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A b s t r a c t .  We consider goodness-of-fit tests of the Cauchy distribution based on 
weighted integrals of the squared distance between the empirical characteristic func- 
tion of the standardized data and the characteristic function of the standard Cauchy 
distribution. For standardization of data Ciirtler and Henze (2000, Annals of the 
Institute of Statistical Mathematics, 52, 267-286) used the median and the interquar- 
tile range. In this paper we use the maximum likelihood estimator (MLE) and an 
equivariant integrated squared error estimator (EISE), which minimizes the weighted 
integral. We derive an explicit form of the asymptotic covariance function of the char- 
acteristic function process with parameters estimated by the MLE or the EISE. The 
eigenvalues of the covariance function are numerically evaluated and the asymptotic 
distributions of the test statistics are obtained by the residue theorem. A simulation 
study shows that the proposed tests compare well to tests proposed by Giirtler and 
Henze and more traditional tests based on the empirical distribution function. 

Key words and phrases: Asymptotic distributions, Fredholm determinant, inte- 
grated squared error estimator, integral equations, maximum likelihood estimator, 
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i .  Introduction 

Let C(a ,  fl) denote the Cauchy distribution with the location parameter c~ and the 
scale parameter fl, with the density 

0 = f ( x ;  o) = f ( x ;  =  (f12 + (x  - c )2) ' 

Given a random sample x l , . . . , x n  from an unknown distribution F ,  we want to test 
the null hypothesis H0 that F belongs to the family of Cauchy distributions. Since the 
Cauchy distributions form a location scale family, we consider affine invariant tests. The 
proposed tests are based on the empiricM characteristic function 

(1.1) On(t) = ~5n(t;&,r = n exp( i t y j ) ,  yj ---- - -  
j= l  

x j  - & 
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of the standardized data yj.  Here dr = drn  ~-- drn(Xl, ' ' '  ,Xn) and ~ = ~ = ~ ( X l , . . .  ,x=) 
are affine equivariant estimators of a and ~ satisfying 

drn(a Jr- b x l , .  . . ,a  + bx,,) = a + bdr=(xl,. . . ,Xn), 

~ ( a  + b x l , . . .  ,a  + bxn) = b ~ n ( X l , . . .  ,Xn). 

For &n and ~n, we use the maximum likelihood estimator (MLE) and an equivariant 
integrated squared error estimator (EISE) defined in (2.6) below. The reason for con- 
sidering the MLE is its asymptotic efficiency. Although optimality as estimators does 
not imply optimality for the goodness-of-fit tests, it seems natural to consider the MLE. 
The reason for considering the EISE is a possible extension to stable distributions other 
than the Cauchy distribution studied in this paper. Although the median and the in- 
terquartile range used by Giirtler and Henze (2000) are attractive estimators because of 
their simplicity, it seems theoretically more natural to consider the MLE and the EISE. 

Following Giirtler and Henze (2000) we consider the test statistic 

F (1.2) D~,~ := n Iq%(t) - e -It112w(t)dt, w( t )  = e -~ltl, ~ > 0, 
(X3 

which is the weighted L2-distance between ~n(t)  and the characteristic function e -Itl of 
C(0, 1) with respect to the weight function w( t )  = e -'qtl, ~ > 0. This weight function 
is chosen for convenience, so that we can explicitly evaluate the asymptotic covariance 
function of the empirical characteristic function process under H0. Using the relation 

F 2~ 
c ~  - ~2 + c 2' 

the integral in (1.2) can be explicitly evaluated and an alternative convenient expression 
of Dn,~ is given by 

n 

2 ~ ~ _ 4  E 1 + ~  2n 
(1.3) Dn,~ = n 3 = n2 + (YJ - Yk) 2 j--1 (1 + ~)2 + y)2 + --'2+~ 

Our test statistic Dn,~ is a quadratic form of the empirical characteristic function 
process. Although we derive an explicit form of the asymptotic covariance function of 
the empirical characteristic function process, it is not trivial to derive the asymptotic 
distribution of Dn,,~ under H0 from the covariance function, especially when the param- 
eters are estimated (e.g. Chapter 7 of Durbin (1973a) and Durbin (1973b)). Therefore 
finite sample critical values of goodness-of-fit tests are often evaluated by Monte Carlo 
simulation, as was done in Giirtler and Henze (2000). Note that if we evaluate the crit- 
ical values by Monte Carlo simulation only, there is no need to derive the explicit form 
of the asymptotic covariance function. Furthermore it is impossible to perform usual 
Monte Carlo simulation for the asymptotic case n = oc. Therefore numerical evaluation 
of the asymptotic distribution is important in order to check the convergence of the finite 
sample distributions, which are evaluated by Monte Carlo simulations. 

In this paper, we make use of the explicit form of the asymptotic covariance function 
for numerically evaluating the asymptotic critical values of the test statistics. We intro- 
duce a homogeneous integral equation of the second kind and consider the associated 
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Fredholm determinant, which can be approximated by numerically evaluating eigenval- 
ues of the asymptotic covariance function. Then we apply the residue theorem in L6vy's 
inversion formula and evaluate the asymptotic distribution function of Dn,~. 

This paper is organized as follows. In Subsection 2.1 we first define and summarize 
properties of the MLE and the EISE. Then we state theoretical results on asymptotic 
distribution of Dn,~ under H0 in Theorems 2.1 and 2.2. Our method for numerically 
evaluating the asymptotic critical values of Dn,,~ is discussed in Subsection 2.2. In 
Section 3 we present computational studies of the proposed tests in comparison to other 
testing procedures. Appendix A gives proofs of the theoretical results of Subsection 2.1. 
We utilize theorems of CsSrg5 (1983) and Giirtler and Henze (2000). Appendix B gives 
calculation of residues for the results of Subsection 2.2. 

2. Main results 

2.1 Asymptot ic  theory of the proposed test statistics 
We first review maximum likelihood estimation of the Cauchy distributions and 

define an equivariant integrated squared error estimator. Except for differences in esti- 
mators, we follow the line of arguments in Gfirtler and Henze (2000). 

1. MLE. The log-likelihood function is given by 

L = n l o g ~ -  ~ l o g { ~  2 + (xj - ~)2} _ n log~.  
j = l  

Differentiation of L with respect to (a, fl) gives the likelihood equation 

OL ~ x j  - a 
(2.1) 0--s = 0 r 8 2 ( z j  = 0, j=l + - ee) 2 

(2.2) OL n 82 1 
08 =2n" 5=1 + - a) 2 

Equivariance of the MLE is easily checked. According to Copas (1975), except for patho- 
logical cases such that more than half of the observations are the same, the likelihood 
function L is unimodal. Therefore with probability one, a local maximum of the like- 
lihood function is actually the global maximum and it is relatively easy to obtain the 
MLE by solving the likelihood equation. 

2. EISE. Here we define an affine equivariant version of the ISE (integrated 
squared error) estimator proposed by Besbeas and Morgan (2001). The original ISE 
estimator of Besbeas and Morgan (2001) is not equivariant. The EISE is based on the 
empirical characteristic function of the standardized data. Let 

1 n 

On(t; o~, 8)  = n E exp ( i t ( x j  - ~ ) / 8 ) ,  
j = l  

which is the same as (1.1) with d,~ and r replaced by a and/3- Write 

/? (2.3) I(ct, 8) = IOn(t; a,  8)  - e -It112w(t)dt, 
o o  
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where we use the following weight function 

(2.4) w(t) = exp(-u]t l ) ,  u > 0. 

As in (1.3) the integral I (a ,  fl) can be calculated as 

2 v'n /2~2 4 @ (1 + v)/3 2 + 2 
(2.5) i ( a ,  Z) - ~  ~= ~2~2 + (xj  _ xk) 2 n ~ ( 1 + , ) 2 ~  2 + ( x j - a )  2 2 + ~ "  

3 1 5=1 

Note that except for the factor n, Dn,~ in (1.3) and I ( a , Z )  are the same by the corre- 
spondence ~, ~-~ a, x j  ~-* a + ~yj .  The EISE (&,~, ~n) is defined to be the minimizer of 
-r(~,Z): 

(2.6) I(&n, ~n) = min I (a ,  Z)- 

It is easy to see that  the EISE is affine equivariant by definition. 
Note that the weighting constant ~ in the test statistic (1.2) and the weighting 

constant ~ in (2.4) for the EISE may be different. In our theoretical results on the EISE 
and Dn,~ we treat ~ and ~ separately. However for performing goodness-of-fit test, it 
seems natural to set ~ = t~. In our simulation studies in Section 3 we set r, = t~. 

Setting OI/Oa = OI/Ofl = 0 in (2.5), we obtain the following estimating equations 
for the EISE. 

OI ~-~ xj  - a (2.~) o---~ =o~/__., =o, j : l  ((// -]- 1 ) 2 ~  J ( X j  -- a)2) 2 

(2s)  o i  1 xk) 2 E  )(xj - - o. 

Although these estimating equations are somewhat more complicated than the likelihood 
equations in (2.1) and (2.2), we can employ standard theory of U-statistics to s tudy the 
asymptotic behavior of the estimating equations. We could not establish unimodality of 
I (a ,  fl), but in our experiences the estimating equations can be solved numerically if an 
appropriate initial value is chosen and apparently produced a unique solution. 

The test statistics Dn,~ has yet another Mternative representation, which is useful 
for obtaining its asymptotic distribution. We have 

// Dn,~ = 2,~(t)2~ne-~"'~ltldt, 
O 0  

where 
n 

1 E { c o s ( t x j )  + sin(txj)  - e-a"ltf(cos(t&n) + sin(t&n))}. (2.9) 2n( t )  = - - ~  j----1 

Zn(t)  corresponds to the empirical characteristic process. We use the Fr@chet space 
C ( R )  of continuous functions on the real line R for considering the random processes. 
The metric of C ( R )  is given by 

(X) 

p(x,y) = E 2-5 pj(z,y) 
J =1 1 + pj (x, y ) '  
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where pj(x,  y) = maxltl<_j Ix(t) - Y(t)l. 
D 

In the rest of this paper we use the following notat ions.  --~ means weak convergence 

of random variables or stochastic processes, P means convergence in probabil i ty and 
i.i.d, means "independently and identically dis tr ibuted" as usual. 

Now we state  results on weak convergence of Z~(t) and weak convergence of the 
test  statistics Dn,~ in the following two theorems. Note tha t  because our tests are affine 
invariant, we can assume without  loss of generality tha t  X1, �9 �9 �9 Xn is a random sample 
from C(0, 1). 

THEOREM 2.1. Let X I , . . . , X  n be i.i.d. C(0,1)  random variables and let Z~ be 

defined in (2.9). Then Zn D Z in C ( R ) ,  where Z is a zero mean Gaussian process with 
covariance functions given below for the ML E  and the EISE,  respectively. 

(2.10) MLE : 

(2.11) EISE : 

F(s, t) = e - l t - . I  _ {1 + 2(st + Ist l)}e - I~l- l t l ,  
F(s, t) = e - I t -~l  - e  - I~ l - l t l  + M s ( s t +  Istl)e - i~l- l t l  

- M 2 { ( t . s g n s  + I t l ) (1  - e 

+ (s .  sgn t  + Isl) (1 - e - ~ ' l ~ l ) } e  - I ~ l - l t l  

+ M3(e-~' l~l + e-~lt l ) (st  + Istl)e - i~l- l t l ,  

where 

(v + 2)2(5L, 2 + 14v + 10) (v + 1)(~, + 2) (v + 2) 2 
M1 = 16(v + 1) 3 , M 2  = v 2  , M3 -- 2 ~ '  

and v is the weighting constant in (2.4). 

These asymptot ic  covariance functions do not involve definite integrals as was the 
case of the median and the interquartile range in Giirtler and Henze (2000). In part icular  
the case of the MLE is very simple. 

Note tha t  for bo th  cases F(s, t) is symmetr ic  with respect to the origin and F(s, t) = 0 
for s , t  such tha t  st < 0. This implies tha t  {Z(t)  ] t > 0} and { Z ( - t )  I t > 0} are 
independent ly  and identically dis tr ibuted for both  cases. 

THEOREM 2.2. Under the conditions of Theorem 2.1 

i ..-'-'"" i? Dn,,~ = 2~(t)2~ D D .  := Z(t)2e-~ltldt.  

By Fubini, the exact expectat ion of D~ can be evaluated as 

E(D,~) = E(Z(t)2)e-'~ltldt = r ( t ,  t)e-'~ltldt. 
o o  o o  

Subst i tut ing (2.10) and (2.11) we obta in  E(D~) for the case of the MLE and the EISE 
a s  

4 16 
(2.12) M L E :  E(D~) -- ,~(,~ + 2) (~ + 2) 3, 
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4 8M1 8M2 
(2.13) EISE:  E(D~) = t~(n + 2) + (t~ + 2) 3 (n + 2) 2 

8M2 16M3 
+  +2)2 + 2)3" 

These exact expectations of D~ for both cases are used as numerical checks in approxi- 
mating the eigenvalues of the covariance function F(s, t)e -~(ISI+N)/2 in Subsection 3.3. 

We now consider the consistency of our testing procedure corresponding to Theorem 
2.3 of Giirtler and Henze (2000). Let g(x) denote the true density of the observations 
x l , . . . ,  x~, not belonging to the Catchy  family. Concerning the MLE, define (c~*,/3*) = 

(a*MLE,/3*MLE) by 

log f(x; c~*,/3*)g(x)dx = max log f(x; c~,/3)g(x)dx, 

where f(x;(~,/3) denotes the Catchy  density. Concerning the EISE, let Og(t ) = 
f~_~ eitXg(x)dx and Og(t;a,/3) = f 2 ~  eU(X-~)/Zg(x)dx. Define (a*,/3*) = (a*EISE , 
/3~ISE) to be the minimizer of the squared distance: 

F IOg(t;a* /3*) - e-Nl2w(t)dt = rain I@g(t;a,/3) - e-ltll2w(t)dt. 
oo ' a , ~  J - c ~  

Then we have the following theorem. 

THEOREM 2.3. Assume that for the MLE and the EISE, ((~*,/3") is uniquely de- 
termined and our estimator (&n, ~n) converges to (a*,/3*) almost surely for respective 
cases. Then the proposed tests that reject Ho if D~,,~ exceeds the upper ~ percentage 
points of the null distribution is consistent against the alternative g(x). 

2.2 Approximation of the asymptotic critical values of the proposed test statistics 
In this section we investigate the distribution of D~. We omit some technical details 

which are found in the preprint version of this paper (Matsui and Takemura (2003)) 
available from the authors upon request. Let r ( s ,  t) denote the asymptotic covariance 
functions of Z(t) in Theorem 2.1 for the MLE (2.10) or the EISE (2.11). In order to 
evaluate the distribution of D~ we want to evaluate the eigenvalues of the covariance 
kernel F(s, t)e -~(Isi+N)/2. We transform this kernel on R 2 to K(s, t) on [-1,  1] 2 by a 
change of variables 

(s,t)  H ( sgns .  (1 - e - M ) , s g n t  �9 (1 - e-ltl)), 

because integral equations on R 2 are theoretically difficult to treat and the eigenvalues 
of the covariance kernel are invariant for this transformation. 

By a version of Mercer's theorem (Anderson and Darling (1952), Hammerstein 
(1927), Theorem 2.4 of Matsui and Takemura (2003)) D~ has a series representation 

oo 1 N 2 ~j=l  ~ j ,  where N1, N2, . . .  are i.i.d, standard normal variables and the eigenvalues 

(Aj)j>_I satisfy the following integral equations /_1 
(2.14) ,X K(s , t ) f ( t )dt  = f(s). 

1 
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Although we could not solve the above integral equation and evaluate the eigenvalues 
)~ explicitly, we numerically approximate the eigenvalues (~j)j_>l in Subsection 3.3. The 
characteristic function of D~ is given as 

E(eitD~)=E exp i t~N~/ ,Xj  = 1-IE[exp(itN~/)~j)]= 1-I(1-2it/~j)-l/2. 
\ j=l j=l  j=l 

Note that  K(s, t) is symmetric with respect to the origin and K(s, t) = 0 for st < 0 
as discussed in Subsection 2.1. This implies that  in our problem the eigenvalues appear 
in pairs and we do not need the square root in the characteristic function. More precisely 
the characteristic function of D~ is given by 

1 
r = E(e itD-)- D(2it)' 

where D(A) = l-I~=1(1 - A/)~j) is the associated Fredholm determinant of our kernel 
K(s, t) restricted to [0, 1] 2. 

Inverting the characteristic function gives the distribution function and the proba- 
bility density function of the proposed statistics theoretically. However, practically there 
are two problems in treating the characteristic function in the form of Fredholm determi- 
nant. One is in the approximation of D(A) itself and the other is in the L6vy's inversion 
formula. We treat the former problem in Subsection 3.3. 

Concerning the latter problem we use the residue theorem. The residue calculation 
is given in Appendix B. The reason we prefer the residue theorem over the direct numer- 
ical inversion of approximated characteristic function is that  the characteristic function 
oscillates between negative and positive values and the convergence of the integral is 
very slow (see Section 6.1 of Tanaka (1996)). Assuming that the kernel K(s, t) restricted 
to [0, 1] 2 has only single eigenvalues, the corresponding density function and distribution 
function are calculated as 

exp(  ) o ~  

(2.15) = Aj 
2 

j=l 1-Ik#j 1 -  

oxp(  ) 
(2.16) FD~(y): 1-- E ( Aj)" 

,=1 [Ik j 1 -  E 

Note that the series on the right hand side is alternating and we can bound fD~ (Y) and 
FD~ (y) relatively easily. 

3. Computational studies 

In this section, some simulation results are given. Since the exact finite sample 
distributions are difficult to obtain, first we approximate the percentage points of Dn,~ by 
Monte Carlo simulation. Then the power of both tests for the finite sample is evaluated. 
In the end of this section percentage points of D~ are computed by the residue theorem. 
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Table 1. MLE: Upper  10 percentage points of Dn,,~. 

n \ a 0.1 0.5 1.0 2.5 5.0 10.0 

10 21.23 3.054 1.111 0.307 0.127 0.0498 

20 21.60 3.093 1.103 0.292 0.118 0.0451 

50 21.83 3.119 1.105 0.287 0.115 0.0432 

100 21.90 3.131 1.108 0.285 0.115 0.0430 

200 21.89 3.136 1.111 0.286 0.114 0.0426 

Table2 .  M L E : U p p e r 5 p e r c e n t a g e p o i n t s o f D n , ~ .  

n \ ~  0.1 0.5 1.0 2.5 5.0 10.0 

10 22.95 3.406 1.271 0.373 0.160 0.0675 

20 23.31 3.481 1.263 0.349 0.147 0.0592 

50 23.59 3.514 1.268 0.338 0.141 0.0543 

100 23.66 3.546 1.271 0.337 0.138 0.0533 

200 23.65 3.555 1.275 0.335 0.137 0.0524 

Table3 .  E I S E : U p p e r l 0 p e r c e n t a g e p o i n t s o f D n , ~ .  

n \ ~  0.1 0.5 1.0 2.5 5.0 10.0 

10 19.88 2.806 0.992 0.209 0.0541 0.0109 

20 20.74 2.916 1.040 0.228 0.0645 0.0154 

50 21.22 3.006 1.078 0.241 0.0709 0.0192 

100 21.39 3.026 1.085 0.244 0.0727 0.0202 

200 21.45 3.040 1.089 0.245 0.0736 0.0209 

Table4 .  E I S E : U p p e r 5 p e r c e n t a g e p o i n t s o f D n , ~ .  

n \ ~  0.1 0.5 1.0 2.5 5.0 10.0 

10 20.95 3.103 1.118 0.234 0.0585 0.0113 

20 22.20 3.277 1.182 0.264 0.0754 0.0180 

50 22.85 3.394 1.231 0.281 0.0836 0.0226 

100 23.07 3.416 1.241 0.285 0.0858 0.0240 

200 23.14 3.438 1.251 0.286 0.0870 0.0247 

For the MLE, the estimates are easily found by the Newton method. Convenient 
initial values are suggested by Copas (1975). But for the EISE the simple Newton 
method does notwork well and we often need grid search of initial values. In the case of 
the EISE we use the same initial value as the MLE for the Newton method. If it fails 
to converge we do grid search of initial values and we obtain the parameter value which 
minimizes (2.3) among, say, 20000 points, and use it as the initial value of the Newton 
method. When the values of the estimators have converged, we can compute D~,~ by 
(1.3). Based on 100,000 Monte Carlo replications, the upper 10 and 5 percentage points 
of the statistics Dn,~, t~ E {0.1,0.5, 1.0,2.5,5.0, 10.0} are tabulated in Table 1, Table 2 
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for the MLE and Table 3, Table 4 for the EISE. In the preprint version of this paper 
(Matsui and Takemura (2003)) we also gave critical values for some classical procedures 
(i.e., Anderson-Darling, Cram~r-von Mises, Kolmogorov-Smirnov and Watson statistics) 
based on the empirical distribution function of the Cauchy distribution when parameters 
are estimated by the MLE. 

3.1 Alternative hypotheses 
For studying the power functions of various tests considered, we use the following 

family of distributions containing the Cauchy distribution as a special case. 
1. t(j). Student's t distribution with j degrees of freedom for j -- 1, 2, 3, 4, 5, 10, c~. 

Note t(1) = C(1,0) and t ( ~ )  = N(0, 1). 
2. st(a, b). Stable distributions with the characteristic function 

~(t) = ~ exp(-]tl~[1 - ibsgnttan(a~/2)]), if a ~ 1, 

[ exp(-Itl[1 +ib(2/~)sgnt logl td]) ,  if a = 1. 

Here we only consider symmetric stable distributions (b = 0). The characteristic expo- 
nent a E (0, 2] concerns the tail behavior of the distribution. Note that  s t( l ,  0) -- C(0, 1) 
and st(2, 0) = N(0, 1). 

3.2 Analysis of finite sample power 
For the significance levels ~ = 0.1, 0.05, finite sample power of the tests were studied 

using sample sizes n = 50, 100, 200 for estimations of the MLE and using sample sizes 
n = 50, 100 for the EISE based on 10,000 Monte Carlo replications. The case of the 
EISE with the sample size n -- 200 was computationally very heavy due to frequent need 
of grid search of initial values under various alternative hypotheses. In this paper we 
only give results of the case n = 50 in Tables 5 and 6, since the results for other sample 
sizes were qualitatively similar to the case of n = 50 (see Matsui and Takemura (2003) 
for detail). In these tables '*' stands for 100, i.e. the power of 100%. 

In comparison to the test proposed by Giirtler and Henze (2000) for the nominal level 
of 10%, we derived the following main conclusions. In the case of the Cauchy distribution, 
the total power of a goodness-of-fit test based on the empirical characteristic function is 
not affected very much by the choice of the estimators of (a, fl). 

Some tendency concerning the weight ~ can be observed for each estimator. The 
test by the MLE tends to have more power than the other two tests when the weight 
is small (e.g. t~ = 0.1, 0.5, 1.0) for most alternatives and is most powerful for st(0.5, 0) 
regardless of the weight. Although the test by the EISE has more power than the other 
two tests when the weight is around ~ = 2.5 for most cases, it has the least power when 
the weight is large (e.g. t~ = 10.0), except for the case of N(0, 1). The test proposed by 
Gfirtler and Henze has more power than the other two tests when the weight is large 
(e.g. K = 10.0) for most alternatives and tends to have less power for other weights. 

We also see that  our tests compare well to more traditional tests based on the 
empirical distribution function tabulated in Giirtler and Henze (2000). 

For future research, it is worth investigating the problem of choosing weights ~ and 
v depending on alternatives in order to maximize power. 

3.3 Approximation of D~ 
Because we can not obtain the exact distribution of D~ as a result of difficulty in 

solving integral equation, we have to approximate the distribution of D~. This can be 
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Table 5. MLE: Power of Dn,~ (significance levels ~ = 0.1, 0.05, n = 50). 

0.1 0.05 

~- 0.1 0.5 1.0 2,5 5.0 10.0 0.1 0.5 1.0 2.5 5.0 10.0 
t~ 

C(0,  1) 10 10 10 11 10 10 5 5 5 6 5 5 

N ( 0 , 1 )  34 72 87 96 98 98 22 60 78 90 92 86 

t(2) 15 22 25 26 27 24 8 13 16 15 14 9 

t(3) 19 34 43 50 55 52 10 24 30 34 36 25 

t(4) 22 43 54 64 71 70 13 30 42 49 52 40 

t(5) 24 48 62 73 80 80 14 35 49 58 62 50 

t(10) 29 60 75 87 92 92 17 47 63 77 80 71 

s t (0 .5 ,0)  75 90 94 97 98 98 64 84 89 94 96 97 

st(0.8, 0) 14 21 27 35 40 42 7 13 17 24 29 31 

st(0.9, 0) 10 12 15 18 19 21 5 7 8 10 12 13 

s t (1 .1 ,0)  6 8 9 10 11 10 2 3 4 5 6 6 

s t (1 .2 ,0)  8 11 12 14 15 12 2 4 6 8 8 6 

s t (1 .5 ,0)  20 34 40 42 44 34 11 23 28 28 26 15 

Table 6. EISE: Power of Dn,~ (significance levels ~ = 0.1, 0.05, n = 50). 

0.1 0.05 

0.1 0.5 1.0 2.5 5.0 10.0 0.1 0.5 1.0 2.5 5.0 10.0 

C(0,  1) 10 10 10 10 10 10 5 5 5 5 5 5 

N(0,  1) 30 66 86 98 * * 20 53 76 95 97 92 

t(2) 13 19 24 30 29 19 8 11 15 19 16 8 

t(3) 17 30 41 56 58 43 10 20 30 41 40 22 

t(4) 19 37 52 71 74 62 11 25 40 57 58 36 

t(5) 21 42 60 80 84 74 13 30 47 67 69 48 

t(10) 24 53 73 91 95 91 15 40 62 84 88 73 

st(0.5, 0) 50 88 94 93 87 72 32 80 89 88 79 60 

st(0.8, 0) 12 21 27 31 28 25 6 12 17 20 18 15 

st(0.9, 0) 10 12 14 16 16 15 5 6 8 9 9 8 

s t (1 .1 ,0)  7 8 9 10 10 10 3 3 4 5 5 6 

st(1.2, 0) 7 10 13 13 13 12 3 5 7 7 7 6 

st(1.5, 0) 18 29 39 47 41 24 10 19 28 33 26 11 

d o n e  b y  n u m e r i c a l l y  a p p r o x i m a t i n g  t h e  e i g e n v a l u e s  o f  t h e  i n t e g r a l  e q u a t i o n .  F u r t h e r m o r e  

w e  h a v e  t o  a p p r o x i m a t e  t h e  i n f i n i t e  s u m  a n d  i n f i n i t e  p r o d u c t s  i n  t h e  s e r i e s  ( 2 . 1 6 )  b y  a 

f i n i t e  s u m  a n d  f i n i t e  p r o d u c t s .  

F i r s t  w e  d i s c u s s  n u m e r i c a l  a p p r o x i m a t i o n  o f  t h e  e i g e n v a l u e s  o f  k e r n e l  K(s ,  t). N • N 
r e g u l a r l y  p l a c e d  p o i n t s  a r e  t a k e n  f r o m  (0, 1) • (0,  1) t o  a p p r o x i m a t e  K(s ,  t) b y  a n  N • N 

m a t r i x  / ( .  B y  s t a n d a r d  a r g u m e n t  o f  t h e  t h e o r y  o f  i n t e g r a l  e q u a t i o n s ,  w e  e v a l u a t e  N 
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eigenvalues o f /~  and define 

j = l  < ' 

0 < i l  _<"" < iN,  

where 1/Aj = 1/Aj(N) are the corresponding eigenvalues of [(/N. Note that  as N --~ oc, 
bN(A) converges to the associated Fredholm determinant D(A) which is the characteris- 
tic function of D~ in our case. We found that  we can easily evaluate N = 500 eigenvalues 
by this simple method except for the case n = 0.1. For the case of n = 0.1, we had some 
numerical difficulty and the approximated sum of 2 ~j-~cff= 1 1/Aj did not converge to E[D~] 
quickly. Therefore we omit the case n = 0.1 and present results in Tables 7 and 8 for 
n E {0.5, 1.0, 2.5, 5.0, 10.0}. Note that  the powers of both tests are the lowest for the 
case of n =- 0.1 and we do not recommend using n = 0.1. We remark that  in the lit- 
erature on numerical treatment of integral equations (e.g. Baker (1977)), many other 
approximations of the eigenvalues are considered. 

Secondly, the infinite sum and the infinite products in (2.16) have to be approxi- 
mated by a finite sum and finite products. Let l and m (l < m) denote the number of 
terms in the sum and the products, respectively. Then FD,~ (y) in (2.16) is approximated 
as  

I]L  1 -  

o~ 1_~_z For the remaining pa r t  of the product 1 / l i e + l (  ~ ), we can give bounds by using 
the relation 1/(1 - x) = exp(E~l xn/n). A lower bound of the j - th  term of the series 
is given by 

and an upper bound is given by 

( e x p  Aj E 1 , 
k=m + l 

Aj I+2(A.~+I_Aj) k~+ l~  " 

For evaluating ~k~=m+l 1/Ak, we can utilize the expected value E(D~) = 2 ~k~176 1/Ak. 
The sum ~km__l t/Ak is evaluated numerically by approximating the first m eigenvalues as 

Ek%l 1/Ak ~ ~km__l 1/Ak and then E(D,~)/2 - Ek<l  1/Ak approximates Ek%m+l 1/Ak. 
Note that  the series is alternating. Therefore the range of the critical values can 

be obtained by substituting the above bounds for positive terms and negative terms 
separately, i.e., by substituting the upper bound for positive terms and the lower bound 
for negative terms, or vice versa. The ranges for the percentage points in Tables 7 and 8 
are less than 0.01% of each value for any t~ if I and m are l > 50 and m > 100. Therefore 
accuracy of approximation of the infinite sum and infinite product is very good. 
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Table 7. MLE: Upper ( percentage points of D~. 

~\a 0.5 1.0 2.5 5.0 10.0 

0.1 3.153 1.111 0.286 0.114 0.0431 

0.05 3 .571 1 .276 0.336 0.137 0.0527 

Table 8. EISE: Upper ~ percentage points of D~. 

~\~ 0.5 1.0 2.5 5.0 10.0 

0.1 3.057 1 .093 0.248 0.0750 0.0213 

0.05 3.458 1 .256 0.290 0.0886 0.0254 

The  difficulty lies more in the approximat ion  of the eigenvalues. In Matsui  and 
Takemura  (2003) the values of E ( D ~ ) / 2  - }--]km__l 1/~k are given. This  error  is less t h an  
1% of t rue  value E ( D ~ ) / 2  if 1 and m are l > 50 and m > 100. Therefore  the t rue  
sum of eigenvalues E ( D ~ ) / 2  is well approx imated  by the sum of numerical ly ob ta ined  
eigenvalues. 

Note  tha t  more  accura te  approximat ions  may  be  obta ined  if we evaluate  higher  
order  moments  of D~. 
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Appendix 

A. Proofs of the results in Subsection 2.1 
Proofs  of the theorems are essentially the same as those of Giirt ler and Henze (2000) 

based on Csbrg5 (1983). Therefore  we s ta te  only the differences in our  case from G/ir t ler  
and Henze (2000) along their  framework. 

Before considering Fr@chet space C ( R ) ,  we first consider the res t r ic ted space C(S) 
of continuous functions on a compact  subset  S with the supremum norm []flloo = 
suPtcs  [ f ( t )  l so tha t  we can utilize arguments  of Csbrg5 (1983). Define k(x, t) = c o s ( t x ) +  

sin(tx).  The n  an a l ternat ive  representa t ion  of Zn(t) is given by 

n 

1 E { c o s ( t X j )  + sin(tXd) _ e_3.1tl(cos(to~n ) + s in( tdn))}  2 ~ ( t )  - ~ y=~ 

= f k(x, t)d{x/~(Fn(x) - F(x, 0~))}. 
J 

By checking the  condit ions of Csbrg6 (1983), the weak convergence of Zn(t) to a zero 
mean Gaussian process Z is proved in the space (C(S), I]" I1~). Since the compac t  set S 
is arbi t rary,  the space (C(s) ,  II" IIoc) can be ex tended  to Fr@chet space C(R) easily. 

Let  (., .) denote  the  s t andard  inner p roduc t  and let Z have the general covariance 
funct ion obta ined  by Giir t ler  and Henze (2000) 

(A.1) F ( s , t )  = /~0(s, t) - Ko(s)Ko(t) + H(s, Oo)'E[l(X1)l(X1)']H(t, Oo) 
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- (H( t ,  Oo), / k(x,s)l(x)dFo(x)l  

We only need to evaluate terms of (A.1) i.e., E[I(X1)I(X1)'] and f k(x, s)l(x)dFo(x). 
The first step is to obtain  an asymptot ical ly  linear representa t ion of an es t imat ion 

error 

1 n n 

- E E V / ~  n ~ l l ( X j )  _~_ r ln  ' V ~ ( ~ n  _ 1) ~_ 1 12(Xj )  + r2n, r l n , r2n  --+ O, 
j = l  V/~ j = l  

for the s tandard  Cauchy case C(0, 1). 

LEMMA A.1. The asymptotically linear representation l(x) = (lz(x),12(x)) and 
their eovarianee matrices for the MLE and for the EISE are given by 

1. MLE 

4x 2(x 2 - 1) 
l l ( X ) - l + x 2 ,  1 2 ( x ) -  l + x  2 ' 

EIz(X)l(X)'] = 2 x z2. 

2. EISE 
X 

li(x) = ( -  + 1 ) ( .  + 2) 3 ( ( .  + 1) 2 + x2)2 , 

I(.+2)_ i (.+1) 2-x 2 
/2(X) = ~ ~ ( "  + 2) 3 ( ( .  _{_ i) 2 ~- X2)2, 

E[l(X)l(X)'] = (" + 2)2(5"2 + 14 ,  + 10) 
16( ,  + 1) 3 x I2, 

where,  is the weighting constant in (2.4) and 12 is the 2 x 2 identity matrix. 

PROOF. In the case of the MLE, 11 and 12 are easily obta ined  from the score 
functions and the Fisher information matrix. 

For the EISE we apply the del ta  me thod  to the es t imat ing equat ions (2.7), (2.8) for 
the case of C(a, 13) and obtain  

n 
1 E j = I  gl(Xj) P 

n V ~ ( ~ n  -- OL) : v f  ~ E j = I  g 2 ( X j ) / n  + r l n '  r l n  --+ 0, 

(A.2) 

1 
v <  n(n i)  E ~ ' k : '  hl(Xj,Xk) 

v/-~(/~n - ~) = 4~ 1 
n ( n -  1) EJn'k=i h 3 ( X j , X k ) - -  

P 
+ r2n, r2n --~ O, 

1 
n - 1 E j \ I  2h2(X3) 

1 n 
n - 1 E~=I  2h4(X~) 
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where 

g l ( X )  ---- (X -- Oz) 
((x - ~)2 + (~ + 1)2Z2)2, 

h l ( X l , X 2 )  = /](Xl - x2)2  

((~1 - z2)  2 + .2Z2)2 '  

h2(x)  = (~ + 1)(~ - ~)2 
( ( x -  ~)2 + (u + 1)2/32) 2' 

3(x  - ~)2  _ (~ + 1)2/32 
g2(x) ---- ((x - c~) 2 + (u + 1)2/32) 3, 

. 3 (Xl  _ x2) 2 
h 3 ( x l , x 2 )  = 

((Xl - ~2) 2 + .2/32)3'  

h4(~)  = (" + 1)3(x - ~)2 
((x - c~) 2 + ( .  + 1)2/32) 3. 

Return ing  to the s tandard  case (c~,/3) = (0, 1), the  numera to r  of v / -n(~  - 1) in (A.2) 
can be expressed in the form of a U-statistic 

where 

{ n } 
P 

1 E 2h2(Xj) = v~Un + r3n, v '~  un ~(n  - 1) ~3~ ~ o, 
j = l  

l <_j<k<_n 

2 n 

h ( X ~ , X k )  -- n (n  - 1) Y]~ { h ~ ( Z j , X k )  - h2(Z~)  - h2(X~)} .  
l < j < k < n  

By s tandard  arguments  on U-statistics (Chapter  3 of Maesono (2001), Chapter  5 of 
Serfling (1980)) we only need to evaluate 

a(xl) = E[h(Xa,X2) [ X~ = x~], 

since 

vZ-nUn = - ~  2a(Xj) + ran, 
j = l  

It can be shown tha t  a(xl) is wr i t ten  as 

1 (~ + 1) 2 - x~ 
a(za) = 2 (x21 + (u + 1)2) 2 

P 
r 4 n  --+ O. 

2(~ + 2) 2. 

The denominators  of v/-n&n a n d  V ~ ( ~ n  -- 1) converge in probabil i ty to their  expec- 
tat ions or limiting expectat ions 

j=~ (~, + 1)(~ + 2) ~' 

~--,~ n(n--  1) j,k=lha(Xj'Xk)---Eh4(XJ)n 1 j=l 

I 3 u + 2  n 3 u + 4  ] _ 2 
-- li~rnoo L (~ +- 7))3 n -  1 ( 7 ~ y 3 j  (u+2) 3 
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Thus the asymptotically linear representation of the EISE is given by 

n 
1 x~ 

_~_ r l n  ~ v"-n&n = v, ~ ~ ( u  + 1)(u + 2)3 (2  2 q'- (t/q- 1)2) 2 
j = l  

v"n(r - 1) = v' ~ _ 2 (Xj2 + (u + 1)2) 2 ~ + r2n. 
[] 

Note that  the covariance matrix E[l(X)l(X)'] for both the MLE and the EISE is 
finite and positive definite. Therefore condition (iv) of Cs5rg5 (1983) is satisfied. Since 
l~ and 12 are bounded and differentiable, condition (v) of CsSrg5 (1983) is satisfied. 

Write Fo(x) -- F(x,  00) for simplicity. The kernel transform of the asymptotically 
linear representation are given as follows. 

1. MLE 

f k(x, s)ll(x)dFo(x) = 2se-[Sl. 
(A.3) 

k(x, s)12(x)dFo(x) = 

2. EISE 

k(x, (u + 1)(u + 2) S)ll (x)dFo(x) u2 sgn s(e -Isl _ e-(~'+DIsJ) 

2 
(V -~- 2) 8e_(V_t.1)lsl. 

(A.4) 2u 

k(x, s)12(x)dFo(x) -- (u + 1)(u + 2) (e_(,+l)lsr _ e_lSl) 
v 2 

+ 2/)2 Isle-(~+l)N. 

Evaluating (A.1) for the case of the MLE and the EISE using (A.3) and (A.4) proves 
Theorem 2.1. 

We here remark a relation between the asymptotically linear representation l M of the 
MLE and the asymptotically linear representation I I of the EISE. From the asymptotic 
efficiency of the MLE it follows that  l M and l I - 1M are orthogonal, i.e., 

E [ 1 M ( l  I - IM)]  = 0.  

The proofs of Theorems 2.2 and 2.3 are clear from detailed proofs of Giirtler and 
Henze (2000) and we omit them. 

B. Calculation of residues for the results in Subsection 2.2 
Here we derive the density function and the distribution function in (2.15) and 

(2.16). By the inversion formula 

~_ e--ixt 1 

f ( x )  = ~ c~ llr~j=l ~• -~ - -  2it~ 
/ 

dt. 
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-R  

2_ 
Im 

R ~ ( z ) "  

~(t + 1) 

Re 

Fig. 1. Complex integration. 

We consider complex integration 

1 f_ e-ixt 
- -  ~ ( 2it ~ dr' 
27f C i-i j = l 1-- )~ j / 

where a closed curve C consists of a semicircle CR with radius R and a line segment 
I -R ,  R] and - C  or -CR means the clockwise direction. See Fig. 1. 

In the region D = {re -is I 0 < r < R, 0 < t~ < u}, the integrand has singular points 
at aj : -iAj/2. Except for these points, the integrand is regular and continuous. The 
residue theorem tells us 

1 /__ e -ixt oo [ e_ix t 
c i]j=l ~ - _  2it~dt = -iERest=a~ ~ ( 2it~ 

c~ -~ j  J j = l  1-Ij=l 1 -- ~ j  j 

= E Aj exp y 

j=l l-IkCj 1 -  

In the integral on CR we transform t by R and 0 as t = Re -i~ Then 

JC e-ixt 1 ~o ~ iRexp{-i(xRe -ie + ~)}d0 --+ 0, 
d t - - ~  [Ij=l(1 2iRe-is ) o o  

Aj 

as R ---* c~. Here we can take R to be the midpoint (aj + a j+ l ) /2  of neighboring aj 's,  
so that the denominator of the integrand never vanishes. Although the integrand is a 
function of all the eigenvalues Aj, the convergence to zero of the integral over CR is easily 
justified if the entire function I]j~=l ( 1 -  2iu/Aj) 1/2 is of exponential order less than unity 

(see Slepian (1957)). It can be easily shown that I]j~_l(1 - 2iu/Aj) 1/2 is of exponential 

order less than unity based on the fact ~--~j 1//~j < c~. In general 1/Aj = O(1/j 2) as 
discussed in Section 4 of Anderson and Darling (1952). 
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