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Abstract: We present a detailed study of the generalized hypergeometric system 
introduced by Gel'fand, Kapranov and Zelevinski (GKZ-hypergeometric system) in 
the context of toric geometry. GKZ systems arise naturally in the moduli theory of 
Calabi-Yau toric varieties, and play an important role in applications of the mirror 
symmetry. We find that the Gr6bner basis for the so-called toric ideal determines 
a finite set of differential operators for the local solutions of the GKZ system. At 
the special point called the large radius limit, we find a close relationship between 
the principal parts of the operators in the GKZ system and the intersection ring 
of a toric variety. As applications, we analyze general three dimensional hypersur- 
faces of Fermat and non-Fermat types with Hodge numbers up to h 1'1 = 3. We also 
find and analyze several non-Landau-Ginzburg models which are related to singular 
models. 

1. Introduction 

Recent studies on nonperturbative aspects of string theory have made remarkable 
progress in understanding the structure of moduli spaces in string theory. Applica- 
tions of mirror symmetry, for example, in type II string compactification to studying 
the geometry of moduli spaces is one of the most successful developments. Starting 
from the pioneering work by Candelas et al, [1], and subsequently by others, the 
quantum geometry of the moduli spaces for many Calabi-Yau models [2-11] have 
now been well understood via mirror symmetry. At the same time, there is parallel 
progress in studying the axiomatic framework of quantum geometry and its applica- 
tion to enumerative geometry [12]. Also in explicit constructions of the geometry of 
concrete Calabi-Yau models, it is now understood that for a large class of Calabi- 
Yau varieties, the mirror maps have remarkable modular and integrality properties 
[13-15]. These models present strong and even beautiful evidence for the recent 
proposal for the so-called type II-heterotic string duality [16]. These Calabi-Yau 
models continue to provide fruitful testing ground for string duality [17]. 



536 S. Hosono, B.H. Lian, S.-T. Yau 

Mirror symmetry was first recognized in the local operator algebra of the 
N = 2  string theory [18]. Soon after the introduction of the framework of  toric 
geometry into the study of Calabi-Yau models [19, 20], mirror symmetry has 
since been widely checked for many Calabi-Yau hypersurfaces and complete in- 
tersections in toric varieties. Mirror symmetry relates two moduli spaces with 
apparently very different properties - one moduli space is described by purely 
classical geometry, while the other is described by quantum geometry which 
receives nonperturbative corrections from the worldsheet instanton [21]. Mirror 
symmetry thus gives us a powerful means for studying quantum geometry of 
one moduli space via classical means such as the theory of variation of Hodge 
structures. 

Variation of Hodge structures allows us to study the period integrals for Calabi- 
Yau varieties. It is known that the period integrals satisfy differential equations 
with regular singularities, known as Picard-Fuchs differential equations. A gen- 
eral technique for constructing Picard-Fuchs equations is the reduction method 
of Dwork-Griffiths-Katz. For Calabi-Yau toric varieties, it was remarked in [22] 
that the period integrals satisfy a generalized hypergeometric system introduced 
by Gel'fand-Kapranov-Zelevinski [23]. It has been observed [8] in solving sev- 
eral examples that the GKZ system is not generic and is reducible. Moreover 
there is an irreducible part in which the period integrals live. In this paper 
we study the GKZ hypergeometric system for general Calabi-Yau hypersurfaces, 
and discuss the previous observations in a different light but with much greater 
generality. As applications, we determine the Picard-Fuchs differential equations 
for all hypersurfaces with Hodge numbers h1,1< 3 in weighted projected 
spaces. 

In Sect. 1, we review the toric description of mirror symmetry, due to Batyrev. 
We introduce period integrals in the language of toric geometry, and introduce a 
GKZ system which we call A*-hypergeometric system. The system is extended by 
incorporating the symmetry coming from the automorphism group of the ambient 
space [8]. We classify according to the toric data [8] Calabi-Yau hypersurfaces into 
three classes: types I, II and III. 

In Sect. 2, we analyze local solutions to the A*-hypergeometric system. We 
construct a finite set of differential operators for local solutions by relating the 
system to an algebro-combinatorial object, known as a toric ideal. We find that 
the local properties near the so-called large radius limit are determined completely 
by the intersection ring of the ambient space. In the case of type I and type II 
models, we prove in general the existence of the large radius limit, hence establish 
the existence of the point of maximally unipotent monodromy. We give a natural 
explanation for the reducibility of our A*-hypergeometric system in terms of certain 
aspects of the intersection ring of the ambient space. We also extend our arguments 
to type III models. 

In Sect. 3, we will apply our general framework to three dimensional Calabi-Yau 
hypersurfaces with h l,i < 3. Detailed analyses are given for a few typical models. 
For others, we will append a list of the Picard-Fuchs equations to the source file 
of this article [24] for interested readers. 

In the final section we will discuss some relationships among different 
Calabi-Yau manifolds which come from the inclusion relations among reflexive 
polyhedra. 
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2. Toric Geometry and Generalized Hypergeometrie Differential Equation 

In this section we analyze the differential equations, known as Picard-Fuchs equa- 
tions, satisfied by the periods of  a toric variety. Applications o f  toric geometry to 
the description of  the Picard-Fuchs equation was first initiated in [22] and further 
developed in [8]. Here we summarize some of  the analyses in [8] and extract some 
combinatorial aspects o f  the Picard-Fuchs equations. 

2.1. A construction of mirror manifolds. In order to fix some notations, we re- 
view Batyrev 's  construction of  the mirror manifolds, which is applicable to the 
list o f  7,555 hypersurfaces of  [25, 26] as well as complete intersections [27] in a 
product o f  (weighted) projective spaces. In the following we restrict our attention 
to hypersurfaces, although generalization to complete intersections [28, 29] can be 
done. 

Let us consider a weighted projective space pn(w)  and a hypersurface Xa(w) 
with (weighted) homogeneous degree d = wl + �9 �9 �9 + wn+l. Without loss of  gener- 
ality, we may assume that the weight w is normalized [30], i.e., gcd(wl . . . . .  ~vi,..., 
Wn+l) = 1,(i = 1 . . . . .  n + 1). (See also [31].) For n = 4, the list o f  [25, 26] exhausts 
all hypersurfaces Xa(w) defined by weighted homogeneous polymonials satisfying 
the transversality condition. Now let 

m, . m,+l . (2.1) W ( z ) =  ~ am z m =  ~ aml,...,m,+lZ 1 ''Zn+ 1 
(w, m)=d (w, m)=d 

For generic am, the zero locus {W(z) = 0} defines a hypersurface Xa(w) in general 
position. Its intersection with singular locus of  the ambient space P (w)  gives the 
singular locus of  the hypersurface. We denote the Newton polyhedron of  W(z) 
as A(w). It is the convex hull of  the exponents of  (2.1) m in R ~+1, shifted by 
( -  1 , . . . ,  - 1). I f  we take into account the condition d = wl + .- - + W~+l, it is easy 
to deduce that the shifted polyhedron can be written as 

A(w)=Conv . ( {xEZ n+~ ](w,x)  = 0, xi > - 1 ( i =  1 . . . . .  n +  1)}) .  (2.2) 

An n-dimensional polyhedron A in R" is called integral if  all its vertices are 
integral (with respect to the lattice Z") .  A reflexive polyhedron is an integral poly- 
hedron with exactly one integral interior point, the origin. The polar dual o f  A, 

A* := {yERnI(y ,x )  > - t  (VxEA)} (2.3) 

is again integral and reflexive. I f  we consider the set o f  cones over the faces o f  a 
polyhedron, we will obtain a complete fan which covers R n. Thus to each pair o f  
reflexive polyhedra (A, A*), we can associate a pair of  complete fans (S(A), 2;(A*)) 
and in turn a pair o f  the n dimensional toric varieties (Pz(~*),Ps(A)). In each o f  the 
toric varieties, there is a family of  Calabi -Yau hypersurfaces given by the zero loci 
o f  certain sections of  the anticanonical bundle. The toric variety Pz(z) contains a 
canonical Zariski open torus (C*)" whose coordinates we denote as X = (X1 . . . . .  X,) .  
In these coordinates, the sections are 

fA* (X, a) = ~ ai yv7 . (2.4) 
v~Ed* nZ- 

For generic values of  the ai's in (2.4), the Xa. in PZ(A) admits a minimal reso- 
lution to a Calabi-Yau manifold (which we also denote XA. ). Similarly there is a 
corresponding family of  hypersurfaces XA in PZ(A*). Batyrev showed that a pair o f  
the Calabi-Yau manifolds (XA,XA*) is mirror symmetric to each other in the sense 
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that we have the following relations for their Hodge numbers (n > 4); 

hl, I (XA) = h " - 2 , 1 ( X ~ . )  

=/(A*) - (n + 1) - ~ f(S*) + ~ l'(S*)l'(S), (2.5) 
codim S* =1 codim S* =2 

hn-2'l(XA)=hl'l(X~.) = l ( A ) - ( n +  1 ) -  ~ l ' (S)+ ~ l ' (S)f(S*),  
codim S=I  eodim S=2 

where the S are faces of A, S* the polar dual face of S. The functions l and l ~ count 
the numbers of integral points in a face and in the interior of a face respectively. 

When W(z) is Fermat, the toric variety P~(A*) is isomorphic to the weighted 
projective space P"(w), with X~ isomorphic to some Xd(w). Then the mirror hyper- 
surface XA* can be understood [19] as an orbifold of the XA in Px(A*), giving the 
orbifold construction of Greene and Plesser [32] based on conformal field theory. 
For general hypersurfaces of non-Fermat type, P(w) and P~(A*) are only birational. 
In fact the fan X(A*) is a refinement of the fan of P(w). The hypersurfaces Xd(w) 
and X~ are related by flop operations on the ambient spaces. It has been shown 
[33], in this way, that Batyrev's constructions applies to all 7,555 hypersurfaces and 
reproduces the generalized mirror constructions known to [34]. In addition, there are 
several mirror pairs (XA,XA*) which do not come from hypersurfaces in weighted 
projective spaces. 

The quantity most relevant to the applications of the mirror symmetry to the 
quantum geometry of XA are the period integrals for its mirror XA*. For example, 

1 f 1 i~i dX,. (2.6) 
rl(a) - (2hi) n fA.(X,a) i=l X T '  

is the period integral over the torus cycle Co = {IXll--I)(21 . . . . .  IXnl = 1} in 
(C*)n. For other periods, we will analyze the differential equation satisfied by (2.6). 

2.2. d-hypergeometrie system for the periods. In [28], it is remarked that the pe- 
riod integral (2.6) satisfies an d-hypergeometric system introduced by Gel'fand, 
Kapranov and Zelevinski [23]. In [8], it is found that the hypergeometric system 
is not generic but reducible, and the period integrals can be extracted from the 
system as the irreducible part of its solution space. Furthermore, for most of the 
hypersurface models, it is noted that the hypergeometric system must be general- 
ized in order to extract the irreducible part of the solutions. We reproduce here 
an extension which is called an extended A*-hypergeometric system, from purely 
combinatorial data of the polyhedron. We note that for type I models (see below), 
the extended A*-hypergeometric system coincides with the GKZ system. For type 
II or III, the extended A*-hypergeometric system incorporates additional differential 
operators associated with the action of an automorphism group. 

An d-hypergeometric system is described by a finite set ~4 in a lattice { 1 } x Z ~ 
with the property that ~r linearly spans R "+l. In our case of the A*-hypergeometric 
system, the finite set is given by the set of  all integral points in the polyhedron 
A*. Namely we have ~r = { ~ , ~ , . . . , ~ p  I ~,.* = (1,vT) , v~ EA* A zn}. Here we let 
~ = (1, v~) for the origin v~ in A*. We consider a lattice L of affine dependencies 
on 5~r 

L = {(Z0,tl  . . . . .  Zp)EZ~+~llo~+Z1~T+...+Zp~*~=O). (2.7) 
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Then it is found in [28] that the period integral (2.6) satisfies the following set of  
differential equations, (d-hypergeometric system with exponents fi = ( -  1, 0 . . . .  ,0) C 
R n+l ), 

~l//(a)-----O (IEL), ~jH(a)=O ( j = O ,  1 , . . . , n ) ,  (2.8) 

where the differential operators @t and ~j  are defined to be 

( ~ )" ( •  

(2.9) 
P 

~j= }-~ i, jOai--flj ( j = 0 , 1 ,  ,n) 
i=0 

The solution space of (2.8) is typically too large - it contains more than the period 
integrals of the Calabi-Yau manifolds XA*. It turns out that the period integrals 
satisfy additional differential equations. 

2.3. Automorphism of P~(A). It is easy to recognize the origin of the linear differ- 
ential operators ~j(j = 1 ..... n) as the invariance of the period integral (2.6) under 
the canonical torus action on a toric variety, Xi ~ 2i~(~i C C*). Since the algebraic 
torus acts by a subgroup of the automorphism group of the toric variety P~(~), it is 
natural to incorporate into the PDE system the invariance under infinitesimal action 
of the full automorphism group. To describe this action in full generality, we will 
introduce the root system for a toric variety. 

Let us consider a compact nonsingular toric variety P~ based on a regular fan 
27 in the scalar extension NR of a lattice N ( ~  Z r) of rank r. Let M ( ~  Z r) be the 
lattice dual to N. We choose a basis {n~ . . . .  ,nr} for N and a dual basis {m~,... ,mr} 
for M. There is a canonical algebraic torus TN := H o m z ( M , C * ) =  (C*) r in P~ 
whose coordinate ring is C[M] = (~meM Ce(m). We write it as C[X1 :kl . . . .  ,X~ 1] 
with X,. = e(mi). Define the derivations 3,(n EN)  on C[M] by 6,e(rn) = (m, n)e(m). 
These derivations describe the natural action of Lie(TN) on TN. We may write 
{6~ . . . . .  6,~} = {Xl 7x , , ' "  ,X~x, }' The Lie algebra of the full automorphism group 
of Pz is described by the root system R(27) in addition to the toms action. The 
root system R(Z) is determined by the data of the fan 27 as follows. We denote the 
subset of one dimensional cones in the fan as 27(1). In each one dimensional cone 
a (1) C Z ( 1 ) ,  there is a primitive element n(a 0)) in N. Let 

R(27) = {c~ EM ] 3a(~ 1) C 27(1 ) with (~, n ( o ' ( 1 ) ) )  = - - 1  

and (~,n(aO))) > 0 for alla(1)4:a(~l)}. (2.10) 

In terms of the root system, the Lie algebra of the automorphism group can be 
expressed by (see Proposition 3.13 in [35] for details) 

gie(Auto(P~))=gie(TN)@(~(~R(~)Ce(~)rn(~(l~)). (2.11) 

The linear differential operators N1 . . . . .  ~n in (2.8) express the invariance of the 
period integral FI(a) under the action of Lie(TN). In fact it is easy to check that 

~, .Fl(a)=f3~(  1 ) f i d X k  (i = 1 , . . . ,n )  (2.12) 
Co J~.(X,a) k=l ~-k 
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The operator ~e0 represents the change of the period under the overall scaling of the 
Laurent polynomial f~.(X,a) --~ 2J~.(X,a). We can now clearly extend the formula 
(2.12) to define L~rH(a) for every YcLie(Auto(Ps(~)))  by replacing g)n, by Y. We 
thus arrive at the definition of the extended A*-hypergeometric system 

~lII (a)  = 0 (IEL), ~yI I (a)  = 0 (YcLie(Auto(Ps(~)) ) ) .  (2.13) 

This extended system was first introduced in [8] and was used successfully to de- 
termine the complete set of the period integrals. 

Because of the special value of the exponent fl = ( - 1 , 0 , . . . ,  0 ) E R  n+l, the fol- 
lowing gauge for the period 

l"I(a) = aoH(a) , (2.14) 

will be useful. We will denote the hypergeometric system in thisgauge as ~ f f ) ( a )  
= 0, ~ / / I ( a )  = 0. Especially the first order differential operators ~0, ~(a . . . .  , ~en may 
be written concisely as 

~u = E(U,~);)Oai (uERrt+I).  (2.15) 

In ref. [8], several Calabi-Yau hypersurfaces with h i ' l =  2 and 3 have been 
studied. There hypersurfaces in a weighted projective space have been classified 
into three types depending on the properties of the fan Z(A*). Type I models are 
those which do not have any integral points in the interior of codimension-one 
faces of A*(w) and for which we have a regular-fan S(A*) after taking into ac- 
count subdivisions of the cones resulting from the integral points on the lower 
dimensional faces. Type II models are those which have integral points in the inte- 
rior of codimension-one faces of A*(w) but for which we still have a regular fan 
Z(A*) after subdivisions of the cones resulting from the integral points on the faces. 
Type III models are those for which we do not have a regular fan Z(A*) even if 
we subdivide the cones by incorporating all the integral points on the faces. In this 
sense type III models may be called "singular." According to this classification, we 
reproduce here the models analyzed in [8] 

Type I : X8(2,2,2, 1, 1) 

Type II : )(12(6, 2, 2, 1, 1 ), )(14(7, 2, 2, 2, 1 ), )(18(9, 6, 1, 1, 1 ), )(12(6, 3, 1, 1, 1 ), 

X24(12, 8,2, 1, 1) ,  

Type III: X12(4,3,2,2, 1), )(12(3,3,3,2, 1), X15(5,3,3,3, 1), X18(9,3,3,2, 1). 

(2.16) 

It was found that for a model of type I or II, the extended A*-hypergeometric system 
is sufficient to determine the complete set of  the period integrals. Whereas for models 
of type III, one needs to consider additional (non-toric) differential operator(s) whose 
form can be determined from the Jacobian ring of the hypersurface. If  we supplement 
these additional operators to the extended A*-hypergeometric system, we can derive 
the Picard-Fuchs differential equations. Thus for type III models, the combinatorial 
data of the polyhedron A* alone do not seem sufficient for the explicit construction 
of the full system of differential operators. Nevertheless we will find in the next 
section that the local solutions are determined purely by the combinatorial data of 
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the polyhedron, and this property is shared by all three types of the Calabi-Yau 
hypersurfaces. 

Example .  X 1 4 ( 7 , 2 , 2 , 2 , 1 ) .  This is a typical model with non-trivial automorphism 
group. The polyhedron A ( w )  = {x  c R 5 [wlx~ + . . .  + wsx5 = O, xi > - 1  (i = 1 , . . . ,  
5)} is simplicial and is given by the convex hull of the vertices 

Y1 = ( 1 , - 1 , - 1 , - 1 ) ,  v2 = ( - 1 , 6 , - 1 , - 1 ) ,  Y3 = ( - 1 , - 1 , 6 , - 1 ) ,  
(2.17) 

Y4 = ( - 1 , - 1 , - 1 , 6 ) ,  v5 = ( - 1 , - 1 , - 1 , - 1 ) ,  

where we fix a basis {A1 . . . . .  A4} for the lattice H ( w ) =  {x E Z5 ]WlXl + . . .  + 
wsx5 = 0}, with A1 = (1 ,0 ,0 ,0 , -Wl) ,  A2 = (0, 1,0,0,-w2),  A3 = (0,0, 1,0,--W3) 
and A4 = (0, 0, 0, 1,-w4). The integral points in the dual polyhedron A * ( w )  are 

Y0* = ( 0 , 0 , 0 , 0 ) ,  Yl* = ( 1 , 0 , 0 , 0 ) ,  

* * = ( 0 , 0 , 0 ,  1 ) ,  V 3 -- (0,0, 1,0), V 4 

v~ = ( - 3 , - 1 , - 1 , - 1 ) ,  v~ = ( - 4 , -  

v~ = ( 0 , 1 , 0 , 0 ) ,  

v~ = ( - 7 , - 2 , - 2 , - 2 ) ,  (2.18)  

1 , - 1 , - 1 ) ,  v~' = ( - 1 , 0 , 0 , 0 ) .  

The points v T . . . . .  v~ are the vertices of the simplicial polyhedron A * ( w )  and 
all other points (except the origin) appear on some faces of the polyhedron. 

* 1 * The point v 6 = ~(v I + v~) appears on the edge (one dimensional face) and cor- 
* 1 * * * -~- 7Y~ ) responds to an exceptional divisor in XA. The point v 7 = 7(v2 + v 3 + v 4 

* 1 * and v 8 = v(2v 2 + 2 v j  +2v~ +v~)  are both in the interior of the codimension- 
one face dual to the comer Vl of  A ( w ) .  Hence they describe the automorphism 
of PS(A) and of the family of hypersurfaces X~.. In fact the two points de- 
scribe the root system for the fan 22(A) and generate the nontrivial part of the 
automorphism, 

C4l | C~2 := Ce(v~)rv~ �9 Ce(v~)rv l  . (2.19) 

These infinitesimal actions on the coordinate rin~ can be expressed in terms of the 
natural basis for N = Z 4 and M = Z 4 as ~i = XVr+~(rx~ - 6x2 - 6x3 - 6x4) (i = 1,2) 
and have the expressions 

_ 1 ( X I ~ x I _ X  ~ 0 X ~3 
41 X?X2X3X4 2-'~22 - Xa"ff'~33 - 4-~44 ) , 

(2.20) 
1 ( X l  0 0 0 ) = - X ~  0 

-y2[  - - x 3 - 2 2 ;  4-g2  4 

We may verify the algebra [41, ~2] = 0. The linear differential operators 2~e~l and 
~ 2 ,  which follows from (2.12), turns out to be 

~er = ao~_a_~a 7 + 2 a l ~ a  6 + a6oa5 , 
(2.21) 

~ 2  = aoff~a8 + 2al-~a ~ + a6 ~a 7 �9 

These linear operators together with ~(0, . . . ,~5 and the higher order operator 
(1 EL) constitute the full extended A*-hypergeometric system. 
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3. Secondary Fan, Gr6bner Fan and Local Solutions 

In this section, we analyze the local solutions of the A*-hypergeometric system. 
We find that the local properties of the A*-hypergeometric system are determined 
purely by an algebro-combinatoric object, known as a toric ideal. At a special point, 
called "large radius limit," the toric ideal is related to an ideal which determines 
the cohomology ring of the toric variety PZ(A*)- 

3.1. Convergent series solutions for d-hypergeometric system. Here we will sum- 
marize, with some modification, the general results in [23] about the convergent 
series solutions of the d-hypergeometric system. We set ~r = (1, A*)n  z P + l =  
{ ~ , . . . , f p }  for our case of the A*-hypergeometric system. The description here is 
brief and is meant to fix notations and to prepare for later discussions. We refer the 
reader to the original paper [23] for details. 

From the definition of the ~r system (2.8),(2.9), it is easy to 
check that a formal solution to the sr system with exponent fl E R n+l 
is given by 

1 a t+~ , (3.1) H(a, 7) }-~ 
16L H o < i < = p I ' ( l i  § 7i § l )  

where fl = ~ i  7iv~. Evidently the formal solution is invariant under 7 ~ 7 + v (v c L). 
Define the affine subspace ~(fl) := {7 c R p+~ Ifl = ~ 7i~*}. If we choose a basis 
l(l) , . . . ,  l (p-n) for L, the formal series (3.1) takes the form II(a, 7) = ar ~m, ...... ~_,EZ 

a l(k) crux m, where xk . The relevant solutions are those with Cm(7)= 0 unless 
m i ~ O. One must therefore restrict the choices of the basis and of 7. 

A subset I E {0, 1 . . . .  , p} is a base if {~* I i c I} form a basis of R "+~. Given 
a base I and 7 j ( j ~ I ) ,  we can solve for 7 j ( j C I )  using the linear relation 
~-~jCl 7J v'] = f - -  Y~jqil 7JVf" Consider ~z(fl, I )  := {7 E ~(fl) [ 7j E Z ( j  ~I )} ,  and 

q~(fl, I)  := {7 c q~z(fi, I)[Tj = ~kP-1 n 2kl~ k) (0 =< 2k < 1, j ~I)} .  It is clear that 

�9 ~(fi, I )  is a set of representatives of Cbz(fi, I)/L. Consider the cone Jt~(~' ,I)  = 
{l ELR [ li > 0 (i ~I)}  where LR = L Q R. A Z-basis A C L is said to be compati- 
ble with the base I if the cone generated by the basis A contains the cone ~Y~(d,I). 

I f  A = {/(1) . . . . .  l (p-n) } is compatible with the base I, then the formal series 
(3.1) takes the form Fl(a, 7) = a~ 3-" >-crux m for each 7 E q#(fi, I)  with ~..~ml ,...,mp_ n =tl 

1 (k) xk = a , and this power series converoes for sufficiently small Ixkl. (3.2) 

By definition we may write the formal series (3.1) as above with C m = Cm(7):= 
1-[P-o 1/F(~-]~mkl~ k) + 7i + 1). For 7 E q~zA(fl, I) ,  we have ~mkl~  k) + 7j + 1 C Z for 

j ~I .  It follows that if cm #0,  then ~ mkl~k ) + 7j = ~ ( m k  + 2k)l~ ~) => 0 ( j  ~I ) ,  

where we use 7j = }-~'~ 2kl~ ~) (0 < 2k < 1, j ~ i ) .  Since the basis A is compatible 
with the base I, we have mk+ 2k > 0 for all k, implying mk > 0. Thus given 
a basis A compatible with the base I, if  for every 7 E ~zA(fl, I )  there is Cm(7)#0 
for some m, then we have I~z(fl, I)/L] = ]det(~i)l<=i<,+l,jCi ] linearly independent 
power series solutions [23]. 

However it can happen that Cm(7)= 0 for all m, i.e., the series solution be- 
comes trivial H(a,7 ) --= 0 w h e n  ~ m k l } k ) §  7i § 1 E Z__<0 (mk > 0) for some i CI. 
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In this case, we multiply Cm by a constant infinite renormalization F(7 i § 1). More 
precisely, we assume that 7 is such that the following limit exists: 

F(Ti + 1) 

F(li + ~i § 1) 
lim F(Ti + 1 + ~) 
~ o  F(li + ~i § 1 + ~) 

(3.3) 

for all l E L. 
All linearly independent power series solutions are constructed from a set o f  

bases {I} which form a triangulation of  the polyhedron P := Conv.({0, ~ ,  ~ ' , . . . ,  
~p}), where 0 is the origin in R "+1. We call a collection of  bases T = {I} a tri- 
angulation of  P i f  UICT(~7)  = P and ( ~ )  N ( ~ )  (I,,I2 E T) is a lower dimen- 
sional common face. Here (~7) a n + 1 dimensional simplex with vertices ~ '  (i E I )  
and the origin. Because the n + 1-simplices in P are in 1-1 correspondence with 
the n-simplex in A*, there is a notion of  a triangulation o f  A* (or ~ ) .  We use 
the two notions interchangeably. A triangulation T is called maximal if  T gives 
the maximum number of  n-simplices in A* and 0 E I  for all l E T .  A Z-basis A 
of  L is called compatible with a triangulation T if A is compatible with every 
l E T .  

For a base I and a point r / E R  p+I , we consider a linear function hi,, on R p+t 
such that h1,,(~/*) = t/i (i E l ) .  We define a cone cg(~r by {t /E Rp+llhI , , (~)  < 
qi (i r  For a triangulation T, we define the cone cs162 T)  := ~ / c v  cs162 �9 We 
may associate with q E R p+I and a triangulation T, a piecewise linear continuous 
function hT,, on the polyhedron P defined by 1) hr , , (~ i*)=  t/i for each vertex ~i* 
of  the triangulation T, 2) the restriction hT, n]<~*> (I  E T)  is a linear function. Then 

the cone cg(~r T)  consists o f  q E R p+I for which the function hv,, is convex and 
hT , , (~ )  < qi for 7~ not a vertex of  T [23]. A regular triangulation is a triangu- 
lation for which we have interior points in the cone cg(~,, T). For every regular 
triangulation T, there are infinitely many Z-basis o f  L compatible with T. We set 
~A(fl, T)  := U l ~ r  cbA(fl, I )  �9 Now we may state the result (Theorem 3) in [231: 

For a regular triangulation T of  the polyhedron P, and a Z-bas& A = 
{l (1) . . . . .  l (p-n)} of  L compatible with T, we have integral power series in 

the variables xk = a l~k~ for a-VII(a, 7) (7 E ~ZA(/~, T)),  which converge for suffi- 
ciently small ]xk]. I f  the exponent t~ is T-nonresonant, the series II(a, 7) (7  E 
q~A(fl, T)) constitute vol (P)  linearly independent solutions for (2 .8) .  (3.4) 

In the above theorem, the exponent fl is called T-nonresonant if  the sets ~z(fl ,  I )  
( I E  T) are pairwise disjoint. It turns out that in our A*-hypergeometric system 
there are many regular triangulations for which the exponent fi = ( - 1 , 0  . . . . .  0) is 
T-resonant. In particular, i f  T is a maximal  triangulation and the polyhedron A* is 
o f  type I or II, then fl is "maximally  T-resonant," i.e., ~z(f l ,  I )  consists o f  a unique 
element 7 = ( - 1 ,  0 . . . . .  0) modulo L for all I C T. (Note that each simplex I C T 
has v o l u m e  [det(v~i)l<=i<=n+l,jci [ = 1.) In this case, we will obtain only one power 
series solution (3.1), and all other solutions contain logarithms, whose forms we 
will determine by the Frobenius method. 

Given a regular triangulation T, a compatible Z-basis  A = {l(1), . . . ,  l (p-")} and 
7C ~ ( / ~ , T ) ,  we define a power series wo(x,p)= a0 / / (a ,7 ) ,  where p = (Pl . . . . .  

l (k) l(k) pp_,) is defined by 7 = ~ P k  l(k) + ( - 1 , 0  . . . . .  0) and xk = ( - 1 ) 0  a . Explicitly 
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wo(x,p) = ~ r ( -  ~ ( (mk  + pk)l~ k) + 1) xm+P " (3.5) 
ml,...,mk>O I~l<i<=pI'(~(mk d-pk)l} k) + 1) 

The p can also be determined by the indicial equations of the hypergeometric system. 
Given a regular triangulation T, we shall now construct a compatible Z- 

basis A with the criterion that the cone generated by A in LR contains the cone 
Y ( ~ ,  T ) : =  Uler ~ : ( d , I ) .  First we introduce the Gale transformation. Consider 
the exact sequence 

0 ---+ R n+l ) R p+I  > R p - n  ~ 0 , (3.6) 
A B 

where we let R n+l be the span of the integral points ~['s and R p+I in the middle is 
the span of a basis {e~,, e~? . . . . .  e~ } labeled by the points. The linear map A sends 

v E R  n+l to ~_,i(v,~[)ev7 and B is the natural map onto Rp+I/R n+l = R p-n. The 

Gale transform of a point configuration d in R "+1, which we denote {d ,R"+l} ,  
is defined to be a point configuration {~,Rp-~} with M := {B(e V ) , . . . , B ( e ~ ) } .  

Now we consider a cone in R p-n, 

Then it is shown in [36, 37] that the cone c r  decomposes into R"+1| 
~ ( d ,  T). The secondary fan o~(~r is defined as 

~(.~r = {<gt(d, T) [ T: regular triangulation} . (3.8) 

It is known that the secondary fan is complete and strongly polytopal polyhedral 
fan [36, 37]. 

In our point configuration {~r the set d consists of integral points. 
Therefore the sequence (3.6) can be considered with an integral structure: 0 
Z n+l ---+ Z p§ --+ ZP+I/A(Z n+l ) --+ O. The dual of this sequence is 0 ~-- Coker(A*) ~-- 

A B 

(zn+l)* ~.(zP+l)* +--t +--- O, where A* maps s c ( Z p + l ) *  to ~i(e~,,s}V*, and so 

L ( =  Ker(A*)) is the lattice of the affine relations among sr The cone dual to 
:6~(~ r T) c R p-" is the cone ~"(sr T) C LR. In general c6~(sr T) is strongly con- 
vex but not necessarily regular. There is a canonical refinement of the secondary fan 
known as the Grrbner fan (see next subsection). However even a cone in this refine- 
ment is not necessarily regular. By suitably subdividing the cone, we obtain a regular 
subcone and hence a Z-basis of this subcone. The dual basis A = {/(1) . . . . .  l(p-n)} 
thus generates a cone containing Sf(s~r T). This gives us a Z-basis of L compat- 
ible with T. Note that when ~(sr  T) is already regular, the basis A is uniquely 
determined by T. 

Suppose now the polyhedron A* is of type I or II. Then endowed with a maximal 
subdivision, it defines a regular fan S(A*) and Pz(A*) is smooth. It is known that 
the Gale transform {M, Zp - , }  generates the Picard group [35, 38]. Now associated 
with s is a maximal triangulation T. In this case, <gt(sr T) is the K~ihler cone, 
and X f ( d ,  T) is the Mori cone of Pz(A*). In particular cg,(~r T) is a maximal cone 
(hence has interior points), implying that T is regular. 
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3.2. Toric ideal and universal Gr6bner basis. Here we will focus on the differential 
operators ~1 (l EL)  in (2.9). Although there are infinitely many operators, we can 
describe the system by a finite set of the operators. The problem is how to construct 
such a finite set. We will see that the so-called toric ideal in the theory of Gr6bner 
basis gives us a powerful tool for this purpose. 

Let ~r be the finite set in the previous subsection and L be the lattice representing 
the integral relations among the vertices in sr We may decompose any element l c L 
uniquely into l+ - l_ with two nonnegative vectors l+, l_ having disjoint support, 
where the support m E L  is defined by supp(m):=  {i[mi:4=O}. Toric ideal J j  is 
defined as the ideal in C[y0, . . . ,  yp] which is generated by yl+ _ yt_, i.e., 

j ~ = ( y l + _ y l _  I 1 E L ) .  (3.9) 

Let co be a term order in C[yo . . . . .  yp]. It is a vector co= (COo . . . . .  fOp)@R p+I 
which defines an monomial ordering by the weights: the weight of y~0..,  ypp 
being co0~0 + . . .  + (DpO~p. With respect to this term order, we consider an ideal 
L T ~ ( J j )  = (LTo)(f) [ f  E Jd)  of the leading terms of J~ .  Two different weights to 
and co' may give the same ideal. The equivalence class in R p+I 

c~(J~,(O) := {(O' E R  p+I I LTm(,ff~r = LTe/(J~)}  , (3.10) 

is an open convex polyhedral cone. The collection of cones {cg(Jd, ~o)} is known 
to be finite and defines a polyhedral fan called the Grrbner fan ~ ( J d )  of J~r 

The Grrbner basis of J d  with respect to a term order o9 is a finite generating set 
M~o of J~r with the property that the ideal (LTo,(9) [ 9 c ~o~) is equal to LTo)(J~). 
By Hilbert's basis theorem, J j  is generated by a finite set of binomials yl+ _ yt-  
with 1 E L. Starting from such a finite set, the (reduced) Gr6bner basis ~ o  obtained 
by Buchberger's algorithm [39] is also a set of binomials. This is because the 
algorithm consists of forming the S-polymonials for the generators and the reductions 
of the minimal Grrbner basis and both processes close in the set of binomials. 
Moreover the elements of the reduced Grrbner basis take the form yl+ _ y _  (l C L) 
of binomials. 

Next given a term order co, we shall obtain a regular triangulation To~ and hence 
a compatible Z-basis A of L (last section). The elements of the toric ideal J d  
may be identified as differential operators which annihilate the formal series H(a, ~) 
with 7 E ~ZA(fl, To). The ideal LT~o(Jd) is then a set of of "leading" terms of the 
operators which determine the indices for the series wo(x, p). Therefore the Grrbner 
basis ~3o~ with respect to ~o gives a finite set of the differential operators { ~ }  which 
suffices to describe the local solutions. A finite set which contains the Grrbner basis 
~ o  for all term orders is known as a universal Grrbner basis q(4. This basis is 
useful to describe the global property of the system. 

A nonzero integral relation 1 EL is called elementary if 1) I is primitive, 
i.e., gcd(10,11 . . . . .  lp) = 1, 2) supp(l) is minimal with respect to inclusion. It is 
known that the set {l (1), 1(2~,...,/(m)} o f  all elementary integral relations generates 
a (p  + 1)-dimensional zonotope ~ := (0, l (1~) + (0, l (2)) + . . .  + (0, l(m)), where 
(0, l (k)) represents a one-dimensional simplex and the sum means the Minkowski 
sum. The universal Gr6bner basis is then given by [40] 

@~r = {J+ _ yl_ [ l e ~ d  N Z p+l} . (3.11) 
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Given a term order o9 the notion of a regular triangulation can in fact be recast as 
follows. Consider the polytope Po := Conv.{(og0, v;) . . . . .  (COp, Vp)} in R n+l, which is 
a lifting of ~r by assigning the weights ogi as height to each point v T. For sufficiently 
generic 09, the lower envelope of Po naturally induces a triangulation To of d .  

It turns out that a triangulation T of ~4 is regular if and only if T = To for 
some generic weight o9. Also the interior points of the cone cg(d, T) consists of 
all weights o9 CRp+I such that To = T [40]. The Stanley-Reisner ideal SRr for 
a triangulation T of ~r is the ideal in C[y0, . . . ,  yp] generated by all monomials 
YilYi2""Yik, where {il,i2 . . . . .  ik} 4 T. Then the following is shown in [40]: 

I f  a weight vector o9 defines a term order for the toric ideal de, then the 
correspondin9 subdivision To is a regular triangulation. The Stanley-Reisner 
ideal SRro, is equal to the radical of  the ideal LT~(dd).  (3.12) 

As an immediate corollary to (3.12), the Grtbner fan ~ ( d d )  is a refinement of the 
fan {cg(d, T)}. Since each cone rg(d,  T) has a decomposition R n+l O cg'(d,  T), 
we have a similar decomposition cg(d~, o9) = R "+1 | cg'(Jd, o9). We will call the 
collection {rg'(dd, ~)} the Grtbner fan which we also denote by ~ ( J g ) .  

Example. P(2,2,2,1,1). This is a simple example of a toric variety in which we 
can define a Calabi-Yau hypersurface with hl,l(Xz)= 2. The polyhedron A(w) is 
given by the convex hull of the following integral points, 

vl = ( 3 , - 1 , - 1 , - l ) ,  v2 = ( - 1 , 3 , - 1 , - 1 ) ,  v3 = ( - l , - 1 , 3 , - 1 ) ,  
(3.13) 

v 4 = ( - 1 , - 1 , - 1 , 7 ) ,  v 5 = ( - 1 , - 1 , - 1 , - 1 ) ,  

where the vector components are those with respect to a fixed basis AI = (1,0,0, 
0,-Wl ) . . . .  ,A4 = (0,0,0, 1,-w4) for the lattice H(w) (see the example in the pre- 
vious section). The integral points in the dual A*(w) are 

v~ = ( 1 , 0 , 0 , 0 ) ,  v~ = (0 ,1 ,0 ,0) ,  v~ = ( 0 , 0 , 1 , 0 ) ,  
(3.14) 

v,~ = (0,0,0, 1), v~ = ( - 2 , - 2 , - 2 , - 1 ) ,  v~ = ( - 1 , - 1 , - 1 , 0 ) ,  

* 1 * The point v 6 = ~(v 4 + v~) in a codimension 3 face of A* corresponds to a Al-type 
Du Val singularity in the affine subvariety determined by the cone R=>0v~ § R__>0v~ 
in the fan S(A*). We can find three elementary relations (up to sign) in ~r = 
(1,A*(w)) N Z 5 expressed by 

10)=(-4,1,1,1,0,0,1), l(2) = (0, 0, 0, 0, 1, 1, -2) ,  l(3) = ( -8 ,  2,2,2, 1, 1,0). 

(3.15) 
Then the zonotope ~ ,  determines the universal Grtbner basis 

2 2 2 2  
~ ' d  ~ {Yl Y2 Y3 Y6 - -  y4 ,  Y4 Y5 --  Y6, Y l Y2 Y3 Y4 Y5 -- y8, Y l Y2 Y3 y4Y5 -- y4y6 } .  (3 .16)  

It is straightforward to find all possible regular triangulations of the set ~r or 
equivalently the polyhedron A* (w). We find the following four regular triangulations: 

T0 = {(0, 2, 3, 5, 6), (0, 1,3,5,6), (0, 1,2, 5,6), (0,2, 3,4, 6), 

(0, 1,3,4,6), <0, 1,2,4, 6), <0, 1,2,3,5), <0, 1,2,3,4)}, 
(3.17) 

T1 ={(1,2,3,4,5)}, T2 = {(1,2,3,4,6),(1,2,3,5,6)}, 

T3 = {C0,2,3,4, 5), Co, 1, 3,4, 5), (0,1,2,4, 5), (0,1,2, 3, 5), (0,1,2, 3,4)},  

where, for example, (0, 2, 3, 4, 5) represents a simplex with vertices ~ ,  ~ . . . . .  ~ .  
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Table 1. Gr6bner cones with typical weights. Each cone determines the ideal LT~o(J~) and its 
radical. The radical coincides with the Stanley-Reisner ideal SRTo, according to (3.12) 

cone weight co LT~(J~r rad(LT~o(Jd)) 

Zl 

Z2 

Z3 

Z4 

Z5 

Z6 

o, 1,1, 1, 1, 1, o) (yl y2y3y6, y4y5) (yl y2y3y6, y4y5) 

1,0,0, o, 1, 1,0) (y4,y4y5) (yo, yay5) 

1,0,0, 0, 0, 0, 1) (y4, y2) (YO, Y6) 

1,0,0,0,0,0,5) (YlY2Y3Y6, 2 8 4 Y6' Y0' YO y6) (Y0, Y6) 
0,1,1,1,0,0,4) (YlY2Y3Y6, 2 2 2 2 4 Y6' Y 1 Y2 Y3 Y4 Y5, Y0 Y6) ( Y6, Y 1 Y2 Y3 Y4 Y5 ) 

O, 1, 1, 1, O, O, 1) (Yl Y2Y3Y6, y2, Yl Y2Y3Y4Y5) (Y6, Yl Y2Y3Y4Y5) 

T 2 

x 2 

x 3 

T 1 

z 1 

'~ ?(1, O) 

\-;- 
~4 \ 

T O 

T 3 

Fig. 1. The secondary fan and the Gr6bner fan for P(2, 2, 2, 1, 1 ). The secondary fan consists of 
the polyhedral cones parametrized by the regular triangulations TO,..., T 3 in the text. The Gr6bner 
fan provides a refinement consisting of Zl .. . . .  z 6 represented by the typical weights in Table 1 

The Gr6bner fan consists o f  six two-dimensional cones, together with lower 
dimensional cones as their faces. We list the typical weight with the corresponding 
ideal LTo,(Jd) and its radical in Table 1. We draw, in Fig. 1, the secondary fan 
and the Gr6bner fan as its refinement using a Z-basis {~'(1), 7(2)} which is dual to a 
Z-basis {l (1), l O)} in (3.15) of  the lattice L. 

3.3. Cohomology rin9 o f  Pz(A*) and the local solutions - when Z(A*) is regular. 
In this subsection we will study the local solutions o f  the A*-hypergeometric sys- 
tem. Since the Gr6bner fan is a refinement o f  the secondary fan, each cone of  the 
Gr6bner fan naturally defines a convergent series for (3.1). Namely we consider a 
cone z with typical weight o9. I f  z is simplicial and regular we consider a Z-basis 
{7(1),..., ~(p--n)} Of "C, and if not we subdivide z into simplicial and regular cones 

and take a Z-basis for one o f  these cones. Then the dual basis {l~ 1) . . . . .  l~ p-n)} 
gives us a Z-basis compatible with the regular triangulation T~o and the series (3.5). 
Even though the choice o f  Z-basis of  L is not unique, once a choice is made we 
refer to it as a Z-basis o f  L for the cone z with typical weight o9. 

Since the exponent fl is T-resonant for some regular triangulations, we do not 
have vol(A*(w)) linearly independent power series solutions, and so we need to 
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search for the logarithmic solutions. The type of  logarithmic solutions which arises 
for a given triangulation depends on the type of  degenerations of  the hypersurface, 
hence on the monodromy of  its period integrals. In general, the differential equations 
satisfied by the period integrals have regular singularities [41]. Therefore we can 
determine the local solutions from the data of  the leading terms o f  the differential 
equations - the so-called indicial equations. We expect that among the singularities, 
the quotient singularities can be resolved by the toric method via a refinement - such 
as the Grrbner  fan - o f  the secondary fan ([22] Conjecture 13.2). Thus near these 
singularities, we should recover the data for our local solutions from the structure 
of  the cones in the fan. 

Let us consider a power series solution (3.5) determined by a Z-basis  {l~ 1) . . . . .  

l~ p-n) } of  L for a cone z with typical weight coEz. We identify the toric ideal 
J d  in C[y l  . . . .  , yp]  with the ideal generated by { ~ l }  in C [ ~  . . . .  ,-~-~ ]~a~ ' While 

we will consider a multiplication of  ~ l  by the rational functions o f  ak 's  extend- 
ing the coefficient, we need to be careful with the noncommutativi ty resulting 
from this extension. Now let us consider an operator in the Grrbner  basis M~o. 
I f  ~ l E ~ o ~  and 6o. l + -  09. l_ > 0 (<  0), then (~a ) /+ ( (~ )  1 ) is one of  the genera- 

tors for the ideal LTo~(J~r For the case co. (l__ - l _ )  > 0, we multiply ~ l  by a/+ to 
obtain 

al+ ~1 = al+ _ al+ - l_ a I_ (3.18 ) \~aJ 

Since co. (l+ - l _ )  > 0 we have l+ - l_ Ez v. Since z v is generated by {l fU . . . . .  
l (p-n)} ,  it follows that a t+- t -  in the second term can be expressed by a monomial  

o f  {x~ k)} which vanishes when x~ k) ~ 0. Other parts in (3.18) are "homogeneous"  
and can be rewritten in terms of  the log derivatives Oa~ = ai-~a~" The same argument 
applies to the case co. ( l + -  l _ ) <  0. Therefore the principal part o f  ~ l  which 

determines the local properties about x~ k) = 0 are given, through the generators of  
Mo~, by 

-~a/I - ~a ~-+ at• ' (3.19) 

where l+ and l_ in the right-hand side for co. (l+ - l_ ) > 0 and co. (l+ - l_ ) < 0, 
respectively. Clearly we can express the principal part (3.19) as a polynomial 
II(Oao , . . . ,  Oap ). In the gauge H = *- ~.~z/~/("(1),...,-~z"(P-n)x) (2.14), using xk = a l~k~ we can 
write 

It(  Oao . . . . .  Oa~ ) = J~( Ox~l~ . . . .  , Ox~p-,~ ) ,  (3.20) 

where the right-hand side is a polynomial in the 0x~k~. Note also that Jt  is homoge-  
neous if the entries of  l+ are 0 or 1. Due to the property of  the Gr6bner basis, the 
principal parts (3.20) for the elements in M~ give us a complete set o f  the indicial 
equations for p. Summarizing our results: 

Consider a local  solut ion Wo(x~,p) (3.5) with a Z -bas i s  o f  L f o r  a cone z with 
typical  weight  co. Then  the indices p are d e t e r m i n e d  f r o m  the f in i te  se t  o f  
indicial equat ions  J l (p~U, . . .  , p ~ p - n ) )  = O, with yt+ _ y t_  C ~ �9 (3.21) 
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This result combined with the Frobenius method enables us to construct missing 
solutions in the general theorem (3.4) for the case of  T-resonant. 

Now let us turn to the description of the intersection ring A*(Pz(A*),Z), which 
is isomorphic to the cohomology ring, H2*(Pz(a,), Z)  of the nonsingular projective 
toric variety Ps(A*). In the following we assume Pz(~*) is nonsingular, which means 
that we take one of the finest subdivisions of  the fan S(A*). Note that for the models 
of type I and II, such finest subdivision comes from a maximal triangulation To of 
the polyhedron A*. We have seen that To is also regular. In the next section, we 
will find that our results apply also to the singular models of  type III with some 
modifications. 

In toric geometry, each integral point v T (i = 1 . . . . .  p )  in A* fq Z n corresponds to 
an irreducible T-invariant divisor Di. It is known that if  v~" v~ generate a cone in 

1 1  ' �9 �9 �9 , l k 

S(A*), the divisors Di~... Dik intersect transversally with the subvariety determined 
by the cone. Also there are linear relations among the toric divisors since we are 
working modulo the divisors of rational functions on Ps(z*). It is then known that 
[35]: 

For a compact nonsingular toric variety Pz(a*), the intersection ring 
A*(Pz(a.) ,Z) is described by Z[D1 . . . . .  Dp]/J, where ~r is the ideal generated 
by 

(i) Di~ . . . . .  Dik for vi* ~ . . . . .  vik not in a cone of X(A*),  
(3.22) 

(ii) P U Z n . ~-]~i=1( ,vT)Di for u E 

We can fix the normalization of the "volume form" in the ring by the property that 
the Euler number of  Ps~a*) is equal to the number of  the n-dimensional cones in 
the fan 27(A*). This is the number of  the n-simplices in the corresponding maximal 
triangulation To of the polyhedron A*. 

To relate toric ideals to our previous discussion on the A*-hypergeometric 
system, we introduce a formal variable Do and rewrite the intersection ring as 
A*(Ps~A,) ,Z)=Z[Do,  D1, . . . ,Dp]/3,  where we define 3 as the ideal gene- 
rated by 

(i)' Dil'" "Dik for ~ ~ not in a cone of  Z((1, A*)) ,1 , ' " ,  ,~ ' (3.23) 
(ii) t P u E Z "+1 E,=o(  , ~;)Di for u 

The fan S((1,A*)) in (i) '  is defined to be a set of  cones over the simplices of  the 
triangulations To of (1, A*). If  the fan Z(A*) is regular, so is the fan S((1,A*)), 
although the latter fan is not complete. 

Now note that the set of the generators (i)' is the same as the generators of  the 
Stanley-Reisner ideal for the maximal triangulation To of A*. Note also the similarity 
of the linear relations (ii)' and the first order relations (2.15) in the hypergeometric 
system. By (3.12) the Stanley-Reisner ideal SRro is the radical of  LTo,(or162 where 
r is a weight with To~ = To. In the following, we will show that the ideal LT~(~4)  
is radical. This allows us to determine the ideal LTo~(J~), or equivalently the prin- 
cipal parts (3.20) of  the A*-hypergeometric system that governs the local'solutions, 
via a purely combinatorial object - the Stanley-Reisner ideal. As an immediate con- 
sequence we show that for the maximal triangulation, p = (0 , . . . ,  0) is the unique 
solution to the indicial equations. Furthermore we observe that the local solutions for 
the maximal triangulation To can be described by the intersection numbers. The latter 
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are computable from the intersections ring (3.22). We will also see that the Stanley- 
Reisner ideal above can be easily computed in terms of  the so-called primitive 
collections. 

To discuss the combinatorial description of  the Stanley-Reisner ideal, we intro- 
duce the notions of  a pr imi t i ve  collection and a pr imi t i ve  relation [42]. A primitive 
collection of  a complete fan X(A*) is a set of  integral vectors ~ = L [v~,l, v-rot2 , �9 �9 �9 , V*ia  } 
such that if  we remove any one of  v.*,s from ~ ,  then the integral vectors in ~ \{vi*}  
generate a cone in X ( A * )  while ~ itself does not generate any cone in X(A*). 
It is easy to prove that i) in (3.22) can be replaced by the monomials Dit '"  "Di a 
corresponding to the primitive collections o f  X(A*). Once we fix a triangulation To 
which underlies the X(A*), it is straightforward to read off all primitive collections. 
So far we don' t  need the regularity o f  F,(A*). But to discuss primitive relations, we 
must assume that X ( A * )  is regular. A primitive relation will be a certain element 
of  L attached to each primitive collection. 

r l )*  * . . .  y* Consider a primitive collection ~ = t  i~, vi~, , io}. There is a unique cone 
cg E S (  A*)  of  minimum dimension such that the integral point v*. + vi* 2 -4- . . .  + v~ is 

II la 

in the interior of  c~. By regularity, there is a set of  generators {v]~ . . . . .  v]s} of  the 
cone such that for some positive integers ck, we have 

v*,~ -4- v.*~ ,4,--. -4- v~,a = ~ ckvj~ . (3.24) 
k > l  

It is easy to translate the above statement about the fan X ( A * )  into a statement 
about the fan X((1,A*)), which is not complete but regular. We get 

~,~ + v~,~ + . . .  + V~,o = ~ c k ~  , (3.25) 
k > 0  

where v~'jo = v0-* and co = a - Y'~>_I ck => 0. Equation (3.25) defines a primitive rela- 
tion l ( ~ ) C L .  It is easy to deduce-from the defining property of  a primitive collection 
that the index sets {il . . . . .  i~} and {j0 . . . . .  j~} are disjoint. 

Let r be a weight vector such that T~ is the maximal triangulation To. Recall 
that the convex polytope P,o is defined by the convex hull of  the points ~7~ := 
(cok, v~) (k = 0 , . . . ,  p) .  Then we can show the following "height" inequality (fi~ + 
�9 " -4- ~ ) o  > (Sckv~k)o, i.e., 

O-)i t "4- (Di2 -4- " ' "  -4- O)i a > ~ CkO3jk  . (3.26) 

This means that L T o , ( y  (~)+ - y t ( ~ ) _ ) =  Y f iY i2""Yia .  Since the Stanley-Reisner 
ideal SRv~ is generated by those y*' y'~ . . .  y*, with {v;~, vi* ~ . . . .  , v~}  primitive, it fol- 
lows that SR~.o, C L T ~ ( J 4 ) .  Combining this with the property (3.12), we see that 
LT, o(J~/)  is radical. Moreover we also have SRr, o = (J(~)+ I ~  is primitive). 

In the example P(2, 2, 2, 1, 1 ) discussed in the last subsection, we find two primi- 
tive collections {v~', v~, v~, v~}, {v~, v~} for the maximal triangulation To and the cor- 
responding primitive relations turn out to be l (1) and l (2) in (3.15), respectively. As 

is evident in Table 1, these primitive collections give the generators LTo~(yl~ ) - y 1(~) ), 
(i = 1,2) of  the ideal LT~(de~)  for the cone rl .  

Note that the above generators of  SRro are nothing but the leading symbols 
of  a generating set of  operators ~ l  of  the A*-hypergeometric system. Combining 
with the operators ~/ ,  we have a correspondence between the symbols of  the full 
A*-hypergeometfic system and the ideal ~r (3.23) for the intersection ring. This 



GKZ-Generalized Hypergeometric Systems in Mirror Symmetry 551 

motivates the following map m from Z[0~o,..., Oa,] to the intersection ring m : Oa, 
Di .  Define the following intersection coupling, 

Cili2...in = ( m ( O  (ii))m(Ox{i2))''" m(Ox{i.) )) x~ 
(3.27) 

where the bracket means taking the coefficient of the "volume element" in the ring 
A*(Pz(A*), Z). Then we observe the following: 

I f  ~ is the cone in which To, (co E ~) is a m a x i m a l  triangulation, then all the 

indices at the poin t  x~ i) = 0 (i = 1 . . . . .  p - n)  o f  the hypergeometr ic  sys tem are 
identically zero. A n d  the local solutions near this po in t  are given by 

wo(x,,p)lp=o, ~p~wo(x~,p)lp=O, ~ Ci, i2...i, Opq Op,2Wo(xv, p)lp=O, 
il,i2 

Ci,i~...i.O pi, O p,~ " "  ~ ,i~ wo( x~. p )l,=o . 
i l , i2, '"in 

(3.28) 

Recall that rad(LTo)(J~) )  = L T o ) ( J d )  for the weight co such that T~o = To, and that 
LTo~(Je)  is generated by LTo(~o , ) .  Since an element of the Gr6bner basis has 
the form yl+ _ yt_, it follows that the entries of either vector l:k are 0 or 1. In 
either case, we see that the corresponding indicial equation Jr(P1 . . . . .  p p _ , )  = 0 is 
homogeneous. But the finiteness of the solution set implies that zero is the only 
solution. 

Example .  P(2, 2, 2, 1, 1 ). As we have seen, there is one maximal triangulation To in 
(3.17) for the polyhedron A*. The corresponding cone is zl in Table 1, and thus 

the GrSbner basis ~o~ consists of y t ~ -  y l~ = YlY2Y3Y6 -- y4 and y 1~) --  y 1(2~ 
Y4Y5 --  y2 .  From this we obtain the leading term operators for (3.20); 

Jlo) Oa, OazOa~Oa~ 3 = = O~x~, (ox. ,  - 2o ,~ ,  ) ,  

Jl(2) = O a4 O a, = 02y~1 , 
(3.29) 

with the corresponding linear operators 

~o 1 3 = Ox~ ' (Ox,, - 20y~l ) - x,~ 1 (40xq + 4)(40xq + 3)(40x~, + 2)(40x, t + 1 ) ,  

5Y2 = 0~,~ - y~(Ox~, - 20y,, - 1)(0x,~ - 20y,1 ) .  
(3.30) 

Since the generators of the Stanley-Reisner ideal is given by the primitive collec- 
tions, it is easy to determine the intersection ring. The results for the intersection 
couplings are 

Cxxxx = 2, Cxxxy = 1, Cxxyy = Cxyyy = Cyyyy = 0 ,  (3.31 ) 

where Cxxxx = (rn(Ox,~) . . .m(O~ )) for example. From the indicial equations Jlv~(P) 
= Jt~2)(p) = 0, we see that all indices at the point x~ = y,~ = 0 are zero. In fact we 
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find the following 8 solutions with only one power series solution; 

Wo(X, 0); Op~Wo(X, 0), Op, WO(X, 0); 

(20p3x + 2 3 363p~63p), )Wo(X, 0), 63p~Wo(X, 0); 

where 

(2~72~ + 26~p, ~py )WO(X, 2 0), c~pxwo(x, 0); 

3 (2~4x + 4OpxOpy )Wo(X, 0) ,  (3.32) 

F(n + Px F(4(n + Px) + 1) xn+p x a,m+py 
Wo(X,p) = + 1)3F(m+py  + 1)2F(n - 2 m + p x  - 2 p y +  1) Yl )'TI " 

(3.33) 

Because we have ,~q~iWO(X,p ) = Jl(o(p)x p + (power series in x and y)  (i = 1,2), we 
can verify that (3.32) solve the hypergeometric system by inspecting (204x+ 
4O3xOp,)(Jt(o(p)xP)[p=o = 0 (i = 1,2), for example (see Eqs. (4.4) and (4.5) in [8] 
for detailed arguments about the remaining terms). 

Similarly we obtain for 22 the principal parts (3.20) in the / I (a)  gauge 

(40% - 4)(40% - 3)(40% - 2)(40% - 1), 022 , (3.34) 

= = = a 1(2) with x~ 2 a -tin 1/X~l, Y~2 . From these principal parts, we see that not all 
solutions to the indicial equations at x~ 2 = Y~2 -- 0 are zero. Thus the local properties 
of Zl and Zz are quite different. The fact that LTo)(J~) is radical in 21 but not in 
Zz is responsible for this difference. 

3.4. Cohomolooy ring o f  Xa and the local solutions. We consider the restriction 
map H*(Ps(A*), Z )  --~ H*(X~, Z )  induced by the inclusion XA --~ PZ(A*), and denote 
the image by Ht*ric(Xz , Z). The restriction map can be realized by considering the 
intersection of the elements of H*(Pz(A*),Z) with the divisor XA. By construction 
of the Calabi-Yau hypersurface XA, the divisor class [Xa] coincides with the anti- 
canonical class of the ambient space Pz(a*), namely 

[XA] = D1 + D2 + " .  + Dp , (3.35) 

in the intersection ring. The toric part of the cohomology Ht*o~ic(XA, Z) can then 
be written as Atoric(XA, Z)  = A*(PI:(A*), Z)/Ann(D1 + - . .  + Dp) (where Ann(x) in a 
ring R is Ann(x) := { y E R [ y x  = 0}) or equivalently 

At;ric(XA, Z )  = Z [ O l ,  O2,. . . ,  Op]/Jquot,  (3.36) 

where Jquot is the ideal quotient Jquot = J : ( O l  + . . - + O p ) .  (Here ( I : x ) =  {yC 
RlyxcI}.) 

Now recall the close relationship between the ideal 3 in (3.23) and the ideal of 
the symbols for the A*-hypergeometric system with respect to the cone z of maximal 
triangulations To~. First we have 3quot = J : ( O l  + 0 2  + " "  + O p )  = J : ( - O 0 )  = 

3 : D 0 .  In fact we observe more: suitable linear combinations of the differential 
operators al+@l factorize from the left by the operator Oao, implying that the hyper- 
geometric system is a reducible system. Factorization by the operator 0~ 0 should be 
understood as corresponding to the restriction to the hypersurface XA. As we shall 
see, the solutions to the factorized system can be obtained from (3.28) by a similar 
restriction of the intersection couplings (cf. m(-O~o)= -Do  = [X~]). 
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In cases of  type II models, we observed that the quotient (3.36) results in setting 
to zero the divisors Oi for which the integral points v]" are on a codimension one face 
of A*. This can be understood as follows: the above divisors come from the desingu- 
larizations of point singularities of  the ambient space; a hypersurface XA in general 
position will not meet these singularities. In accordance with this "decoupling" of the 
divisors it is natural to consider the lattice U = { l c L I li = O, V* is on a codimen- 

sign one face of  A*}. We define a Z-basis {l~ l) . . . . .  l~ p-n')} (n' = dimAuto(Pz(A.))) 

of  U of the reduced cone (R__>0l~ 1) + . . .  + R__>0l~ p-n)) AL~ as follows. We make 
subdivisions of  the reduced cone if it is not regular, in which case the Z-basis is 
not uniquely determined. However our observations in the following do not depend 
on this. We will call U the reduced lattice, or the reduction of L. 

The decoupling of some divisor D i in the intersection ring implies that we 
can turn off the monomial deformation via ai (which corresponds to the divisor 
D i under the monomial-divisor map [43]). In fact we observe that these variables 
can be eliminated in the extended A*-hypergeometric system which is originally 
defined to act on functions on C ~ as follow. Recall that the GKZ A*-hypergeometric 
system is enlarged by adjoining n ~ - n additional linear differential operators ~ i  ( i  = 
n + 1 . . . . .  d imAuto(Pz(A))- -n  ~ in (2.21)). This creates just enough equations to 

0 corresponding to points v[ on the codimension one eliminate those operators 
faces, from the operators ~ t  ( I c L ) .  We may then set ai = 0 after the elimination. 
We denote by ~'l the resulting new operators which act on functions on C d' ,  where 
the set sr ~ consists of  all integral points on the faces with codimension greater than 
one. Note that the set { ~ 1 1 C L }  is in general larger than the set {~l, ] F c U } .  

We now define the intersection couplings o n  Atoric(XA, Z )  by 

KC( . ,m ..... 1 = (m(Ox~',~)m(Ox~2~)'"m(Ox~',-o)'m(-O~o)) , (3.37) 

then we may state the observation given in [10] as follows: 

For a cone z with typical weight co, some o f  the operators al• ~}(  l c L ) or their 
linear combinations factorize by the operator Oa o f rom the left, indicating that 
the A*-hypergeometric system is reducible. I f  T~ is a maximal  triangulation, 
the local solutions about the point x~ i) = 0 (i = 1 . . . . .  p - n ~) for  the reduced 
system are given by 

wo(x~, p)lp=o, ~p, Wo(x,, p)Ip=o, ~ i  ..~=_, ~p,, ~p,= wo(x,, p)lp=o, 
ll~12 

�9 .. (3.38) 

,o-,  e ,2 "" w 0 ( x , ,  P)l -0 �9 
il,i2,'"in--1 

We also observe that in the case of  Fermat hypersurfaces, the operators a t •  
which factorize whose leading term generate the ideal 3quot can be constructed from 
operators ~ l  in the Grrbner basis ~ .  However for general models of  non-Fermat 
type we need to consider operators a l : ~  outside the basis ~ o  as well as their 
linear combinations with coefficients in the ring generated by the 0a, (see examples 
in Sect. 4). 

Examples. 1) P(2,2,2,  1, 1). We have seen a unique maximal triangulation To 
in (3.17) and have constructed local solutions for the corresponding cone in the 
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Grrbner  fan. Now we note that Oao = -(Oa, + "'" § Oa 6 ) = -40x~ . It is easy to ob- 
1(1) _ 

serve that the operator a + ~t(l) expressed in the / I ( a )  gauge factorizes from the 
left by Oao = -40x,  1 , i.e., 5~ = Ox~, C in (3.30) for some third order operator C. I f  
we write the divisor m(Ox~, ) as Jx and similarly for Jy, the topological data for the 
solutions are summarized as follows: 

g~Ixx = 8, gc ly  = 4, g~cly = g;lyy = O, 

c2" Jx = 56, c2" Jy = 24 ,  
(3.39) 

where the invariants c 2 . J ' s  are listed for later use. For their calculation we use the 
adjunction formula [44]; C(XA) = I~P=x(1 + Di)/(1 + [X4]). 

2) P(7, 2, 2, 2, 1 ). The toric data of  this model have been summarized in the end 
of  the previous section. Although this model has the same moduli as the above 
model, two integral points on the codimension one face make the combinatorics 
of  this model much more complicated. It turns out that there are 14 elementary 
relations which generate the zonotope ~ ,  and there are more than 2,000 elements 
for the universal Gr6bner basis. The secondary fan has 32 four dimensional cones, 
most o f  which are singular. 

It seems to be a formidable task to determine the Grrbner  fan, however it 
is easy to find the maximal triangulation of  A* and the corresponding Stanley-  
Reisner ideal. As proved in the previous subsection, for a weight co such that T,o is 
the maximal triangulation, we have LT~o(J j )  = rad(LTo~(J.~r = SRTo, and we can 
determine the ideal LTo,(J~)  by the Stanley-Reisner ideal which is simply described 
by the primitive collections. In this case, it turns out that the ideal LT, o(.~.~) = SRr~, 
is generated by 

YlYs,  YlYT, YlY8, YsY8, Y6YT, Y6Y8 , 
(3.40) 

Y2Y3Y4Ys, Y2Y3Y4Y6, Y2Y3Y4Y7 �9 

These generators may be translated into the generators 0 )  I in (3.23). Then together 
with the linear relations (ii) '  in (3.23), they_define the intersection ring of  the 
ambient space. We find that the ideal Jquot = J : (D1 + - - �9 + Ds)  as defined earlier 
is generated by the monomials  

D1Ds, D3D4D6, D7, D s ,  (3.41 ) 

with the linear relations (ii) ' .  The divisors D7 and D8 in (3.41) being among the 
generators show that these divisors decouple from the intersection ring. 

We find that a Z-basis  o f  L for a cone r with the typical weight o~ is 
1(1) i(2) l~3), 1~4)} with 

1) = ( - 1 , 0 , 0 , 0 , 0 , - 1 , 1 , 1 ,  0),  

/~3) = (0, 0, 1, 1, 1, 0, 0, 1, - 4 ) ,  

z~ ~) = (0,1, o, o, o, 1, - 2 ,  o, 0 ) ,  

/~4) = (0 ,0 ,0 ,0 ,0 ,1 ,  o , - 2 , 1 ) .  
(3.42) 

The intersection of  the cone generated by (3.42) with L~ is a two dimensional 

regular cone generated by /(1) = 7/~1) +/~3) + 4/~4) = ( - 7 , 0 ,  1, 1, 1 , - 3 , 7 , 0 , 0 )  and 
/(2) =/~2). 
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The form of our generators of Jquot suggests that we should try to factorize the 
following differential operators: 

, ,  ( . ) '  
91(1,5) -- 0al 0as ~a6 ' 

(3.43) 
~ ~ o a o ( a )  3 

91{2'3'4'6} - -  c3a2 ~3a3 ~a4 c3a6 ~3ao ~ ' 

where /{1,5} and / { 2 , 3 , 4 , 6 }  a r e  the primitive relations corresponding respectively to 
the primitive collections {v~,v~}  and {v~,v~,vT, ,v~}.  Although the second operator 
contains a derivative with respect to a8, we can eliminate it using the order one 
operators ~ 1  and .~er corresponding to the automorphisms (2.21). Defining the 

1(1) l (2) local variables x = - a  , y - - a  , we observe the factorization of the operator Oao 
1 and find a complete set of differential equations for the in aoa2a3a4a691{2.3.4.6} ~o ' 

period integrals: 

91 = (Oy - 30x)Oy - y (70x  - 20y - 1)(70x - 2 0 y ) ,  

9 2  = 02(70x - 20y) - 7x (y (280x  - 40y + 18) + Oy - 30x - 2)) (3.44) 

x ( y ( 2 8 0 x  - 40y + 10) + Oy - 30x - 1 ) (y (280x  - 40y + 2) + Oy - 30x), 

in the /I(a) gauge (2.14). The local solutions of this system are given by (3.38) 
with the following topological data: 

cl cl cl cl KCxx = 2, KCxy = 7, KC~), = 21, Kr = 63, 
(3.45) 

c 2 " J x = 4 4 ,  c2 " J y =  126. 

3.5. S ingular  models  o f  type  I lL  In the previous subsections, we have considered 
the non-singular models, i.e., models of type I and II in our classification (2.16). 
However in actual applications, singular models dominate the others. We will see, 
nevertheless, that several properties observed in the previous subsections apply with 
some modifications even to the singular cases. 

Since a complete analysis of the secondary (Gr6bner) fan for A* is formidable in 
general (cf. the example P(7, 2, 2, 2, 1)), we focus only on the Calabi-Yau phase(s) 
which corresponds to maximal triangulation(s). For the nonsingular models of type I 
and II, we have seen that the ideal L T o ) ( J d )  for a maximal triangulation To, coincides 
with the Stanley-Reisner ideal. For the singular models of type III however, the ideal 
L T o ) ( J d )  differs from its radical and from the Stanley-Reisner ideal because 2J(A*) 
is no longer regular. 

For a singular model, the fan Z(A*) is singular even relative to the maximum 
subdivision incorporating all integral points in A*. To obtain a regular fan, which 
we denote as S(A*)reg, we subdivide further the singular cones taking into account 
integral points outside the polyhedron A*. Since the polyhedron A* is reflexive, the 
integral points which generate an n-dimensional cone in S ( A * )  are on a hyperplane 
with integral distance one from the origin [19]. Moving this hyperplane in a parallel 
way to the integral points outside A*, we can speak of the integral distance of these 
points. For the hypersurfaces X a ( w )  in (2.1), a point with the integral distance k > 0 
corresponds to a monomial of the homogeneous degree kd.  
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Let us denote all the integral points generating the one dimensional cones of  
Z(A*)r ~ as {v~', ..,v*,v*+l,...,Vq}, where Vp+ 1 . . . . .  Vq are those new points intro- 

g - p P . . 
duced by the subdivision. (Note that even though the new points have distance 
greater than 1, they are still primitive vectors of  the lattice.) Since we have a non- 
singular toric variety Ps(A*)r~g , we can describe its intersection ring according to 
(3.22) with additional divisors Dp+l .... ,Dq. It turns out that the divisor class o f  the 
Calabi-Yau hypersurface XA in this fully resolved ambient space is given by 

[ X A ]  = O 1 ~-  " " -~ O p  -~- d p + l O p + l  --~ . . . -q- d q O q  , (3.46) 

where dk is the integral distance of  the point v~ described above. We should note 
that the regular fan z~(A*)reg need not be the fan associated with a triangulation o f  

1 ,  . * * * * the polyhedron A .= C~ . . . . .  Y p ' Y p + l  . . . . .  Vq}). Therefore in general, we do 
not have a description (3.22) of  the intersection ring via the Stanley-Reisner ideal in 
terms of  a triangulation of  A t*. However in many cases, it happens that the convex 
hull A'* is itself a reflexive polyhedron. In such a case we have another family of  
Calabi-Yau manifolds XA, in the ambient space PS(A,*). This ambient space is in 
general different f r o m  Pz(A*)reg. However if  we have the relation Z(A'*) = z~(A*)reg , 
then we will have two different families of  Calabi-Yau hypersurfaces in the same 
ambient space Pz(a,*~ = Pz(a*)reg" One hypersurface XA represents the divisor class 
(3.46) and the other hypersurface XA, represents 

[ X A ' ]  = D 1  + ' " + D p + D p +  1 + ' " + D q .  (3.47) 

We will see an example of  this type in Sect. 4. 
Now let us see the detailed analysis in a typical example X12(4, 3, 2, 2, 1 ) which 

was analyzed in [8]. The polyhedron A(w) for this model has vertices 

vl = ( 2 , - 1 , - 1 , - 1 ) ,  

v4 = ( - 1 , - 1 , - 1 , 5 ) ,  

v2 = ( - 1 , 3 , - 1 , - 1 ) ,  

v2 = ( - 1 , - 1 , - 1 , - 1 ) ,  

v 3 = ( - 1 , - 1 , 5 , - 1 ) ,  
(3.48) 

with respect to the basis A1 . . . . .  A4 for the lattice H(w) as in (2.17). The integral 
points in the dual polyhedron A*(w) are as 

v~ = (1 ,0 ,0 ,0) ,  

v~ = (0 ,0 ,0 ,1) ,  

v2* = (0, 1, o, 0), v3* = (0, o, 1, 0), 

v~ = ( - 4 , - 3 , - 2 , - 2 ) ,  v~ = ( - 2 , - 1 , - 1 , - 1 ) ,  
(3.49) 

together with the origin v~ = (0, 0, 0, 0). The maximal triangulation of  the polyhedron 
A*(w) is unique and is given by 

To = {(0,3 ,4 ,5 ,6) ,  (0, 1,3,4,5),  (0 ,2 ,3 ,4 ,6) ,  (0, 1,4,5,6),  

(0, 1,3, 5, 6), (0, 1, 2, 4, 6), (0, 1,2, 3, 6), (0, 1,2, 3 , 4 )} .  
(3.50) 

It is easy to see that the corresponding fan S(A*) is not regular because the first three 
simplices in To respectively have volumes 2, 3, and 2. We subdivide the first cone 

. . . .  . 2v~' + v  2 * -- v3 +*~ +v5 +v6 Similarly by introducing v 8 + by introducing a point v 7 2 " - -  3 
v~+2v; and * vF+2v2 ~ , vj+v;+v2+vg for the 3 Y9 = 3 -~- for the second cone and Vl0 - -  2 

third cone, we finally obtain the regular fan S(A*)reg. All these additional points 
v~,. . . ,  v~' 0 have integral distance two and correspond to the charge two monomials 
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3 3 9 2 2 2 8 4 4 4 and  3 3 3 3 respectively. The generators (i) in (3.22) Z2Z3Z4Z 5 ~ 21Z3Z4Z 5, Z1Z3Z4Z5 Z2Z3Z4Z 5 
are determined by the primitive collections for the fan S(d*)reg , and there are 
20 such generators. Together with the linear generators (ii) in (3.22), these deter- 
mine the defining ideal J for the intersection ring A*(Ps(A*)rog). The ideal quotient 
by [XA] = D1 q- "'" q-D6 q- 2(D7 q- " "  q-D10) determines Atoric(XA ). It turns out that 
~quot is generated by 

D2Ds, D1D3D6, D7, D8, D9, D10, (3.51 ) 

together with the linear relations (ii). The generators D7,D8,D9 and D10 indicate 
that these divisors decouple from the intersection ring. This can be understood as 
follows: the additional points v~ . . . . .  vT0 represent point singularities in the ambient 
space and the divisors D7, . . . ,  Dl0 resulting from the desingularization of these points 
do not intersect with the hypersurface XA in the general position. 

Now let us turn to the set of the convex piecewise linear functions over the fan 
S(A*)reg , i.e., the K~ihler cone of Ps(~*)ro~ (see [37]). Since the regular fan X(A*)reg 
does not come from any triangulation of the polyhedron A'* (in fact we verify 
X(A* )reg has 21 four dimensional regular cones whereas vol(A ~*) = 24), the K/ihler 
cone so obtained cannot be interpreted as a cone of the secondary fan for A'*. It is 
straightforward to find a Z-basis for the dual cone of K/ihler cone z and we have 

l~1) = ( -1 ,0 ,0 ,  1, 1,0,0, 0, 1 ,-2,  0), 

/~3) = (-2 ,0 ,0 ,  1, 1, 1, 1,-2,0,0,0),  

/~5) = ( -2 ,0 ,  1, 1, 1,0, 1, 0 ,0 ,0 , -2) ,  

/~2) = ( -1 ,  1,0,0, 0, 1, 0 ,0 , -2 ,  1,0), 

/~4) : ( 1 , 0 , 0 , - 1 , - 1 , - 1 , 0 ,  1, 0, 1,0), 

/~6) = (2,0,0,--1,--1,0,--2, 1, 0,0, 1). 

(3.52) 

The decoupling of the divisors D7 . . . .  ,D10 in (3.51) corresponds to reducing 
from L to the lattice U generated by l (1) = 4l~ 1) q- 2/~ 2) q- 3/~ 3) + 3/~ 4) and /(2) z 
/~3) _~_ /~5) ~_ 2/~6) with 

1 O) = ( -6 ,2 ,0 ,1 ,1 , - 1 , 3 , 0 , 0 ,0 ,0 ) ,  /(2) = ( 0 , 0 , 1 , 0 , 0 , 1 , - 2 , 0 , 0 , 0 , 0 ) .  (3.53) 

We verify that the above basis for the reduced lattice generates the cone • ( d ,  To) 
dual to (gP(d, To) for the maximal triangulation To of A*. However this is not 
a general phenomenon as we will see in the example X14(7, 3, 2, 1, 1 ) presented in 
Sect. 4. 

The operators ~1 we deduce from the first two of (3.51) are 

~t(2,5~ -- t?a2 8a5 ~ ' 

~ ~  (~)~  _ 

~1{1,3,4,61 = 0a l  ~a3 t334 ~a6 ~ao  t~a9 ' 

(3.54) 

where /(2,5} =/~3) +/(5) + 2l~6) and 1{1,3,4,6} = 21~ 1) + l~ 2) +/~3) + 2l~4) are primi- 
tive relations for X(A*)reg. These two operators are the analogues of (3.43) of the 
nonsingular model, but with one crucial difference. In this singular case, we do not 
have an order one differential operator in the extended A*-hypergeometric system 
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to eliminate ~@9" In order to eliminate this we must study the Jacobian ring of the 
hypersurface in detail. In [8], a second order operator was found which has the 
form 

~ 12ala2 {" ~ ,~2 24ala2a6 ~ 0 12ala~ ~3 
(3.55) 

~3a0 ~a9 a 2 ~ ~ao J a30 c3a0 Oa6 a 3 ~3a0 Oas'  

when acting on the period H(a),  see Eq. (3.39) in [8]. Using this relation and the 
al(~) l (2) definition x = and y = a , a third order differential operator is derived from 

~1(1.3,4.6~ after a factorization Ox from the left. As is evident, the linear differential op- 
erators represent relations among the monomial with the homogeneous degree d or 
the charge one in the Jacobian ring. In contrast, the differential operator (3.55) 
represents a relation among the monomials of charge two. While the order one 
differential operators have been related to the symmetry of the period under auto- 
morphisms and thus to the combinatorial data of  the polyhedron A*, the form of 
the operators for the charge two monomials above do not have a clear description 
in terms of the combinatorial data. This is a typical feature we encounter in the 
analysis of the singular models. We observe that despite having to use charge two 
operators to factorize 9/, the principal part of the factorized operators still coincide 
with those monomial generators of the defining ideal Jquot for A t o r i c ( X  A ) - just as 
in the case of type I, II models. This means that the structure of the local solu- 
tions is not affected by the usage of the charge two operators. That is, the same 
properties in (3.38) hold for type III models as they do for type I and II models. 
In our example here, the local solutions are described by the following topological 
data: 

el cl cl cl Ks x = 2, K~xy = 3, Kx'yy = 3, K;)y = 3 ,  
(3.56) 

c2 �9 Jx = 32, c2 �9 Jy = 42.  

We verify that the convex hull of the points {v T . . . . .  v~'0} is again reflexive 
and defines a family of Calabi-Yau manifolds X~, with Hodge numbers (2.5) 
h1"I(XA ,) = 6 and h2"1(XA ,) = 71. Thus this is a case in which a polyhedron A* 
results in topologically distinct Calabi-Yau manifolds XA, and X~ sitting inside two 
distinct ambient spaces (because Z(A*)reg=l=z~(At* ) as we have seen). In fact XA, 
is not even in the list of 7,555 Laudau-Ginzburg models of [25]. 

Finally let us calculate the Stanley-Reisner ideal for the triangulation To in 
(3.50). It is straightforward to see that the ideal is generated by 

DzDs, DID3D4D6 �9 (3.57) 

Since the model (or the fan S(A*))  is only simplicial but not regular, the odd 
homology groups of the singular toric variety can have torsion. Thus we con- 
sider the homology groups over Q. Then the groups are given by the intersection 
ring (3.22) ~4*(Pz~*),Q) over Q. Thus it is Q[DI . . . . .  D 6 ] / J  with the ideal ~r 
generated by (3.57) and the linear relations among the vertices {v~ . . . . .  v~} as in 
(ii) of  (3.22) [38]. The normalization of the "volume form" of this ring becomes 
less clear because the Euler number of the singular PZ(A*) is not given simply 
by the number of the cones with maximal dimensions in Z(A*). However we 
know that the hypersurface XA in the general position does not meet the point 
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singularities of the Pz(A*), and the hypersurface divisor class is given by [Xa] = 
D1 + ' "  + D6. Therefore we naturally introduce a normalization of d*(Pz(z) ,  Q) 
using the Euler number of the hypersurface, rather than that of the singular ambient 
space: 

I]/P=I(1 + D i )  
[XA] [top = 2(hl ' l(XA) - h 2 ' l ( X A ) )  . (3.58) 

(1 + [XA]) 

Here we evaluate the component of  the top degree on the left-hand side and we 
use the Hodge numbers hl ' l (xd) and h2'l(X~) in (2.5). In the left-hand side, we 
adopt the expression H(1 + D i )  for the total Chern class [38] which is justified for 
the nonsingular PZ(A*), but naively extended to our singular case. We have verified 
experimentally that the normalization (3.58) indeed results in the right topologi- 
cal couplings and the linear form c2 �9 J ' s .  We may summarize our observation in 
general, 

For a smooth Calabi-Yau models XA in a singular toric variety P/:(A*), the 
intersection ring ~r is given by d*(P~(A*), Q) /Ann(D1 + . . .  § Dp) 
with the normalization determined by (3.58). (3.59) 

The effect of taking the quotient by Ann(Dl + . . .  + Dp) may be replaced by the 
ideal quotient Jquot = J :  (DI + . . .  + Dp) as in the nonsingular case. In our example, 
it is easy to derive the first two of (3.51) from (3.57) via the ideal quotient. 

Finally we note that all notions in the theory of toric ideals apply to the singular 
cases as well. Therefore it would be helpful to compare the Grrbner fan of  a singular 
model with that of a nonsingular model. By an analysis similar to (3.15), we obtain 
the following elementary relations for the model P(4, 3, 2, 2, 1 ): 

1 (1) = ( -6 ,2 ,0 ,  1, 1 , -1 ,3 ) ,  

l(3) = ( -6 ,2 ,  1, 1, 1,0, 1), 

1 (2) = (0, 0, 1,0, 0, 1, - 2 ) ,  

l (4) = ( -12 ,4 ,3 ,2 ,2 ,  1,0) .  
(3.60) 

The universal Gr6bner basis are determined from the zonotope ~d as 

G//~ 8 5 4 4  2 = { Y l Y 2 Y 3 Y 4 Y 5 Y 6  y24 ,  6 4 3 3 --  Y l Y z Y 3 Y 4 Y s Y 6  y18 ,  4 2 2 4 --  Y l Y 2 Y 3 Y 4 Y 6  --  Y 5 Y ~  2, 

6 5 3 3 2  18 4 3  2 2  
YlY2Y3Y4Y5 -- YO Y6, YlY2Y3Y4Y5 -- y~2, y2y3Y4Y ~ _ Y'~YS, 

Y~Y2Y3Y4Y6 -- y6, y2 y2 y3Y4Y 5 _ y6 y6, Y2Y5 -- y26}. (3.61) 

In Table 2, we present the cones in the Grrbner fan with the ideals of the lead- 
ing terms. There the cone 71 corresponds to the maximal triangulation To (3.50) 
and should be compared with T1 in Table 1. The difference we should note is 
that the ideal LTo)(J~d) is not radical and does not coincide with the Stanley- 
Reisner ideal STy. To see the consequence of this fact, recall that the generators 
of the ideal LTo~(J~) may be mapped to the symbol of the differential operators 
~ l  by (3.19). As we see in the Table 2 explicitly, we simply obtain higher order 
differential operators rather than (3.54). 
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Table 2. Gr6bner cones with typical weights for P(4, 3, 2, 2, 1 ). The first cone zl corresponds to 
the maximal triangulation T O in the text 

cone weight ~o LT, o(Jd) rad(LT, o(Jd)) 

z 1 (0, 1, 1 ,0 ,0 ,0 ,0)  (y2y2Y3Y4Y6, y2y3Y4y3, y2Y5) (YLY3Y4Y6, Y2Y5) 
7:2 (0 ,0 ,2 ,0 ,0 ,  1,0) (72y2Y3Y476, y6y5,72Y5) (Y172Y3Y4Y6, Y0Y5,7275) 
"c 3 (1, 0, 0, 0, 0, 1,0) (y2Y5, y 6 ) (Y2Y5,Y0} 
~'4 (1, O, O, O, 0,0, 1) (y2, y2) (Y0, Y6) 

"c 5 (1 ,0 ,0 ,0 ,0 ,0 ,7 )  (y2y2Y3Y4Y6, y2, y6y6, y12 ) (Yo, Y6) 
z 6 (0 ,0 ,0 ,0 ,0 ,1 ,3 )  2 6 , 2 4 3 2 2 (Y6,Y0Y6 YlY2Y3Y476, YlY2Y3Y4Y5) (Y6, Y172Y3Y4Y5) 
Z 7 (0 ,1 ,0 ,0 ,0 ,1 ,2 )  (y2, y2y2Y3Y4Y6, y2y2y3Y4Y5) (Y6, YLY2Y3Y4Y5} 

4. Applications to Mirror Symmetry and Mirror Map 

In the application to mirror symmetry, the secondary fan can be regarded as 
a collection of different phases of a type II string theory compactified on a Calabi- 
Yau manifold (see for example [45,46]). The triangulations of A* which induce 
different subdivisions of the fan Z(A*), and their corresponding cones in the sec- 
ondary fan are known to have a clear physical meaning in terms of orbifold as 
well as the smooth Calabi-Yau manifold. Among them, the maximal triangulations 
of A* or the finest refinements of the fan X(A*) constitute the Calabi-Yau phase. 
In this phase we have the large radius limit of the smooth Calabi-Yau manifold 
where the non-perturbative instanton corrections are suppressed exponentially. The 
structure observed in (3.38) is consistent with the quantum cohomology ring near 
the large radius limit. 

In this section, we use several models to show how our general framework 
applies. 

4.1. Quantum cohomology ring. Quantum cohomology ring is one of the nontrivial 
consequences of the local operator algebra of the type II string theory compacti- 
fled on a Calabi-Yau threefold. In N = 2 string theory, two different kinds of the 
local topological operator algebras, called (a, c)- and (c, c)-ring, correspond respec- 
tively to the H 1' 1-type cohomology and the H 2, l-type cohomology in the topological 
a-model [47,48]. On physical ground, the (a, c)-ring receives quantum corrections 
from a-model instantons whereas the (c,c)-ring does not [21]. Mirror symmetry 
which exchanges the two provides a powerful hypothesis to determine the quantum 
cohomology ring in terms of the (c,c)-ring: 

3 3 
~ n ~  e"v l'TNn3--iilv " ( 4 . 1 )  'i(XA) = ~ ' ~.AA. a j ,  
i=0 i=0 

where q in the left-hand side represents the quantum deformation and a in the right- 
hand side represents the classical deformation of the mirror hypersurface in (2.4). 
More precisely, we may regard the right-hand side as the Jacobian ring of the mirror 
hypersurface and we can use the theory of variation of Hodge structures to study 
this side. The isomorphism can then be realized in terms of the fiat coordinates 
on moduli spaces. This map is called the mirror map. It is known that the mirror 
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map has many remarkable properties such as modular property, integrality in the 
q-expansion, etc. [13]. 

In the classical limit, the instanton corrections in the quantum cohomology ring 
are exponentially suppressed. The monodromy of the periods near the limit is maxi- 
mally unipotent [2]. This is the property we established in general in (3.38) for any 
maximal triangulation of the polyhedron A* of type I or II. It is found in [8, 10] 
that if we define the local variables via the basis {l(k)} of the Mori cone by 

xk = ( -  1 )l~k)al(k~ , (4.2) 

then we may express the mirror map as 

1 OpjWo(x,O) 
tj = 27zi wo(x,O) ' (4.3) 

where qj = e2~ir. The inverse map is denoted as xk = xk(q). The quantum couplings 
are related to the geometrical couplings, Kijk(x) := f f2(x) A OiOjOk~2(x) - f2(x) be- 
ing the holomorphic threeform - by 

2 xk=xk(q) 1 dxt . (4.4) 1 ( ' ~ 7 - ; , ~  ~ glmn(X)= dXmdXn 
K i j k ( q ) -  (2rci) 3 kWotX)J  l . . . .  ctti dtj dtk 

Special geometry in the H 2'l-moduli space enables us to express the same couplings 
using the so-called prepotential F( t )  [49]: 

1 ~ 0 O 
Kijk(q) (2hi) 30t~ &j ~3& F ( t )  " (4.5) 

For the prepotential, there is a concise formula given in [10] based on the local 
structure (3.38): 

1 ( & ) 2 {  
F ( t )  = ~ WO(X)D(3)wO(X) 

where we define 

DI D =  8p,, D~2) = 1 EKflnC~p,C~p, ' 
2 m,n 

+ ~lDS1)w~176 Xk=Xk(q)' (4.6) 

D(3) = 1 ~ KffnOp,~pmOp, " (4.7) 
6 I,m,n 

It is also observed that the prepotential defined above has the following asymptotic 
form with topological data in the leading terms, i.e., 

1 ~ ( c 2  �9 J k ) t k  _ . ~ (3 )  
Kiyktitj& - k 24 t16~3 Z + C(q) , F ( t )  = -6 ~ cl 

i,j,k 
(4.8) 

where X is the Euler number of XA and the C(q)- terms represent the quantum 
corrections. The first example understood was the case of the quintic in p4 studied 
by Candelas et al [1]. We denote by Nr(d)  the predicted number of ~r-model in- 
stantons with multi degree (d l , . . . ,  dh~,l ). The genus one (string 1 loop) topological 
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amplitude [50] F1 t~ has the form 

F1 t~ = log - -  c~(xl . . . . .  xh~,, )_ I~ dis~ j x[ i + const . ,  (4.9) 
\ W O /  r . . . . .  thl, ' ) j -i- 

where the disj are irreducible parts o f  the discriminant o f  the hypersurface XA and 
rj and si are some parameters to be fixed by the asymptotic form of  the topological 
amplitude. It is known that the amplitude has an expansion of  the form 

2~i 
FI t~ = const. - q~- ~ ( c 2  �9 Jk)tk 

k 

- ~ - ~ { 2 N e ( d ) l o g ( r l ( q d ) ) + ~ N r ( d ) l ~  ' d  (4.10) 

where qd qdl dhl 1 . . . .  qh,5 and the number Ne(d)  is the prediction for the number  
of  1 loop instantons, i.e., elliptic curves in the Calabi-Yau manifold X~ with multi 
degree n. 

In the following, based on our general observation (3.38), we analyze the large 
radius limit. In this paper, we will be mainly concerned with the determination o f  
the Picard-Fuchs operators from which we can determine the quantum corrections in 
a straightforward way. For example we can calculate the quantum corrected yukawa 
couplings (4.4) using the Mathematica program INSTANTON appended to [10]. 
The required input data come from the Picard-Fuchs operators and the classical 
couplings given here in Appendix C. For the interested reader, a complete list o f  the 
Picard-Fuchs operators for the Calabi-Yau hypersurfaces with h l, 1 < 3 is appended 
in the source file o f  this text [24]. The determination of  the numbers Ne(d)  is a little 
involved because we need to know the form of  the discriminants of  the hypersurfaces 
and need to fix unknown parameters ri and si in (4.9). We will list, in the appendix 
to the source file, the form of  the discriminants for some of  our models. However  
the detailed analysis, together with the analysis o f  the conifold singularities where 
one Calabi-Yau model may be connected to another (cf. [51, 52]) will be presented 
elsewhere. 

4.2. Selected Examples. 

X9(3,2,2,1,1)2_168 . This is a singular model o f  type III. The polyhedron A(w) for 
this model has the vertices 

vl = ( 2 , - 1 , - 1 , - 1 ) ,  Y2 = ( - 1 , 3 , - 1 , - 1 ) ,  v3 = ( - 1 , 3 , - 1 , 0 ) ,  

v4 = ( - 1 , - 1 , 3 , - 1 ) ,  v5 = ( - 1 , - 1 , 3 , 0 ) ,  v6 = ( - 1 , - 1 , - 1 , 8 ) ,  (4.11) 

v7 = ( - 1 , - 1 , - 1 , - 1 ) ,  v8 = ( 0 , 2 , - 1 , - 1 ) ,  v9 = ( 0 , - 1 , 2 , - 1 ) ,  

with respect to the basis {A1 . . . . .  A4} for the lattice H ( w )  defined after (2.17). Then 
the vertices of  the dual polyhedron A*(w) are given by 

v~ = (1 ,0 ,0 ,0) ,  

v~ = (0,0,0,  1), 

* * = ( 0 , 0 , 1 , 0 )  Y2 = (0,  1,0,0), v 3 

v 5 * = ( - 3 , - 2 , - 2 , - 1 ) ,  Y6 * = ( - 1 , - 1 , - 1 , 0 )  . 
(4.12) 
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There are no integral points inside the polyhedron except the origin. For the maximal 
triangulation of A*(w), we obtain 

To = {(0,3,4,5,6), (0,2,4,5,6), (0, 1,3,5,6), (0, 1,2,5,6), (0, 1,3,4,6), 
(4.13) 

(0, 1,2,4, 6), C0, 2, 3, 4, 5), (0,1,2,3, 5), Co, 1,2, 3,4)}. 

This triangulation induce the fan S(A*), however the resulting fan is singular 
because the simplex C0, 2, 3, 4, 5) has volume three. In fact we find two integral points 

, 2(v~+v;)+(v;+v~) _ ( -1 ,0 ,0 ,0 )  which , (v;+v;)+2(v;+v~) = (--2,--1,--1,0), V 8 lJ 7 z 3 ~ 3 
are inside the cone spanned by v~, v~, v~] and v~ but outside the polyhedron, indicat- 
ing that this model is of type III. As described in the previous section, we subdivide 
the fan S(A*) by v~ and v~ to obtain a regular fan S(A*)reg. The intersection ring 
A*(Ps(A.)reg , Z) is described by the ideal (i) in (3.22) with generators 

D1D7, DID8, D6D7, D6D8, D1D4Ds, D2D3D6, 
(4.14) 

D2D3D7, D4DsD8, D2D3D4D5 , 

and the linear relations (ii) among the integral points v~" . . . .  , v~. The hypersurface 
divisor [XA] = D1 + �9 �9 �9 + D6 + 2D7 q- 2Ds determines the ideal quotient Jquot. It is 
generated by 

D4D5 - D4D6 q- 4D3D6, D1D4Ds, DT, D8, (4.15) 

together with the linear relations. Starting from those operators ~ whose lead- 
ing terms match (4.14) (under the correspondence 0a~ ~ Di(i = 1 . . . . .  p)), we can 
derive the Picard-Fuchs operators via some nontrivial factorizations. 

We first note that the generator D1DaD5 induces I{1,4,5} = ( -1 ,  1,0,0, 1, 1, 
-2 ,  0, 0) in L. From this we immediately see that the operator 

~/{~,4,5) = ~3al 0a4 0a5 ~a0 ~a6 (4.16) 

is one of the Picard-Fuchs operators. To find the other, we need to derive the 
following relations from the analysis of the Jacobian ring of the hypersurface: 

~3 ~ 3  3a1 { ~ ' ~  2 a0 0 

Oao 0a7 ao \Oao)  a6 Oao ~a8 ' 

~ 0 3ala4a5 ( 0 ) 2 a0a4a5 0 ~ 

Oao ~a8 16a2a346 ~46 - 16a2a3a6 ~a4 ~a5 

aoa4 0 0 ao 0 
-~ 16a2a3 da4 ~3a6 4a2 ~43 ~a6 " (4.17) 

The derivation of the above relations may be done most efficiently by representing 
the hypersurface in terms of the homogeneous coordinate of P(3,2,2, 1, 1): 

W = z~ -~zIz  4 ~-z4z5 q-z 9 -q-g 9 . (4.18) 

The mirror of this hypersurface, whose period we are analyzing, can be constructed 
by the transposition argument of Berglund and Hfibsch [34]. We consider the 
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orbifold ~' /Z4 • Z9 with the transposed potential W. Relating to our toric descrip- 
tion, we may write the transposed potential 

= alz~ + a2z 4 + a3z 4 + a4z2z  9 + as z3z  9 + aoz lz2z3z4z5 + a 6 z l z 4 z  g , (4.19) 

which is regarded as the degree 12 hypersurface in P(4, 3, 3, 1, 1). Then the integral 
points v~,v~ are mapped, respectively, to degree 24 (charge two) monomials 

2 2 6 6  3 3 3 3  z2z3z~,z5 and z 2 z 3 z~z 5 under the monomial-divisor map [43]. The equations in 
(4.17) represent the relations among the charge two monomials in the Jacobian 
ring C[zl . . . . .  zs]/(0W). 

We now focus on the generators D1D8 and D6D7 which correspond to the prim- 
itive collections whose primitive relations are l{1.8} = (--2 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,  1) and 
/{6,7} = ( 0 , 0 , 0 , 0 ,  - - 1 , - - 1 ,  1, 1,0) in L. We find that the operator 

C = 3ala2a3a6ao 0 aza3a36a 2 3~0 ~3ao ~l{1.8} - -  ~l{6,7} (4.20) 

has the property that aoCI I (a )  = (Oao - 2)~2/)(a) .  Using this we obtain a complete 
set of  the Picard-Fuchs operators in the H(a )  gauge, 

91 = Oy(Oy - Ox) 2 - y (30x  + Oy + 1)(30x - 20y - 1)(30x - 20y), 

5~2 = (Ox - Oy) 2 + (Ox - Oy)(30x - 20y) + 40x(30x - 20y) 

- 4 8 x y ( 3 0 x  - 20y - 1)(30x + Oy + 1) (4.21) 

- 3y( 30x - 20y - 1)(30x - 20y ) 

- 4 8 x y ( 3 0 x  + Oy + 3)(30x + Oy + 1) - 16X(Ox - 0y) 2 , 

where x and y are defined by (4.2) using the basis l 0) = ( - 3 , 0 ,  1, 1 , - 1 , - 1 , 3 , 0 , 0 )  
and l(2)= ( - 1 ,  1,0,0, 1, 1 , - 2 , 0 , 0 )  generating the Mori cone in the reduced lattice 
{ l  E Z[17 = 18 = 0}. 

Using the hypersurface divisor [Xd] = D1 § �9 �9 �9 § D6 q- 2D7 q- 2D8 we determine 
the following topological data: 

K~lxx = 6, Kdxy = 9, K~lyy = 13, K;lyy = 17, 
(4.22) 

c2 �9 Jx = 48, C2 " Jy  = 74.  

According to the general form (3.38), these topological data determine the local 
solutions of  the Picard-Fuchs equations (4.21) near x = y = 0. We notice that this 
model has the same Hodge numbers as the model X8(2, 2, 2, 1, 1)2_168 . However there 
is no linear transformation which relates the topological data: the cubic and linear 
forms of  the two manifolds. By Wall 's theorem [53] we see that the two manifolds 
are topologically distinct. 

N o n - L G  m o d e l  re la ted  to X9(3,2,2,1,1)2_16s. For the model analyzed in the last 
subsection, we can verify that the polyhedron A'* =Conv .  ({v~ . . . . .  v~}) is reflexive 
and the complete fan S ( A ' * )  for a triangulation of  A'* (i.e., the triangulation TA 
below) coincides with S(A*)reg. Therefore we have another family of  Calabi-Yau 
hypersurfaces XA, in the same ambient space PI:(A,*) = Ps(a,)reg. The hypersurface 
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represents the divisor class 

[XA,] =D1 + " "  -kD6 + D 7  +D8 �9 (4.23) 

The dual polyhedron A ~* is the convex hull of  the points v T . . . . .  v~. The poly- 
hedron A t has vertices v2,v3,...,v9 (the comer Vl is deleted) and 

vl0 = ( 1 , - 1 , - 1 , 2 ) ,  vH = (1 ,0 , -1 ,0 ) ,  v12 = ( 1 , 0 , - 1 , - 1 ) ,  
(4.24) 

Y13 = ( 1 , - 1 , - 1 , - 1 ) ,  VI4 = (1 , -1 ,0 ,0 ) ,  v15 = ( 1 , - 1 , 0 , - 1 ) .  

By the formula (2.5), we know that Hodge numbers Of XA, are h 1,~ = 4 and h 2,1 = 
85. It turns out that this model is not in the list of  [25]. Also this model gives an 
example of  a topology change due to flop operations [43]. 

There are 37 triangulations for the polyhedron A ~* and among them two tri- 
angulations give us different resolutions of the ambient space. The first one is the 
triangulation corresponding to the subdivision Z(A* ) reg"  

TA = { (0 ,3 ,5 ,7 ,8 ) , ( 0 , 2 , 5 , 7 , 8 ) , ( 0 , 3 , 4 , 7 , 8 ) , ( 0 , 2 , 3 , 5 , 8 ) , ( 0 , 2 , 3 , 4 , 8 ) ,  

C0, 1,3,5,6), Co, 1,2,5,6), Co, 1, 3,4, 6), (0,1,2,4,6),  Co, 1,2, 3, 5), C0,2,4, 7, 8), 

(0, 1, 2, 3, 4), (0, 3, 4, 5, 7), C0, 2, 4, 5, 7), (0, 3, 4, 5, 6), (0, 2, 4, 5, 6)}.  (4.25) 

The second triangulation T8 is TA but with the last four simplices replaced by 

Co, 3,4, 6, 7), C0,2, 5,6, 7), (0, 3,4, 6, 7), C0,2,4,6, 7) .  (4.26) 

We verify that the difference in the two triangulations is due to two different trian- 
gulations of  the two dimensional face (square) (v~, v~, v~, v~). They are {Cv~, v~, v~), 
(v~,v~,v~)} for TA, and {(v~,v~,v~), (v;,v~,v~)} for TB. 

For the triangulation TA, we have in (4.14) the generators of  the Stanley-Reisner 
ideal. Each generator D i ~ D i 2  . . .  Dik determines uniquely the element l { i ~ , i 2 , . . . , l k }  in the 
lattice L, and in turn the operator ~1~,1,,~,..,~. We observe that some combinations of  
the operators factorize to give a complete set of  Picard-Fuchs operators. The prin- 
cipal parts of  these operators generate the ideal Jquot as in (4.15). In Appendix A, 
we list the resulting Picard-Fuchs operators in terms of the local coordinates x, y ,z  
and w defined by I(A ~) = ( - -1 ,1 ,0 ,0 ,1 ,1 , - -2 ,0 ,0 ) ,  / (2)= ( - 1 , 0 , 0 , 0 , 1 , 1 , 0 , - 2 , 0 ) ,  
l() ) = ( - l , 0 ,  1, 1,0,0,0, 1 , - 2 )  and I(A 4) = (0, 0 , 0 , 0 , - 1 , - 1 ,  1, 1,0), respectively. The 
intersection ring (3.36) determines the topological data as follows; 

Kx A'cl 17, KA'cl = 26, KA'cl = 36, K A'cl = 46, It "A'cl 13 
x x  = - - x x y  - - x y y  - - y y y  - ~ x x z  = , 

1( A'cl 11, 1 (  A ' c l  = 4 ,  [ ( A ,  c l  18, ](A, cl = 23, ] ( A ,  c l  = 9, - - y z z  - - z z z  
- ~ x y z  ~ - - y y z  - L x z z  = 

Kx A'cl = 39, / ( A , d  = 54 ,  /(A, cl = 72 ,  /(A, ct = 2 7 ,  / ( A , d  = 36 
x w  ~ L x y w  ~ L y y w  ~ - x z w  ~ ~ y z w  , 

Kz A'd 18, /(A,d = 81, /(A,d 108, /(A,d = 54, /(A,d = 162 2 w  = - ~ x w w  - - y w w  = - - z w w  - - w w w  , 

c2- Jx A = 74, c2" J~ ---- 100, c2" J{  -- 52, c2 �9 dw a = 144. (4.27) 
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For the triangulation TB, we find the generators for theStanley-Reisner ideal 

D1D7, D1D8, D4D5, D6D8, D2D3D6, D2D3D7 �9 (4 .28)  

We observe again some (less trivial) factorizations among the operators {~l{ i l , i2 , . . . , ik  } } 

and their combinations in order to obtain the Picard-Fuchs operators listed in 
Appendix A. The local coordinates x, y,z  and w for this triangulation are defined 
by/(B1) = l(A 1) + l(A 4), /~2)= /(A2) +/(A4), /(83) = /(A 3) + /(A 4) and /~4)= _l(A4), respectively. 
Then the topological data turns out to be 

Kx B'd = 4,  K B'cl = 8,  l (  B'cl = 10 xw --xyw --yyw , 

Kx B'ct = 4, K B'd = 5, K B'Cl = 2 ,  ( 4 . 2 9 )  ZW ~ ~ y z w  ~ ~ZZW 

c2.  Jx B = 74, c2" 3y B = 100, e2- J~ = 52, c2 .  J~ = 24,  

where the cubic couplings among Jx,Jy,Jz are the same as in (4.27) and KwB,Cwl = 
KB, d = 0 (* =x , y , z ) .  As we observe in (4.29), the topological data for the phase *WW 

B indicate that the Calabi-Yau hypersurface has the property of a K3 fibration [14]. 
In fact, we verify that AK3* := Conv.({VT,Y~,F3,F6,Y7,* * * v~}) is a three dimensional 
reflexive polyhedron. We observe that c2 �9 Ji = 24 for some i (cf. (4.29)) is nec- 
essary for the Calabi-Yau hypersurface to contain a K3. We also remark that the 
existence of a three dimensional reflexive polyhedron A~: 3 in A* does not always 
yield the above topological condition, We will return to this point later in the final 
section. 

X14(7,3,2,1,1)226 o. This model provides us an example in which we have two dif- 
ferent resolutions of point singularities in the ambient space, however the difference 
of the two resolutions does not affect the topology of the Calabi-Yau hypersurface. 
This model has also been solved in [11]. 

Let us summarize the toric data for this model. The reflexive polyhedron we 
consider is given by the convex hull of the following integral points: 

vl = ( 1 , - 1 , - 1 , - 1 ) ,  v2 = ( - 1 , 3 , 0 , - 1 ) ,  v3 = ( - 1 , 3 , - 1 , - 1 ) ,  

v4 = ( - 1 , 3 , - 1 ,  1), v5 = ( - 1 , - 1 , 6 , - 1 ) ,  (4.30) 

V 6 = ( - I , - I , - I ,  13), v7 = ( - I , - I , - I , - i ) ,  

with respect to the basis {A1 . . . . .  A4} of H(w) given after (2.17). Then the vertices 
of  the dual polyhedron A*(w) are 

vl* = (1, 0, 0, 0), v2* = (0,1,  0, 0), v3* = ( 0 , 0 , 1 , 0 )  , 

v,~ ---- (0,0, O, I),  v~ ----- ( - 7 , - 3 , - 2 , - I ) ,  v~ ---- ( - 2 , - 1 , 0 , 0 ) .  
(4.31) 

We will find one point v~ = ( -1 ,  0, 0, 0) on a codimension one face (v~, v~, v~, v~', v~). 
If we triangulate the polyhedron d*(w), we will find the following two differ- 
ent triangulations TA and TB which induce the complete fans r (d*)  A and Z(A*) B 
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3 ~  5 3 5 

Fig. 2. Two different triangulations TA (left) and TB (right) for the models X7(7, 3,2, 1, 1). In 
the left, we see three 3-simplices whereas in the right we see two 3-simplices. This results in 

. B  different regular fans 2;(A*)Aeg and S(A )reg for the different desingularizations of the ambient 
space. However the Calabi-Yau hypersurfaces in them have the same topology 

respectively; 

ira = {(0,4,5,6,7),  (0 ,3 ,5,6,7) , (0 ,3,4,6,7) ,  (0,2,4,5,7),  

(0,2,3, 5, 7), (0, 2, 3, 4, 7), (0, 1,4, 5, 6), (0, 1, 3, 5, 6), 

(0, 1,3,4, 6), (0, 1,2,4, 5), (0, 1,2, 3, 5), (0, 1, 2, 3 ,4)} .  (4.32) 

TB can be obtained from TA by replacing the first three simplices of  TA by 
(0, 3, 4, 5, 7) and (0, 3, 4, 5, 6). The difference between TA and TB are depicted in 
Fig. 2. Since it turns out that some of  the cones in the fan S(A*) are singular 
for both triangulations, we need to subdivide them. In the case of  TA, we find the 
following integral points make the cones regular: 

1 �9 1 * 

1 , 1 �9 * + v ~ + v ~ )  
(4.33) 

and for T~ we find 

. 1 . 2 . . 
v8 = 5(v3 +v~)+ 5(v4 +vs), 

, 1 . , , 
Vl0 = 2(Y1 q- Y4 -t'- Y5 "~ Y~)' 

1 , 2 , 

, 1 . , , 
Y9 = 2(Y2 -~ Y4 "t- V 5 .qt_ y~ ) ,  

, 1 . . , 
Yll = 2(Vl ~- V2 nt- Y4 -{- V~), (4.34) 

Subdividing S(A*)A and 2;(A*) B by these integral points results in the regular fans 
I;(A*)rAeg and S(A*)rBeg, respectively, both of  which do not come from any triangu- 
lation of  the polyhedron A ~* - the convex hull of  all the integral points. Using each 
of the two regular fans, we determine the basis for the K/ihler cone, and the Mori 
cone of  the ambient space. We summarize in Appendix B the bases {~/1 . . . . .  r/8 } and 

, B {t/~ . . . . .  q9} of the Mori cones for S(A*)~Aeg and S(A )reg respectively. We observe 
that the Mori cones for both ambient spaces are not simplicial, implying that neither 
are the K/ihler cones of the ambient spaces. 
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T 

T i 3'7) 

T 1 

Fig. 3. The secondary fan for the polyhedron A*(7,3,2,1, 1). The K/ihler cones of the smooth 
ambient spaces Ps(A*)~g and PS(A*)~g have different restrictions to the secondary fan. The re- 

stricted K/ihler cone for the former space is given by the union of the cones parametrized by T4 
and 7"5, while for the latter it is given by the cone parametrized T4 

The divisor [Xa] of the form (3.46) determines the same intersection ring for the 
two hypersurfaces, and for both cases we find that the divisors D i (i >_= 7)  decouple. 
In fact the ideal Jquot is generated by 

D2D6, D3D4Ds, Di (i > 7),  (4.35) 

together with the linear relations (ii) in (3.22). We remark that in this model both 
{v2,v~} . . . .  and {v3 , v4 , v s }  are the primitive collections of Z(A)rAeg and Z(A)r~g.~ The 

! ! reduced lattices which we denote LA,L B in the two cases are generated by 

l O) = 3r/~ + r/] + 2q 4 + 2q~ + 4q 6 = ( -4 ,2 ,  1,0,0,0, 1 ,0 , . . . ,0 ) ,  

/(A 2) = 2q~ + qA 2 + t/3 + q7 + 2q8 = (--2, 1, 0, 2, 1, 1, --3, 0 . . . .  ,0 ) ,  
(4.36) 

for L~ and 

l O) = 3r/2 + 6~/3 + 7q4 + q5 + 2~/6 = (0,0, 1 , - 4 , - 2 , - 2 , 7 , 0  . . . . .  0) ,  

I(B 2) = 2r/~ + r/7 = ( -2 ,  1, O, 2, 1, 1, -3 ,  0 . . . . .  0) ,  
(4.37) 

for L~. We remark that the Mori cone for the ambient spaces are not simplicial 
but their intersection with L R''s are. We also note that two restricted cones for 
S(A*)rAeg and S(A*)r~g have an intersection, in fact the former is included in the 

latter since l() ~ = l(B 1) and /(A 2) = l(B 2~ + 2/(81). We draw in Fig. 3 the restricted Kfihler 
cones in the secondary fan for the polyhedron A*, more precisely in the secondary 
fan for the point configurations v~, vT,..., v~ (we delete the point v~ corresponding to 
automorphisms). Since J~-quot is the same for both S(A* ' r  4 * ~ /reg and expect ~v'( A )reg, we  
that the two triangulations define the same Calabi-Yau hypersurface in different 
ambient spaces, i.e., the only difference is in the topology of the ambient space 
which is irrelevant to the hypersurface. 
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Now we derive the Picard-Fuchs operators based on the triangulation TA. We 
note that this model is of type III with non-trivial automorphisms. This is the most 
general situation. The point v~ on a codimension one face is a root vector in (2.10) 
for the fan S ( A ) .  According to (2.12), this results in the following linear operator 
annihilating the periods: 

0 
~ '  = 2al~a0 + a0ff~a7 . (4.38) 

Now we look at the operators which correspond to the first two generators in (4.35), 

a a ( a )  2 
~ / { 2 , 6 }  - -  aa2 c3a6 ~a7 ' 

O O 0 O O O 
9l{3'4'5} - -  ~3a3 Oa4 0as Oao Oa6 ~as " 

(4.39) 

Starting with these operators, we derive the Picard-Fuchs operators for the period 
restricted to the sublattice (4.36). It is easy to see the first operator ~<~,6} combined 
with the linear operator (4.38) results in a second order differential operator. For 
the operator ~1~3,4,5~, we need to look into the structure of the Jacobian ring of the 
hypersurface. For this, as in the previous example, it would be most efficient to 
express the hypersurface in terms of the homogeneous coordinates: 

m = z 2 + z 4 z 3  ~ - z  7 ~ - z  14--~z~ 4 , (4.40) 

in P(7, 3, 2, 1, 1 ). Then the transposition argument in [34] applied to this hypersurface 
indicates that the mirror is given by the orbifold I~/Z2 • Z14 with 

= a l z  2 q- a2z  4 --k a3z2z  7 -k a4 z14 -k asz~ 4 q- aoz1z2z3z4z5  

4 4 4  2 2 2 2  
-.bCt6Z3Z4Z 5 -]- a 7 z 2 z 3 z 4 z  5 , (4.41) 

in P(14,7,3,2,2).  We note that, in this form, the automorphism used for (4.38) is 
identified with 

zl  ~-+ Zl + g zzz3z4zs,  zi H zi ( i  > 2) ,  (4.42) 

in infinitesimal form. The deformation parameters a8 . . . . .  all corresponds to the 
degree 56 (charge two) monomials - 3 10 10 3 8 8 2 9 9 and 2 7 7 ~2Z3Z4  Z 5 , Z2Z3Z4Z5, ZIZ3Z4Z 5 Z1Z2Z4Z 5, 

respectively. S i n c e  w e  c a n  verify (1 64a~a2a6 ~ _3_10_10 l12a~a2a3 2 6 6 6 2ala3 
a 0 " ~ - ) ' 2 z 3 z 4  z5 = ~ Z 2 Z 3 Z 4 Z 5  -'}- 

zSzS4 z8 modulo terms in the Jacobian ring (~/~) which vanish inside the period 
integral, we have the relation 

( 64al a a6  224a a2a   
1 ~0 J 0a0 dab -- a~ c3a6 da0 + a 0 ~a6 , (4.43) 

where we use (4.38) in the derivation. If we combine (4.43) with the opera- 
tor ~l~3.4.5} in (4.39), we will obtain a third order differential operator. Thus we 
obtain the Picard-Fuchs operators which determine the local solutions with the 
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~ t  = Ox(Ox - 30y) - 4x(20y + 40x + 3)(20y + 40x + 1),  

92 = (1 - 64x)203 - 6 4 { l 1 2 x 2 y ( O x  - 30y)(20y + 40x + 1) 

+xy(Ox  - 30y - 1)(0x - 30y)} - (1 - 6 4 x ) { l 1 2 x y ( O x  - 30y - 1) 

• - 3 0 , ) ( 2 0  e + 40x + 1) + y(Ox - 30y - 2)(0x - 30y - 1)(0x - 30y)}, 

(4.44) 

with x = at] '~ ala2a6 l (2) ala~a4a5 
- -  a4 y = a a = 2 3 . The topological data for the local solu- 

' aoa  6 
tions about x = y = 0 are given by 

g x  cl'A = 9, l ( c l ' a  = 3, K cl'a = 1, K cl'A = 0 
x x  - - x x y  - - x y y  - - y y y  

(4.45) 
C 2  " jA = 66, r  " jya : 24.  

The analysis for T~ is the same as the above and the Picard-Fuchs operators are 
given by (4.44) with the variables (xa, yA) :=  ( x , y )  changed to (xB, yB )  under the 
relations xa = x~y~ ,  YA = Y~. The topological data are connected by the linear rela- 
tions which results from these relations. 

5.  C o n c l u s i o n  and  D i s c u s s i o n s  

We have analyzed the GKZ hypergeometric system - which we call A*-hyper- 
geometric - for a reflexive polyhedron. The characteristic feature of  this system in 
mirror symmetry is that it is T-resonant in general. Especially, for a maximal trian- 
gulation To of the polyhedron A*, the monodromy of this system becomes maximally 
unipotent. We have found close relationships between the Stanley-Reisner ideal for 
the triangulation To and the ring of  the leading terms of the A*-hypergeometric 
system at the maximally unipotent point. For the models of  type I and II, we 
have proved these two ideals are actually equal, using the general theory of toric 
ideals. We have found a closed formula for the local solutions near the maximally 
unipotent point, in terms of the intersection form. As was observed in [8, 10], the 
A*-hypergeometric system is reducible. I f  we extract the irreducible part of  the sys- 
tem by factoring out the operator Oao, the resulting system gives a sufficient set of  
differential operators to determine the quantum geometry of moduli space. We have 
verified our observations for the Calabi-Yau hypersurfaces in weighted projective 
spaces up to h 1,1 < 3, including models of  type III. 

In the table of  Appendix C, we have summarized the topological data for each 
models. There we can see several isomorphisms or relations between different mod- 
els. For example we have X~4(7,2,2,2, 1)2-24 o ~ XI(3,  1, 1, 1, 1)2_240 , X~(5,3,3,  

3,1)3_144 ~ X~(3, 2, 2, 2,1)3_144 and XI8(9,4,2,2,1)3_240 ~ X~(4, 2,1,1,1)3_240 , all 
of  which can be explained by a fractional change of the variables [54]. Also there 
can be a reflexive polyhedron A * ( w  t)  in another reflexive polyhedron A * ( w ) .  ~ For 
example, by listing all integral points in the polyhedra, we see A*(2,2,2, 1, 1 ) c  

lThis observation has also been made in Ref. [11]. 
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A*(3 ,3 ,3 ,2 ,1 ) ,  A*(6,2 ,2 ,1 ,1)  C A*(9 ,3 ,3 ,2 ,1)  and A*(15),A*(2,14) c A*(3,2,2, 
2, 1 ) C  A*(5,3,3,3,  1). Since all integral points in A*(w') are contained in A*(w), 
the inclusion relation A*(w ~) c A*(w) implies that the fan S(A*(w)) is a refinement 
of  the fan S(A*(w~)). This reminds us of  the cases we encountered in the singu- 
lar models of  type III, in which we found that topologically different Calabi-Yau 
hypersurfaces can sit in the same ambient space. 

To see the details, let us consider the case A*(6,2,2, 1, 1) C A*(9, 3,3,2, 1). The 
integral points in A*(9, 3, 3, 2, 1 ) with respect to the basis given after (2.17) are v~) = 
(0 ,0 ,0 ,0) ,  v~ = ( 1 , 0 , 0 , 0 ) ,  v~ ---- (0 ,1 ,0 ,0) ,  v~ = (0, 0,1, 0), v~ = ( 0 , 0 , 0 , 1 ) ,  v ; =  
( - 9 , - 3 , - 3 , - 2 ) ,  v~ = ( - 6 , - 2 , - 2 , - 1 ) ,  v~ = ( - 3 , - 1 , - 1 , 0 )  and v~ = ( - 1 , 0 ,  
0, 0), where the last points v~ are on a codimension one face of  the polyhedron. 
The polyhedron A*(6, 2, 2, 1, 1 ) has integral points v~), v~', v~, v~, v~, v~, v~, v~, where 
the point v~ is also on a codimension one face. Therefore Z(A*(9,3,3,2, 1)) is a 
refinement of  the fan Z(A*(6,2,2,  1, 1)), and we will have two different Calabi-Yau 
hypersurfaces in the same ambient space PZ(A*(9 ,3 ,3 ,2 ,  1)). 2 According to (3.46), the 
divisor for the hypersurface is given by 

[X~(w)] = D1 +/92 + D3 -k- D4 + D5 + D6 q- 07 -q- 0 8 ,  (5.1) 

for the model X18(9,3,3,2, 1)3186; and 

[XA(w,)] = D1 + D2 + D3 ~- 04 q- 2D5 + D6 + D7 + D8,  (5.2) 

for the model )(12(6, 2, 2, l, 1 )2_252 . This can also be understood by the fractional 

transformation on the defining polynomial. The polynomial W ( z ) =  ff '(z) for the 
mirror o f  X18(9,3,3,2, 1)3_186 is 

312 a7z6z6, (5.3) IV = alz~ q- a2z 6 q- a3 z6 q- a4z 9 + asz~ 8 q- aozlz2z3z4z5 q- a6z4z 5 + 

in P(9,3,3,2,1)/(Z6) 2, where the deformation by a8, which corresponds to the 
divisor D8, is eliminated using the automorphism. Now consider the transforma- 

3 / 4  1/4 tion r = Zi ( i  = 1,2, 3), r = z 4 , r  = z 4 z5 .  Then the potential becomes, if  we set 
a5 = 0, 

ff'(~) = a1r 2 + a2~ 6 + a3~ 6 + a4r 2 + a0r162162162162 + a6r z + a7r162 (5.4) 

which can be regarded as a hypersurface in P(6 ,2 ,2 ,  1, 1)/(Z~ • Z12), the mirror 
of  X12(6,2,2, 1,1)2_252 . The additional quotient by Z12 comes from the identifi- 
cation (~4 , r  (~4r162 with ~ 4 =  1 (see [8] for the detailed form of  the ac- 
tions for Z2). The Mori cone of  each model may be obtained by restricting the 
Moil cone of  the ambient space to the sublattice U,  namely l E L with 18 = 0 for 
A*(9,3,3,2, 1) and 15 = 18 = 0 for A*(6,2,2, 1, 1). Thus the inclusion of  the dual 
polyhedron, A*(w ~) C A*(w), implies an embedding o f  the (quantum) K~ihler mod- 
uli of  XA(w,) to that of  XA(w), or equivalently under mirror symmetry, the complex 
structure moduli for the mirror XA*(w,) to that Of XA*(w). 

As a different kind of  inclusion relation, we also observe that the dual poly- 
hedron A*x3(w ~) for some K3 hypersurface [55] sits inside the polyhedron A*(w) 
for a Calabi-Yau hypersurface. It has also been observed that if, in addition, we 

2Since the ambient space is still singular, we need further subdivisions of some cones. However the 
following arguments are valid for the fully resolved ambient space. 
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have the following specific form of  the topological data; c2" K = 24, J . K .  K = 
K .  K .  K = 0 for some divisor class K, then the following "CY-K3 correspondence" 
occurs: the Picard-Fuchs operators for the Calabi-Yau manifold specialize to those 
for a K3-model  under a suitable limit of  the variables. In our list, the following 
models shows these specific properties: )(8(2,2,2, 1, 1)2168, )(12(6,2,2 , 1, 1)2_252, 

X12(3,3,3,2, 1)3_132, )(18(9,3,3,2, 1)3_192, X24(12,8,2, 1, 1)3_480, X10(4,2,2 , 1, 1)3_192 
and X16(8, 3, 3, 1, 1 )3_256" Also our non-Landau-Ginzburg model found in relation to 
X9(3,2,2, 1, 1)2_168 shows this property as well. The K3 polyhedron A'x3 contained 
in the reflexive polyhedron A t* provides an example of  non-Landau-Ginzburg K3 
hypersurface. We have noticed that the specific form of  the topological data de- 
pends on how we triangulate the polyhedron, namely in this example, the CY-K3 
correspondence occurs only in the phase B (see (4.29)). Some of  the models where 
the CY-K3 correspondence occurs has been studied extensively, and has provided 
strong evidence for the so-called heterotic-type II string duality [16, 14, 17]. We 
believe that our general framework outlined here will provide powerful techniques 
for studying questions in heterotic-type II duality. 
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Appendix A. Picard-Fuchs Equations for the Model in Section 3 

This non-Landau-Ginzburg model is defined by the reflexive polyhedron A t* which 
has the property 2;(A/*) = S(A*)reg for A* = A*(3,2,2, 1, 1). There are two Calabi-  
Yau phases, phase A and phase B, which are connected by flop operations. 

Phase  A:  

9 1  = 

9 2  = 

9 3  = 

9 4 = 

9 5  = 

9 6 = 

9 7  = 

9 8 = 

Ox( Oz - 20y + Ow ) - xW( Ox + Oz + Oy + 11)(0w - 20x ) , 

Ox(Oy - 20z)  - x y w 2 ( O x  § Oz § Oy § 2)(0x § Oz § Oy § 1 ) ,  

(Ow - 20x)(Oz - 20y + Ow) - w(Ox + Oy - Ow)(Ox + Oy - Ow) , 

(20x - Ow)(ZOz - Oy) - yw(Ox + O~ + Oy + 1)(0z - 20y + Ow) , 

(Ox + Oy - Ow)20x - x(Ox + Oz + Oy + 1)(0~ - 20y + Ow - 1)(0z - 20y + Ow) , 

(Ox + Oy - Ow)2(oy - 20z )  

- y (  Ox + OF + Oy + 1)(0z - 20y + Ow -- 1)(0z -- 20y + Ow ) , 

O~( Ox + Oy -- Ow ) 2 + 3 y z (  Ox + OF + Oy + 1)(0z -- Oy + Ow )( Oy -- 20~) 

-- yOz( Oz -- 20y + O~ -- 1)(0~ -- 20y + Ow ) -- xOz( Ow -- 20x )( Ow -- 20x -- 1) ,  

902 -- 180xOw + 250xOy -- 410xO~ + 160~Ow 

--48 y z w (  Ox + Oz + 0y + 1)(0y -- 20z ) -- 9x(  Ow -- 20x )( Ow -- 20x -- 1) 

+yw(Ox  -- 20z)(Oz -- 20y + Ow) + 4xywZ(Oy + 1)(0x + 0z + Oy + 1) 

+xw(90z  + lOOy + 90w + 9)(0w -- 2 0 x ) ,  
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. .~9 = 3 0 x O y  - -  60xOz - 60wOy + 30wOy + 30~ - 90yOz + 130wOz + 30~ 

- 3 y ( 0 2  - 20y + Ow - 1)(0~ - 20y + Ow) - 3z(20~ - Oy + 1)(20z - Oy) 

- xwOz(  Ow - 20x ) + yw(  50z + 30w + 3)(0z - 20y  + Ow ) 

+xyw2(Ox + Oz + Oy + 1)(80z + 60w + 12). (A.1) 

Phase  B: 
9 1  = Ox( O x -  Oy + 0 z - -  Ow ) --  x (  O x -]- Oy + 0 z + 1)(0y -- 0 x - -  Ow ) , 

9 2  = O x ( O y  - -  20z) - x y ( O x  + Oy -~- 0 z + 2)(0x + Oy + Oz + 1), 
9 3  = O~w - w ( O y  - Ox - o . ) ( O x  - oy + Oz - Ow)  , 

9 4  = ( O y  - -  0 x - -  O w ) ( O y  - -  202) - y(Ox + Oy + O~ + 1)(0x - Oy + 02 - Ow) , 

95  = 90xOw - 20xOy - 160zOw - 160xOz + 160yO~ - 48yz(Ox + Oy + Oz + 1) 
(Oy - -  20z) - 16yOz(Ox - Oy + Oz - Ow) - 9 x w ( O y  - Ox - Ow - 1) 
(Oy -- Ox -- Ow) -- 4xy(20x -- 30y + 20w -- 1)(0x + Oy + O~ + 1) 
--X(90w - lOOy)(Oy - Ox - Ow)  , 

9 6  = 30xOw + 8 0 y O w  + 60xOy -- 24020w -- 160x02 + 802 

- 8 z (  Oy - 20z - 1)(0y - 20z ) - 16 yz (  Ox + Oy + O~ + 1)(0y - 20z ) 

- 8 y w ( O x  - Oy + Oz - ow - 1)(Ox - o~ + 02 - Ow) 

-- 3xw(  Oy -- Ox -- Ow -- 1)(0y -- Ox -- Ow ) -- 8 yOw( Ox -- Oy + Oz -- Ow ) 

- -4xy(50w + 20x + Oy + 3 ) ( 0  x + Oy + 0 z + 1) - x(30w - 2 0 y ) ( O y  - 0 x - -  Ow)  . 

(A.2) 

Appendix B. Basis of the Mori Cone for P(7, 3, 2, 1, 1) 

For this weighted projective space, we have two different desingularizations of  the 
ambient space, Pz(A* )~g and Pz(~* )~g in the text. For each desingularization, we obtain 

the basis of the Moil cone following [37]. We see the Mori cone for S(A*)rBeg is 
not simplicial. 

For the regular fan S(A*)rAeg: 

~/1 = (  1,0,0, 1 , 0 , 0 , - 2 , - 1 , 1 ,  0, 0, 0) ,  

q.] = ( -2 ,0 ,  0,0, 1, 1, 1, 1 , - 2 , 0 , 0 , 0 ) ,  

r/3 = ( - 2 , 0 , 1 , 0 , 1 , 1 ,  0, 1 ,0 , -2 ,  0, 0 ) ,  

q4 = ( 2 , 0 ,  0 , 0 , - 1 , - 1 ,  0 , -2 ,  1 ,1,0,0) ,  

q~] = ( -2 ,1 ,0 ,0 ,1 ,1 ,  1, 0,0, 0 , -2 ,  0) ,  

r/6 = ( 1,0, 0 , 0 , - 1 , - 1 , - 1 ,  O, 1,0, 1,0),  

q7 = ( - 2 , 1 , 1 , 0 , 1 , 1 ,  O, 0,0, O, 0 , - 2 ) ,  

qA s = ( 1 ,0 , -1 ,0 ,  - 1 , - 1 ,  O, O, 0 ,1 ,0 ,1) .  

For the regular fan * ~ S(ZI )reg: 

q~ = (0,0,  0, 1, 0, 0 , -2 ,0 ,  0, 0, 1 ,0,0) ,  
r/2 = ( -1 ,0 ,0 ,  1, 0, 0,0, 1, 1,0,0, 0 , - 2 ) ,  

(B.1) 
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7 3 = (-1,O, 0,0, 1, 1, 0 ,0 , -2 ,  0, O,O, 1) 

7 4 = ( 1 , 0 , 0 , - 1 , - 1 , - 1 ,  1, 0,1,0,0, 0, O) 

7 5 = ( -2 ,0 ,  1,0, l, 1, O, 1, 0 , -2 ,  0,0,0) 

7 6 = (2,0,0,  0 , - 1 , - 1 , 0 , - 2 ,  1, 1,0, O, O) 

7 7 = ( -2 ,1 ,  0,0, 1, 1, 1,0, O, 0 , -2 ,0 ,0 )  

78 = ( - 2 , 1 , 1 ,  0, 1, 1,0, 0 ,0 ,0 ,0 , -2 ,  O) 

79 - - (  1 , 0 , - 1 , 0 , - 1 , - 1 ,  0,0, 0, 1, 0,1,0) .  (B.2) 

Appendix C. Topological Data for Models with h 1'1 < 3  

We list the topological couplings for the Calabi-Yau models with h 1'1 < 3. We fol- 
low the conventions in [8, 10], i.e., 8J13 + 4J~J2 for the coupling means K ct = 8, XlXlXl 

K cl = 4 and others are zero. The superscript in each model shows the type of 
XlXIX2 

1(k) _l(k) the model defined in (2.16). The divisors Jk and the variables x (k) = ( - 1 ) ,  u 
are connected by the identification Jk = m(Ox(k)) made in (3.27) and (3.37). Ac- 
cording to Wall's theorem cited in Sect. 4, the topological type of the Calabi-Yau 
manifolds are classified by the classical Yukawa couplings (cubic form) and the 
invariant c2 "Jk (linear form) on HI,I(X, Z). 

For the interested reader we list the concrete basis {/(k)} for the Mori cone in 
the file appended to [24]. The basis for the Mori cone and the topological couplings 
in this list determine the prepotential F(t)  in (4.6). 

Fermat type Calabi-Yau hypersurfaces 

model topological couplings C 2 �9 ,)7 

X~(2, 2, 2, 1, 1)2_168 
X112(6, 2, 2, 1, 1)2_252 
X~(4, 3,2,2, 1)2_144 
X14(7, 2, 2, 2, 1)2_240 
X~8(9, 6, 1, 1, 1)2_540 
X(2(6, 3, 1, 1, 1 )3_324 

X~(3, 3, 3,2, 1) 3 --132 

Xm(5,  3 ,3 ,3 ,  1)3_144 

X~(9, 3,3,2, 1)3_192 

X~4(12,8,2,1,1)~48o 

8.]13 + 4J12 J2 
4J13 + 2J12J2 
2J13 + 3 J12 J2 + 3J1J22 q- 3J23 
2Jl 3 -+- 7J12 J2 + 21 J1 J22 -}- 63J23 
9J13 + 3J12J2 -+- J1 J22 
lgJ13 + 6J12J2 Jr- 2J1 J22 
+18JlZd3 + 6Yl J2J3 + J22 J3 
+lgJ1 J32 q- 3J2J32 q- 9.]33 
6J13 + 4JlZJ2 -+- 8J12J3 +4J1J2J3 
-}-8,]1 ,]3 2 ~ - 4 J 2 J 3  2 + 8J3 3 

3J13 + 5JlZJ2 + 5J1J22 + 5./23 
+lOJ12j3 + 15J1J2J3 + 15.122.I3 
+30J1 .]32 + 45 J2 J32 -+- 90.]33 
3J13 + 2J12 J2 + 4J12 J3 + 2J1JzJ3 
+4J1 ./32 + 2JEJ32 + 4J33 
8./13 + 2J12 J2 + 4J12 J3 
+J1J2 J3 +2.]1-/32 

(56,24) 
(52,24) 
(32,42) 
(44,126) 
(102,36) 
(96,36,102) 

(48,24,56) 

(42,50,120) 

(42, 24, 52) 

(92,24,48) 
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Non-Fermat type Calabi-Yau hypersurfaces 
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model topological couplings C2 ~ ,)7 

X9~(3, 2, 2, 1, 1)2_168 

X4(2, 2, 1, 1, 1)2_~86 

X8X(3, 2, 1, 1, 1 )3_208 
XI(3, 1, 1, 1, 1 )2_240 

gl~(7  , 3, 2, 1, 1 )2_260 

X~(5,4, 3,2, 1)3_126 

X~(3, 2, 2, 2, 1)3_144 

X~(3,3,2, 1, 1)3_168 

X~(IO, 4, 3, 2, 1)3192 

X(o(4, 2, 2, 1, 1)3192 

X1~(8, 3, 2, 2, 1 )3_200 

X~(5, 3, 2, 1, 1 )3_204 

Xl18(9, 4, 2, 2, 1)3_240 

X~(4, 2, 1, 1, 1 )3240 

6J13 + 9J12 J2 + 13 J1J22 q- 17.]23 

14J! 3 q- 7J12 J2 + 3J1J22 

36J13 + 12J12 J2 -+- 4J1J22 +J23 

63J13 + 21J12 J2 + 7J1J22 q- 2J23 

9J13 + 3JlZJ2 -k- J1J22 

8J13 + 14J~ZJ2 + 24J1 J22 +37J23 

+4J12 J3 + 7J1JzJ3 + 10J22 J3 
-k-2 J1 J32 -+- 2 J2 J32 
90J13 + 30J12J2 + lOJ1J22 + 3J23 

q-45j12 J3 q- 15J1J2J3 q-5J22J3 
+15J1 J32 -t- 5J2J32 + 5J33 

15J13 + 20J12 J2 + 26J1 J22 

+32J23 + lOJ12J3 + 13J1J2J3 

+16J22 J3 + 6J1 J32 + 6J2 J32 
18J13 + 12J12 J2 + 8J1J22 + 5J23 

+9J12 J3 + 6J1J2J3 + 4J22 J3 
+3Jl J32 q-2J2J32 -k-J33 

40J13 q-20J12 J2 q- lOJ1 J22 q-4J23 

+lOJt2 J3 + 5 J~ Jz J3 + 2 J22 J3 

36J13 + 12J12 J2 + 4Jl J22 +J23 

+18j12 J3 + 6J1JzJ3 + 2J22 J3 
+6J1 J3 z + 2JzJ32 + 2J33 

50J13 + 30J12 J2 -k- 18J1 J22 -k-9J23 

-+-60J12 J3 q-36J~ J2J3 + 21Jz2J3 
+72J1 ,/32 + 43 J2 J32 + 86J33 

8,]13 -+- 18J12 J2 q- 36J~ J22 q- 72J23 

+4J12 J3 + 9J1J2J3 + 18j22 J3 

-k-2 J1 J32 + 4J2 J32 
72J13 + 18j12 J2 + 4J1 J22 

+36J12 J3 + 9J1J2J3 + 2J22 J3 
q - 1 8 J  1 J32 ~- 4J2J32 + 8J33 

(48, 74) 

(68,36) 

(96,34) 

(126,44) 

(66,24) 

(44,82,24) 

(120,42,50) 

(66,92,48) 

(72,50,34) 

(100,52,24) 

(96, 34, 44) 

(104,66,128) 

(68,132,36) 

(132,36,68) 
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Non-Fermat  type Calab i -Yau  hypersurfaces 

S, Hosono, B.H. Lian, S.-T. Yau 

model  topological couplings c2 �9 0 v 

X~6(8, 3, 3 , 1, 1)3_256 6 J l  3 q- 16J12 J2 q- 42J1J22 + 104J23 (60, 164,24) 

+2J12 J3 ~ 5J1J2J3  q- 10J22 J3 

X(6(8, 5, 1, 1, 1 )3456 50Jr  3 q- lOJ12J2 + 2J1J22 

+80J12 J3 + 16J1J2J3 q- 3J22 J3 

+128J1 J32 + 25 J2 J32 q- 203J33 

(164 ,36 ,266)  
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