[ --z 0)2 
(4.3) :~ h 0)'- + ~ - g ~  = o . 

I f  we denote  by  c~ 
(t.3) yields 

(4.4) 

= 0)/k the phase veloci ty of the wave, the dispersion relation 

co = c ( ] - - ~ 0 ) ~ )  , 
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where e = (gh)�89 
gives easily 

(4.5) 

Moreover, let t ing o~-~ ~o~l~k be the group velocity,  (4.3) 

According to (4.4) and (4.5), in general bo th  % and c would depend on the 
angular  f requency oJ. Nevertheless,  within a good degree of accuracy, we have 
wave propagat ion wi thout  dispersion if the long-wave approximat ion (w 2 ~ g/h 
or a << 1) holds; in this case 

(4.6) % : c, : (gh)~. 

Of course, the result  (4.6) holds only under  the assumption of horizontal  bed. 
Last ly,  we point  out  that ,  according to (4.4)7 (4.5), the  phase and the group 
veloci ty  %, cg are monotonic  decreasing functions of o~ and vanish for o)o 

(3g/h) t. The critical f requency ~oo is a decreasing function of the  depth:  
for instance too -~ 1 Hz  in corrispondence of h ~ 30 m. The GN model is the 
first theory  tha t  we know in which such a behaviour  occurs. 

The occurrence of a critical f requency shows up the real l imitations of the 
GN model. We notice tha t  the mathemat ica l  restrictions obtained are perfect ly  
consistent  with the underlying physical model. In  fact ,  while it  is acceptable 
t ha t  the column s t ruc ture  may  be preserved within the  approximat ion  a ( (  1 
(i.e. low frequencies or low depths),  on the  cont rary  the  column hypothesis  
is clearly unrealistic in the case a >> 1 (i.e. high frequencies or high depths).  
A confirmation of this viewpoint  is given by  the well-known result  according 
to which the ampli tude of a surface wave is a monotonic  decreasing funct ion 
of the depth  (see, e.g., ref. (13), sect. 227; (1~), sect. 12). In  this connection we 
remark  tha t ,  if a ~_ 2.65, a fluid part icle whose depth  is half of a wave-length 
would hardly feel the effect of the surface wave (ref. (lo), subseet. 15"17). I n  
conclusion we can say tha t ,  a l though confined to the case of plane waves prop- 
agat iug in a fluid of constant  depth,  the  preceding analysis reveals the effec- 
t ive l imitat ion for the val idi ty  of the GI~ model:  it  no longer holds for  a>>l (10). 

I t  follows f rom what  we have  seen so far  t ha t  the  GN model gets its na tura l  
set t ing within the f ramework of shallow-water theories. Actually,  assuming 
the equali ty between the  hydros ta t ic  and the dynamic  pressure, the GN model 
leads direct ly to the classical shallow-water theory.  On the ground of this 
observat ion and b y  considering the usual theory  as an approximate  model 
(see KELLER (14)), the GN model, accounting for a dynamic  contr ibut ion to 
the  pressure, appears as the natura l  generalization of the shallow-water theory.  
Then  new and more precise results about  propagat ion of waves in fluids are 

(19) As a consequence, the procedures of geometrical optics theory (see, e.g., ref. (*)) 
cannot be applied to the GN model. 
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t o  b e  e x p e c t e d  b y  a p p l y i n g  t h e  t h e o r y  b y  GRE~,~ a n d  NAGIII)I. U n f o r t u n a t e l y ,  

t h e  n o n l i n e a r i t y  m a k e s  t h e  s t u d y  of t h e  s y s t e m  (2.10)-(2.13) s o m e w h a t  h a r d .  

C o n s e q u e n t l y ,  whi le  l ook ing  f o r w a r d s  to  e x a m i n i n g  t h e  g e n e r a l  case  of f ini te-  

a m p l i t u d e  waves ,  as  a f i rs t  s tep ,  we i n t e n d  to  a n a l y s e  t h e  GI~ m o d e l  o n l y  w i t h i n  

t h e  a p p r o x i m a t i o n  of s m a l l - a m p l i t u d e  waves .  Th is  a n a l y s i s  wil l  be  d e v e l o p e d  

f i rs t  b y  us ing  s u i t a b l e  n u m e r i c a l  m e t h o d s  a n d  i t  wil l  b e  t h e  s u b j e c t  of a f u t u r e  

p a p e r .  

T h e  r e s e a r c h  r e p o r t e d  in  th i s  a r t i c l e  was  c a r r i e d  o u t  in  c o l l a b o r a t i o n  wi th  

t h e  <( L a b o r a t o r i o  p e r  la  ~-~Iatematica A p p l i c a t a  - C.Iq.I~. G e n e v a  ~> in c o n n e c t i o n  

w i t h  t h e  p r o j e c t  (( Conse rvaz ione  de l  suolo )>, s u b p r o j e c t  <~Dinamica de i  Li-  

t o r a l i  ~>. 

�9 R I A S S U N T O  

In questo lavoro si esa.mina.no a.leuni modelli  per  la. propa.ga.zione delle onde di gravits  
in a.cqua, di profondit~ va.riabile. In ta.le contesto, part ieolare a.ttenzione 6 r ivolta al 
modello proposto reeenternente da. Green e Naghdi. Un confronto det tagl ia to con teorie 
la.rga.mente in use permet te  di collocare tale modello nell'a.mbito delle teorie dell'a.cqua. 
poco profonda. Fortunata.mente,  la. ma.ggior generalit~ del modello di Green e Naghdi,  
delinea.ta, in questo lavoro, a.pre nuove prospet t ive sulla, possibilitiL di ottenere r isul ta t i  
pifi soddisfaeenti  per  la. propagazionc di onde di gravith. 

FpaBIITaHHOHHble BOJlllbl B BO,~e C IIepeMeHH0fi TOJIIII[HHOHo 

PeaioMe (*). - -  ~Ta pa6oTa xacaeTcn aHaJIHaa rmXOTOpblX Mo~eJ/el~ pacnpocTparleHrln 
rpaBia'TaUHoltlfbix BOJ/H B Bo~e C i/epeMeHHol~ To.rII1HtHOI~. B paMl(ax 3TOFO HO~XO~a 

oco6oe BurrMarrae y~enaeTc~ Mo~enH, HenaBHO npe)Iao~xermo~ FprmoM ~ HararL Ho~- 
po6noe cpaBrtenrte c o6~enpnuaTbtMr! TeopunMn noaBonzeT pacCMOTpeTb MO~enb Fprma 

Har~u,  r a t  TeopHm,  r t enocpe~cTneRno  CBrlaaHHylO C npnSnnx~eHrieM Me2lro~ BO~bl. 

O~tHaro o6o6tucHHe aro~ Moaena, npc~no~crmoe B aro/~ CTaTbe, OTKpblBaer HOBble 
BO3MO)KKOCTII rlfoJIy~leHFLq 6oYlee y~OBXIeTBOpttTe.rlbHbIX pe3y.rlbTaTOB, KacalOIHHXCff 

pacHpOCTpaHeHI~$I rpaBHTaL~HOHHblX BOYlH. 

(*) Ilepeaec)euo pe3amtue(t. 


