
American Journal of Community Psychology, Vol. 22, No. 5, 1994 

Analysis of Clustered Data in Community 
Psychology: With an Example from a Worksite 
Smoking Cessation Project 

Donald  Hedeker  2 
University of Illinois at Chicago 

Susan  D. M c M a h o n  and Leonard A. Jason  
DePaul University 

Doreen Sa l ina  
Northwestern University 

Although it is common in community psychology research to have data at 
both the community, or cluster, and individual level, the analysis of  such clus- 
tered data often presents difficulties for many researchers. Since the individuals 
within the cluster cannot be assumed to be independent, the use of many tra- 
ditional statistical techniques that assumes independence of observations is 
problematic. Further, there is often interest in assessing the degree of depend- 
ence in the data resulting from the clustering of individuals within communi- 
ties. In this paper, a random-effects regression model is described for analysis 
of clustered data. Unlike ordinary regression analysis of clustered data, ran- 
dom-effects regression models do not assume that each observation is inde- 
pendent, but do assume data within clusters are dependent to some degree. 
The degree of this dependency is estimated along with estimates of the usual 
model parameters, thus adjusting these effects for the dependency resulting 
from the clustering of the data. Models are described for both continuous and 
dichotomous outcome variables, and available statistical software for these 
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models is discussed. An analysis of  a data set where individuals are clustered 
within firms is used to illustrate features of  random-effects regression analysis, 
relative to both individual-level analysis which ignores the clustering of  the 
data, and cluster-level analysis which aggregates the individual data. 

KEY WORDS: intraclass correlation; unit of analysis; nested design; correlated data; random- 
effects model. 

Community psychology has long recognized the importance of context and 
the interaction between person and environment (e.g., Barker, 1968; Kelly, 
1966; Moos, 1976). The ecological perspective, particularly the principle of 
interdependence, which assumes that all parts of systems are interrelated, 
guides us to attend to the relationships within the system and utilize the 
community as the level of analysis (Levine & Perkins, 1987). Yet, as Shinn 
(1990) asserts, community research has had little success in understanding 
patterns of reciprocal relations that involve higher level units. Assessments 
of the individual, organizational, and community constructs are often con- 
sidered in interventions (Linney & Reppucci, 1982); however, most tradi- 
tional statistical methods utilized by community psychologists (i.e., 
fixed-effects ANOVA or regression of individual or aggregate scores) do 
not adequately account for the person-environment relationship. The ques- 
tion of what level of analysis is appropriate and representative of individuals 
in an ecological context thus presents an important methodological issue 
that has proved difficult for community psychologists to address. 

Although community psychologists recognize the importance of con- 
text in assessing individuals, either the individual or the context (e.g., the 
community, neighborhood, firm, hospital clinic, school, classroom, or fam- 
ily) is examined, often to the exclusion of the other. This is unfortunate 
since neither analysis at the individual or aggregate level tells us very much 
about the degree to which the context and its variables influence the re- 
sponse of the individual. One of the difficulties in analyzing individuals 
that are part of a large group, or cluster, is that many traditional statistical 
procedures assume independence of observations. However, since the in- 
dividuals within the cluster cannot necessarily be assumed to be inde- 
pendent, the use of these techniques is problematic. In fact, it is this 
dependency that is of interest in informing us about the influence of the 
duster on the individual, and so to assume that it does not exist (individ- 
ual-level analysis) or to remove its influence by aggregating the individual 
outcomes (cluster-level analysis) misses the point that this influence is of 
interest, and as such, should be examined and estimated. Furthermore, 
there is often interest in assessing effects of both cluster-level variables 
(e.g., intervention, classroom size) and individual-level variables (e.g., sex, 
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age, SES), and additionally, interaction of the two (e.g., sex by interven- 
tion), on the individual-level outcome. 

Clustered designs, where individuals are members of a larger group 
or context, are common in community psychology and can take a variety 
of forms. A common example of a clustered design is from school-based 
interventions. Here, children are typically assessed within various grades 
and schools, and the culture of the classroom, as well as the school (Sara- 
son, 1972) may have an impact on student responses. Another example in 
community research is familial studies, where for example, one might be 
interested in the responses of both parents and children to interventions 
delivered to the families. It is unlikely that the individuals within a family 
respond independently, in fact, estimating the degree of within-family de- 
pendency is often of interest, in and of itself. Physician- or clinic-based 
studies are another example of a clustered design where individuals are 
observed within a broader context that may influence the response of the 
individuals. Other examples include studies of individuals within social 
clubs, neighborhoods, wards, households, or worksites. In this article we 
focus on a smoking cessation program within worksites to demonstrate the 
utility of the random-effects regression model for clustered designs, but it 
is important to realize that this approach has many other potential areas 
of application in community research. 

The potential of using worksite health programs as a method of pro- 
moting health behavior changes in the community is evident (Fielding, 
1984; Glasgow & Terborg, 1988). Smoking cessation programs imple- 
mented at worksites have shown encouraging results and appear more ef- 
fective than clinic-based programs regarding long-term abstinence and 
participant recruitment (Klesges, Cigrang, & Glasgow, 1987; Schwartz, 
1987). The economic and health benefits derived from nonsmoking em- 
ployees have led many businesses to establish smoking cessation programs. 
Yet, findings regarding the types of interventions (i.e., social support, in- 
centives, self-help) that are effective have differed. Differences between 
worksites in attitudes and norms regarding smoking cessation have sug- 
gested that the culture of the workplace influences its employees (Sorensen, 
Pechacek, & Pallonen, 1986). Unfortunately, as is the case with many clus- 
tered designs, the impact of the worksite on the employee is often not 
considered statistically. As noted by Klesges et al. (1987) assignment to 
treatment conditions is often done at the company level, while the results 
are analyzed at the individual level. In terms of worksite health interven- 
tions, this unit-of-analysis problem may lead to inappropriate conclusions 
about the effectiveness of such interventions. 

Kenny and La Voie (1985) pointed out some of the problems with 
traditional methods of analysis when individuals within clusters are not in- 
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dependent, and they developed a technique that adjusts and estimates the 
correlations at both individual and cluster levels to control for the influence 
of the other level. Using an example of organizational climate, 25% of the 
correlations between independent and dependent variables changed from 
nonsignificant to significant or vice versa when this technique was used, 
rather than unadjusted correlations (Florin, Giamartino, Kenny, & Wan- 
dersman, 1990). These findings suggest that misinterpretations may result 
when cluster or community-level influences are not accounted for. 

If the sample size within clusters is balanced, one might analyze in- 
dividual data using analysis of variance (ANOVA) models which account 
for nesting of individuals within clusters, employing a randomized block or 
split-plots model, for example. These models are termed mixed models 
since they include both fixed (i.e., intervention group) and random (i.e., 
cluster) effects. As Hopkins (1982) indicated, when sample size within clus- 
ters is the same, proper use of mixed-model ANOVA yields identical results 
for the test regarding the effect of a cluster-level intervention, regardless 
of whether cluster means or individual observations are analyzed. Thus, for 
balanced designs, the mixed-model ANOVA resolves the issue concerning 
the level of analysis. Unfortunately, the sample size within clusters is often 
unequal, and further, the inclusion of multiple independent variables or 
covariates into the model at either the cluster or individual level can quickly 
render the design unbalanced. As noted by Searle (1987), for unbalanced 
data the use of the mixed-model ANOVA approach using least squares 
estimation is problematic. 

An alternative way of statistically handling the problem of clustering 
is to test the cluster as an additional f~xed factor in the ANOVA model, 
or similarly, to use dummy-coded variables in a linear regression model to 
account for the influence of the cluster on the individual outcomes. This 
approach does not suffer from the computational difficulties that result 
from using least squares estimation for an unbalanced mixed model, how- 
ever, it is conceptually unsatisfying since it treats the clusters as repre- 
senting all clusters of interest in the population. Instead, it is more natural 
to conceptualize the cluster effect as a random effect, meaning that one is 
interested in characterizing the population of clusters from which the cur- 
rent sample of clusters was drawn. Furthermore, treating the cluster as a 
fixed effect does not allow one to estimate the population variance asso- 
ciated with the cluster effect, and thus one cannot partition the total vari- 
ance in the population into that which is due to the individual and that 
which is due to the cluster. 

Another complication in the analysis of clustered data is that often 
the outcome variable is not a measurement, but instead, a dichotomous 
(e.g., yes/no or true/false) or ordinal (e.g., none, low, high) classification. 
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While, again, traditional statistical techniques can be used for individual- 
level analysis (e.g., logistic regression or log-linear models) or cluster-level 
analysis (e.g., regression or ANOVA of the proportion of individuals in a 
cluster responding yes), as noted above, analysis at either level is incom- 
plete and potentially misleading. In sum, traditional methods of analysis 
often do not adequately account for the impact of the cluster upon the 
individual, a relationship that warrants examination in community psychol- 
ogy-related studies. 

Random-effects regression models (RRM) have been developed and 
proposed for analysis of unbalanced clustered data in educational (Aitkin 
& Longford, 1896; Bock, 1989; DeLeeuw & Kreft; 1986; Goldstein, 1987; 
Raudenbush & Bryk, 1986), psychological (Bock, 1983; Bryk & Rauden- 
bush ,  1987), b io logica l  (Lai rd  & Ware ,  1982; Longfo rd ,  1987), 
epidemiological (Donner, 1985), and psychiatric (Gibbons, Hedeker, Wa- 
ternaux, & Davis, 1988; Hedeker, Gibbons, & Davis, 1991; Hedeker, Gib- 
bons, Waternaux, & Davis, 1989), literatures. RRM are useful in the 
analysis of clustered data since outcomes at the individual level are mod- 
eled in terms of both individual- and cluster-level variables, while concur- 
rently estimating and adjusting for the amount of intraclass correlation 
present in the data. Conceptually, RRM can be thought of as representing 
an extension of the balanced mixed analysis of variance models, like those 
described by Hopkins (1982), for unbalanced data; as such, RRM make 
no assumption regarding cluster sample size, allowing for a varying number 
of individuals within each cluster. Some work has generalized RRM to the 
case of dichotomous (Stiratelli, Laird, & Ware, 1984; Anderson & Aitkin, 
1985; Conaway, 1989; Gibbons & Bock, 1987; Goldstein, 1991; Wong & 
Mason, 1985; Zeger, Liang, & Self, 1985) and ordinal (Ezzet & Whitehead, 
1991; Harville & Mee, 1984; Hedeker & Gibbons, 1994; Jansen, 1990) out- 
come variables. 

Hedeker, Gibbons, and Flay (1994) described the use of RRM for 
clustered continuous response data, where students were observed within 
classrooms and schools. That paper focused on describing the model terms 
and their estimation. In this paper we apply RRM to data from a worksite 
smoking cessation project and compare its use to more traditional statistical 
techniques. First, we examine a continuous response variable (change in 
cigarettes per day following the intervention) and compare RRM to ordi- 
nary linear regression analysis at both the individual level and the aggre- 
gated firm level. This outcome variable is considered first not because it 
is the primary outcome variable of the study (which it is not), but because 
researchers are typically more familiar with methods for statistical analysis 
of continuous response variables (e.g., linear regression and ANOVA mod- 
els). Since the primary outcome variable from this study is dichotomous 
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(smoking or nonsmoking), we further illustrate the use of the generalized 
RRM for noncontinuous response variables to examine the influences upon 
an individual's smoking status, comparing it to analysis at both the indi- 
vidual and firm level. 

WORKSITE STUDY EXAMPLE 

Conditions 

Employees from 61 worksites participated in one of three conditions 
that received (a) self-help manuals only (SH), (b) self-help manuals and 
expectations of incentives (I), or (c) maintenance manuals, expectation of 
incentives, support groups, and cognitive-behavioral strategies (G). 3 As this 
paper aims primarily to illustrate the use of RRM, results are reported 
from the posttest, which immediately followed a 3-week intervention. 

Subjects 

Approximately 400 companies, varying in size and type, were selected 
from the Chicago Metropolitan Area. Directors of personnel received a letter 
and follow-up phone call requesting their participation in this study. To par- 
ticipate, companies were required to accept any of the three conditions and 
hold all group meetings on company time. This prerequisite was intended to 
identify companies that were similarly interested and invested in the program 
prior to random assignment. The 63 companies that agreed to participate 
were matched in terms of size and type, and then randomly assigned to the 
three conditions. The companies ranged in size from 100-400 employees, and 
consisted of a variety of types of business (manufacturing, communications, 
legal, banking, retail, health, and hospitality). One company dropped out im- 
mediately prior to the intervention, and another dropped out during the in- 
tervention, leaving 61 companies participating in this intervention study. 

Measures 

Participants in all three conditions were assessed at pretest (immedi- 
ately prior to the intervention) and posttest (immediately following the 3- 
week intervention). Individuals were eligible to participate if they were 

3For more information regarding the overall design of this longitudinal study, refer to Jason 
et al., 1991. 
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classified as cigarette smokers at pretest (i.e., they were not cigar or pipe 
smokers). The primary study outcome was the smoking status (smok- 
ing/nonsmoking) of these individuals following the intervention. To provide 
an example using RRM for a continuous outcome variable, we also present 
analysis of the pre- to postintervention change in the number of cigarettes 
smoked per day. In all, there were 605 individuals from 61 firms who had 
available data at the postintervention time point in terms of their smoking 
status (and 577 in terms of their cigarettes per day measurements). The 
resulting data set was unbalanced with a range of 1 to 29 individuals per 
firm. Postintervention quit rates, broken down by condition, at both the 
individual and firm level are given in Table I, as are means for cigarettes 
per day at preintervention, postintervention, and change between pre and 
post. As Table I illustrates, the average level of smoking at preintervention 
was approximately 20 cigarettes per day (i.e., a pack a day). These descrip- 
tive statistics are provided to provide an overview of the data and to aid 
in interpretation of the subsequent RRM results. 

RANDOM-EFFECTS REGRESSION MODEL 

In the present context, individuals are observed clustered within firms 
with the intervention being performed in the firms. Here, firms represent 

Table I. Smoking Status and Cigarettes Per Day--Descriptive Statistics by Condition a 

Employee level Firm level 

SH I G SH I G 

Smoking status (n) 191 221 193 20 21 20 
Proportion quit 

M .052 .122 .477 .059 .119 .551 
SD --  - -  - -  087 .136 .251 

Cigarettes/day 
n 188 216 187 

Preintervention 
M 21.95 21.47 19.64 21.61 21.65 19.82 
SD 9.97 11.21 10.94 5.26 5.11 6.63 

Postintervention 
M 16.17 13.97 5.89 15.84 14.24 6.30 
SD 10.68 11.68 9.81 4.53 5.53 6.04 

Difference 
M 5.66 7.50 13.75 5.76 7.41 13.52 
SD 8.29 10.10 11.98 2.50 3.39 4.75 

aSH = Self-help manuals; I = SH and expectation of incentives; G = maintenance manuals, 
I, support groups, and cognitive-behavioral strategies. 
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the clusters of interest, however, in different research settings the clusters 
(within which the individuals are observed) could be, for example, families, 
households, classrooms, schools, clinics, neighborhoods, or social clubs. 
Characteristics of both the individuals and the firms were obtained prior 
to the start of the intervention, and the individuals were reassessed follow- 
ing the delivery of the intervention. Our interest is in modeling the postin- 
tervention outcomes of the individuals, and in particular, examining the 
effect of the intervention, which is cluster-level variable, on these outcomes. 
Suppose that we are also interested in controlling for the preintervention 
level of the outcome variable observed for each individual. Schematically, 
the regression model for the postintervention outcome may be expressed 
as follows: 

Pre- Int Firm Cluster 
[-Post-Int] [Constant]+[Leve 1 l+[Condit ion]+[Effect  ] LOutcome j = 

As represented, there are four independent components which constitute 
the above model of postintervention outcomes. The first term is a constant 
term which represents the scale of the outcome variable, much like the 
grand mean in an analysis of variance, and does not vary by firms or in- 
dividuals. The second term is at the individual level and represents the 
influence of preintervention levels. This term reflects the influence a per- 
son's preintervention score has on their postintervention score. The third 
term is at the firm level and represents the influence of the intervention 
on the outcome. This term is assumed to be same for all firms within the 
same condition, and thus for all individuals within the same condition. Fi- 
nally, the duster effect represents the environmental influence of the firm 
on the individual outcomes, over and above the influence of the interven- 
tion. This final term is assumed to be the same for all individuals within 
a firm, but varies from firm to firm. 

As sampled firms are thought representative of a larger population 
of firms, the duster effects are typically considered random effects, and 
what is of interest is the estimation of the parameters of the population 
from which these random firms were drawn. In particular, it is usually as- 
sumed that the population of cluster effects is a normal distribution and 
interest is in estimating the degree of variation, or the variance associated 
with that normal distribution (the mean of the normal distribution is usually 
assumed to be zero, as the duster effects are thought to be deviations from 
an average firm in a given condition). It is the inclusion of the random 
duster effect that separates this model from, say, the usual (fixed-effects) 
multiple regression model, and it is this term that represents the effect of 
the clustering within firms on the outcome variable. To the degree that 
clustering within firms has little effect on the outcome data, estimates of 
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the cluster effects will all be near zero and the estimate of cluster variance 
in the population will approach zero. In this case the individuals within 
firms can be considered to be independent, conditional on the effects due 
to the intervention and preintervention scores, and analysis at the individual 
level is reasonable since the data within firms are statistically independent. 
If, on the other hand, clustering within firms has a strong effect on the 
outcome data, estimates of the cluster effects will deviate from zero and 
differ for each firm, and thus the population cluster variance will increase 
in value. While clustering within firms may not have a strong effect on the 
outcome data, it is likely that the data within firms will be dependent to 
some degree, the result being that individual within some firms do better 
than average (the average being based on the firm's condition and the in- 
dividual's preintervention score) and individuals within other firms do 
worse that average. Notice that the above formulation of the model illus- 
trates the relationship between the random-effects regression model and 
ordinary regression analysis at the individual level (ignoring the clustering). 
Namely, ordinary regression at the individual level is a special case of the 
random-effects model when all of the cluster effects equal zero. 

In addition to the above model terms, there is a residual error term 
associated with the model that represents the portion of the outcome vari- 
able that is unexplained by the other model terms. As the residuals vary 
from individual to individual, they are at the individual level and are typi- 
cally assumed to be normally distributed in the population of individuals 
with zero mean and an unknown, but estimable, variance. As a result, there 
are two sources of random variation in this model: the residual error terms 
at the level of the individual, and the cluster effects at the firm level. These 
two random sources of variation together equal the total amount of vari- 
ation that is not explained by the independent variables in the model (e.g., 
preintervention level of the individual and firm condition). The ratio of 
the cluster variance to this total variance is often called the intraclass cor- 
relation, which indicates proportion of (unexplained) variance in the data 
attributable to the cluster. The intraclass correlation then reveals the de- 
gree of dependency in the data resulting from the clustering of individuals 
within firms, and thus indicates the degree to which analysis at the indi- 
vidual level ignoring the clustering effect is problematic. Further, the in- 
traclass correlation is of interest to community psychologists since it 
quantifies the degree of the person-cluster relationship. 

For a dichotomous outcome variable (e.g., smoking/nonsmoking) the 
above model is usually reframed in terms of a model of the probability of 
smoking versus not smoking. The idea here is that the independent vari- 
ables in the model influence the degree to which an individual is likely to 
smoke or not. For this, a useful approach has been to use either a probit 
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or logistic regression model (Agresti, 1990) to estimate the influence of 
variables on an individual's probability of smoking. Again, since the firm 
environment may influence the degree to which individuals within the firm 
may be likely to smoke or not, it is important to include a cluster effect 
in the model to assess this potential influence. Schematically, the model 
for the probability of smoking may be as follows: 

1- Cluster ]] [ Pr~ ] = F{[Constant] + [ Fion~ition ] + [ Effect jj" [ofSmokingJ 

Here, F represents a function that translates the influences of the inde- 
pendent variables to the probability scale (values between 0 and 1) asso- 
ciated with smoking. As mentioned, common choices for this are the probit 
and logistic transforms. Since all individuals are presumably smoking prior 
to the intervention, we have taken out of the model the individual's pre- 
intervention level on the dependent variable (i.e., smoking status). Other 
individual-level influences, for example, the number of years an individual 
smoked, could be included into the model instead. Again, as discussed 
above, the cluster effect should be considered a random effect in this 
model, leading to a random-effects probit or logistic regression model for 
these dichotomous outcome data. 

Details regarding estimation of the RRM terms are beyond the scope 
of the present article. Hedeker et al. (1994) discussed parameter estimation 
for the case of a continuous outcome measurement in a relatively nontech- 
nical way. Other articles dealing with parameter estimation for RRM at a 
more sophisticated level include Laird and Ware (1982), Longford (1987), 
Bock (1989), and Bryk and Raudenbush (1992) for continuous outcomes, 
and Hedeker and Gibbons (1994) for dichotomous and ordinal outcomes. 
A few points are worth mentioning with regard to parameter estimation. 
The solution involves estimating two general sets of parameter values: (a) 
the fixed regression coefficients, the cluster variance (the population vari- 
ance associated with the random cluster effects), and the residual variance; 
and (b) each of the random cluster effects. The estimation of each of these 
two set of parameters depends on parameter values from the other set; if 
one had values for the parameters in set (a) the parameters of set (b) 
could be estimated, and vice versa. As a result, methods proposed for the 
estimation of these two sets of parameters are of an iterative nature, that 
is, the exact solution is not obtained directly but is obtained following a 
sequence of approximate solutions (alternating between the two sets of pa- 
rameters) which ultimately converge on the exact solution for both sets of 
parameters. Due to the iterative nature of the solution, the amount of com- 
putation required is much greater than for common statistical techniques 
like ANOVA, though this is less of an issue with ever-increasing compu- 
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tational capacities. Statistical tests of the model parameters are generally 
of two types: likelihood-ratio tests (Wilks, 1938) and so-called "Wald sta- 
tistics" (Wald, 1943). The likelihood-ratio test is useful for testing the sig- 
nificance of alternative "nested" models, that is, when a model, say Model 
B, includes all the parameters of another model, say Model A, plus some 
additional terms. In this case the likelihood-ratio test provides a way of 
assessing the statistical significance of the additional terms in Model B not 
included in Model A. The Wald statistics are useful for testing the statistical 
significance of individual model parameters. Note that these tests (i.e., the 
likelihood-ratio tests and tests based on the Wald statistics) are not unique 
to RRM but are used in other statistical techniques as well, for example, 
logistic regression (Agresti, 1990). 

Changes in Cigarettes Per Day 

Since most researchers are more accustomed to statistical models for 
continuous measurements, we present the results for the analysis of the 
secondary outcome variable, the change in cigarettes per day, first. These 
change scores were computed as the difference in numbers of cigarettes 
per day between pre- and postintervention (i.e., pre minus post). While all 
individuals were smoking at preintervention, at postintervention some in- 
dividuals were not smoking (cigarettes per day equal to 0); these change 
scores then merely reflect the difference in cigarettes smoked per day in 
preintervention smokers; the actual smoking status (smoking or not smok- 
ing) at postintervention is examined later. Prior to analysis of these change 
scores, histograms were generated and indicated a positively skewed distri- 
bution of scores. As a result, a square root transformation of these change 
scores was used in all of the following statistical analyses. Several regression 
models were fit to these data. Results from these analyses are given in 
Table II. In all cases, the change in cigarettes per day was modeled in 
terms of baseline cigarettes per day, and two condition-related compari- 
sons. The first of these two compared the SH versus I, and the second I 
versus G. The first two columns of Table II list results for the usual re- 
gression analyses at firm level and individual level. Firm-level analysis ag- 
gregated individual scores and so modeled the average within the firm of 
change in cigarettes per day in terms of firm-level condition effects, con- 
trolling for the average preintervention level of cigarettes per day within 
the firm. The individual-level analysis treated all individuals as independent 
observations, ignoring the nesting within firms. While both analyses indicate 
the positive effect of G relative to I, it is interesting to note that different 
conclusions would be drawn regarding the merit of the I condition relative 
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to the SH condition: This condition difference is not statistically significant 
by firm-level analysis but is significant by individual-level analysis. Thus, 
individual-level analysis indicates that the use of self-help manuals and ex- 
pectation of incentives is superior to the use of self-help manuals alone, 
while firm-level analysis indicates no statistically significant difference be- 
tween these two smoking cessation interventions. 

The third column of Table II lists results obtained from analysis using 
the two-level random-effects regression model. Results from this are similar 
to those obtained from ordinary regression analysis at the individual level, 
at least in terms of the parameter  estimates. However, a difference does 
emerge which could influence the interpretation drawn from the data. No- 
tice that, unlike ordinary individual-level analysis, random-effects regression 
analysis indicates that the difference between the I and SH conditions is 
only marginally significant, and is not statistically significant at the p < .05 
level. The main reason for this difference is not due to differences in terms 
of the parameter  estimates (since these are very similar), but rather to dif- 
ferences in the standard errors associated with the parameters. This is not 
surprising since the standard errors reflect the uncertainty in the parameter  
estimates, and this uncertainty decreases as the amount of independent  

Table II. Change in Cigarettes Per Day (Square Root of Pre-Post Intervention Scores) 
Linear Regression Estimates (and Standard Errors) 

Ordinary regression Random-effects 
models regression model 

Firm level Individual level  Individuals in firms 

n 61 577 577 
Constant 6.689 c 6.400 c 6.401 c 

(0.119) (0.061) (0.065) 
Baseline 0.01C 0.029 c 0.029 c 
Cigs/day (0.005) (0.003) (0.003) 
SH vs. I -0.054 -0.069/' --0.068 a 

(0.037) (0.032) (0.040) 
I vs. G --0.229 c -0.243 c -0.247 c 

(0.037) (0.032) (0.041) 
Residual variance 0.056 0.399 0.374 c 

(0.023) 
Cluster variance 0.021 b 

(0.011) 

< .10. 
~pP< .05. 
Cp < .01. 
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data used in the calculations is increased. Thus, whereas the ordinary in- 
dividual-level analysis bases its standard errors on the assumption that the 
577 observations are independent, the random-effects analysis bases its 
standard errors on having 577 observations with a certain degree of de- 
pendency (and therefore less independent information). 

Smoking Status 

Turning to the analysis of the main outcome measure, the individual's 
smoking status at postintervention, we turn to statistical models for cate- 
gorical, rather than continuous, data. Thus, instead of ordinary linear re- 
gression we must use regression procedures for dichotomous outcomes, 
most notably, either probit or logistic regression models. However, although 
this is the case for analysis at the individual-level and for the random-effects 
analysis, analysis at the firm level can still use ordinary linear regression 
techniques. The reason for this is that at the firm level the outcome variable 
is the proportion of individuals within the firm who are abstinent, and so 
by aggregating a dichotomous outcome variable (individual smoking status) 
at the level of the firm, a continuous variable (the proportion of abstinent 
individuals) is obtained. 

Results from these analyses are given in Table III. In these analyses, 
the same two condition-related effects were examined: the SH versus I dif- 
ference, and the I versus G difference. The first two columns of Table III 
give results for the regression analysis at the firm level of the proportion 
of abstainers, and the probit regression analysis of abstinence versus smok- 
ing at the individual level, respectively. As can be seen, the results are simi- 
lar to those observed in the analysis of cigarettes per day change scores. 
Namely, both analyses indicate the positive effect of the G condition rela- 
tive to the I condition, and yield different conclusions regarding the I versus 
SH difference. Again, individual-level analysis indicates that the use of self- 
help manuals and expectation of incentives is superior to the use of self- 
help manuals alone, while firm-level analysis indicates no statistically 
significant difference between these two. 

The third column of Table III lists results obtained from analysis using 
a two-level random-effects probit regression model (as described in Gib- 
bons & Hedeker, 1994). Again, parameter estimates based on this analysis 
are similar to those obtained from ordinary probit regression analysis at 
the individual level. However, as opposed to the analysis of changes in ciga- 
rettes per day, here the same conclusion is reached in terms of the I versus 
SH difference. Namely, both approaches yield a statistically significant dif- 
ference at the t~ = .05 level, although the level of significance is clearly 
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Table III. Postintervention Smoking Status Linear and Probit Regression Estimates (and 
Standard Errors) 

Random-effects 
Ordinary regression Probit regression probit regression 

model a model model 

(Firm level) (Individual level) (Individuals in firms) 

n 61 605 605 

Constant 0.305 c -0.841 c -0.860 c 
(0.027) (0.088) (0.116) 

SH vs. I -0.030 -0.22!P -0.224 b 
(0.027) (0.093) (0.111) 

I vs. G -0.216 c -0.553 c -0.593 c 
(0.027) (0.071) (0.088) 

Cluster SD 0.263 b 
(0.140) 

aNote that the dependent variable for the firm-level analysis is the proportion of abstinent 
individuals within the firm, whereas the individual-level and random-effects probit analyses 
model the status of the individual (abstinent or smoking). As a result, the scale of the effects 
is quite different between models; comparisons with the firm-level analysis should focus 
instead on the significance tests associated with the model effects. 

bp < .05. 
Cp < .01. 

more in favor of rejection of the null hypothesis for the ordinary individ- 
ual-level analysis (p < .014 for the individual-level analysis, and p < .042 
for the random-effects analysis). It should be emphasized that it was some- 
what fortuitous that the p value associated with the RRM analysis (p < 
.042) did not exceed the .05 criterion, and thus that the same general con- 
clusion was obtained for both individual-level and RRM analysis. Clearly, 
as our previous example using changes in cigarettes per day indicated, this 
is not always the case. 

Intraclass Correlation 

The amount of dependency present in the data as a result of the 
clustering of individuals within firms was statistically significant, as evi- 
denced by significant cluster variance terms for both models of changes in 
cigarettes per day and smoking status. For the changes in cigarettes per 
day, intraclass correlation (which equals the cluster variance divided by the 
sum of the cluster variance plus the residual variance) was equal to 0.053, 
indicating that clustering of individuals within firms accounted for roughly 
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5% of the variability in the data not explained by the model covariates. 
Similarly, for smoking status the intraclass correlation was estimated as 
0.065 (in the case of a probit regression the residual variance is assumed 
to be equal to 1, see Finney, 1971), indicating that roughly 7% of the un- 
explained variance was attributable to the clustering of individuals within 
firms. Thus, even with rather low levels of intraclass correlation, it is im- 
portant to note that conclusions regarding other model parameters can 
change, as did, for example, the conclusion regarding the significance of 
the self-help versus incentives difference. In addition, the size of the in- 
traclass correlation is meaningful for community psychologists, as it enables 
us to better understand the extent to which individuals are influenced by 
their specific environments. 

DISCUSSION 

This example illustrates that choice of statistical models can influence 
conclusions drawn from a given data set. In the current context, all of the 
statistical models assessed significance of two condition-related compari- 
sons: SH versus I, and I versus G. While all models examined in this paper 
indicated a significant positive effect of the G condition relative to the I 
condition, results concerning significance of the I condition compared to 
the SH condition were mixed. Using an aggregate approach at the firm 
level, no statistically significant difference was observed between these two 
conditions. On the other hand, ordinary regression analysis at the individual 
level indicated a positive effect of the I relative to the SH condition. Based 
on random-effects regression analysis, this difference was not statistically 
significant when examining changes in cigarettes per day, and just statisti- 
cally significant when examining smoking status. Thus, the choice of statis- 
tical analysis performed clearly has an impact on the conclusions drawn 
from this study. 

Regarding parameter estimates, the estimates from the individual- 
level analyses were reasonably similar to the estimates obtained from ran- 
d o m - e f f e c t s  r eg ress ion  models .  H o w e v e r ,  the e s t ima te s  of  the  
corresponding standard errors were much smaller for ordinary regression 
analysis compared to RRM analyses. Underestimation of standard errors 
by ordinary regression analysis was observed for nearly all the model pa- 
rameters, and is expected since ordinary regression assumes independence 
of observations. Since the observations were not independent, the amount 
of independent information available in parameter estimation is inflated. 

Levels of intraclass correlation observed in these data (between 5 and 
7%) were of moderate size and are consistent with reported levels from 
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the literature. For example, Donner (1982) observed intraclass correlation 
levels from 5 to 12% for data from spouse pairs, 0.16 to 1.26% for data 
from physician practices, and 0.05 to 0.85% for data clustered by counties. 
In a worksite smoking-cessation study similar to the one reported here, 
Jacobs, Jeffery, and Hannan (1989) observed intraclass correlation levels 
between 0.9 to 2.4% for various smoking outcome variables. The intraclass 
correlation levels we observed were larger than those of Jacobs et al., 
(1989) even though these two studies were similar in design and in terms 
of the outcome variables. This is reasonable, though, since the average 
worksite size in their study was 420, whereas our range was between 100 
and 400, and as noted by Kish (1965)), intraclass correlation tends to be 
larger for smaller clusters. Thus, the size and type of cluster can influence 
the level of intraclass correlation. 

The example given illustrates the use of RRM for the analysis of data 
from a worksite study, additionally, this model can be useful in the analysis 
of other types of clustered data sets, for example, data clustered by families, 
households, classrooms, schools, clinics, neighborhoods, or social clubs. An- 
other common clustering in psychological research occurs when data are 
clustered by raters. In this case, each of, say, N raters provide measures 
(perhaps a measure of psychological functioning) on different individuals, 
with the raters typically measuring a different number of individuals as well. 
One might then be interested in assessing how much of the total variance 
in the measured variable is attributable to the raters, as well as the impact 
any rater-level covariates might have on the measures (perhaps the expe- 
rience of the rater was thought to have an influence on the rating). RRM 
would be useful for data of this type, since it provides an estimate of the 
variability attributable to the cluster (in this case, the rater) as well as ex- 
amining the effect of cluster- or individual-level covariates on the depend- 
ent measure of the model (which is measured at the level of the individual). 

Another context for clustered data is in the area of repeated measures 
data. Here, the repeated measures are observed clustered within individu- 
als. Notice that in the present example focusing on changes in cigarettes 
per day, there were two repeated observations clustered within individuals 
(pre- and postintervention scores). With only two repeated observations, 
the longitudinal nature of the data can be modeled by analyzing change 
scores or by analyzing the postscore covarying out the prescore, however, 
with more repeated observations per individual a longitudinal approach is 
more appropriate and informative. In general, random-effects models for 
longitudinal data extend the model presented above by including multiple 
random effects to account for the clustering of observations within indi- 
viduals. For instance, one might allow individuals to vary in terms of both 
their intercept, or starting point, and their trend across time, yielding a 
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model with two random effects at the individual level. As others have 
noted, these more general random-effects models provide a powerful ap- 
proach to the analysis of longitudinal data (Bock, 1983; Bryk & Rauden- 
bush, 1987; Gibbons et al., 1993; Laird & Ware, 1982). 

Computer Programs 

There has been an increasing development of computer software for 
the random-effects regression model. Several commercially available soft- 
ware programs exist for computing RRM, although these programs exist 
primarily for models of continuous dependent variables. The BMDP3V 
(Jennrich & Sampson, 1988) procedure is available as part of the general 
BMDP statistical package for both mainframe and DOS-based personal 
computers (PCs). SAS has introduced the MIXED procedure in version 
6.07 which runs only on mainframe computers, however this procedure will 
soon be available for PC versions of SAS as well. Other software pro- 
grams--ML3 (Prosser, Rasbash, & Goldstein, 1991), HLM (Bryk, Rauden- 
bush, Seltzer, & Congdon, 1989), VARCL (Longford, 1986), MIXREG 
(Hedeker, 1992b)--are stand-alone programs which are primarily suited for 
use on DOS-based personal computers, though available for some types of 
mainframe computers. All of these programs were written by researchers 
with published articles on random-effects models, and the manuals refer 
to these articles as examples and to clarify the use of RRM. Though all 
of the aforementioned programs are designed primarily for analysis of a 
continuous dependent variable, for analysis of a categorical dependent vari- 
able (i.e., dichotomous or ordinal) the amount of available software is lim- 
ited. ML3 and the software package EGRET have facilities for performing 
some types of (dichotomous) logistic regression models with random ef- 
fects. An alternative program, MIXOR (Hedeker, 1992a, available from its 
author), has been developed as a DOS-based PC program to estimate an 
ordinal random-effects (logistic or probit) regression model. MIXOR can 
handle and estimate the influence of multiple random-effects, individual- 
level and cluster-level covariates, and dichotomous or ordinal outcomes. 

Conclusion 

Our example highlights features of analysis using RRM, and how 
analysis by more traditional regression models can lead to biased estimates 
of uncertainty and different conclusions. As demonstrated, RRM provides 
a powerful tool for analysis of clustered data where the number of indi- 
viduals within clusters varies. Alternatively, as noted by many researchers 
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(Burstein, 1980; Jacobs et al., 1989; Koepke & Flay, 1989; McKinlay, Stone, 
& Zucker, 1989; Murray, Hannan& Zucker, 1989; Raudenbush & Bryk, 
1988-1989), traditional analysis at the individual or cluster level is prob- 
lematic. Traditional analysis at the individual level ignores dependency in 
the data that results from clustering, while analysis at the cluster level does 
not permit a straightforward analysis of individual-level characteristics. By 
controlling for and estimating the degree of dependency resulting from the 
clustering of data, RRM allows testing of relationships at the individual 
level in a manner consistent with data collection, namely, from individuals 
within clusters. Furthermore, RRM can include independent variables at 
either the cluster or individual levels and estimate their effects as well as 
interactions. 

The usefulness of RRM is particularly noteworthy when dealing with 
research designs like those utilized in worksite smoking cessation programs. 
Since the impact of the worksite on the individual can be identified and 
accounted for, we can begin to investigate what smoking interventions are 
most effective in specific types of worksites. If smoking interventions can 
be tailored to worksites, long-term abstinence rates may improve. The pos- 
sibility of examining both effects of the individual and the worksite on in- 
dividual smoking outcomes in a cohesive and comprehensive manner 
should thus help to overcome the fragmented results that necessarily 
emerge when the focus is on either of the two levels of data to the exclusion 
of the other. 

Since community psychologists often develop and evaluate interven- 
tions that involve natural clustering within larger groups (i.e., schools, 
neighborhoods, families, organizations), RRM can be particularly useful. 
Through the examination of the influence of context on individuals, and 
the relationships that evolve within communities, RRM can facilitate a bet- 
ter understanding of communities. Further, mixing and matching levels of 
statistical analysis, measurement, and conceptualization can result in inac- 
curate inferences (Shinn, 1990). RRM provides an example of a statistical 
technique that fits the theory, principles, and values of community psychol- 
ogy, as it enables us to better understand higher levels of aggregation and 
their impact on individual well-being. 
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