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1. Introduction 

(~, ~ ,  z) 
0 

{P~; # ~ o} 

(2Z~, ~ ,  ~ )  ; 
P~o 

t,,(x) 

T, ,=t~(X) ; 

{X,,} 

. I f [ T I P ]  ; 

L e t  us  define some no t a t i ons  in t he  fo l lowing w a y :  

; a a-finite m e a s u r e  space 

; a p a r a m e t e r  space which  is a closed subse t  of  k -d imen-  
sional Eucl idean  space L~ ~ 

; a f ami ly  of  p r o b a b i l i t y  m e a s u r e s  on (_~, ~ ) ,  d o m i n a t e d  
b y  

p(.,  O) =dPJdz  
t he  usual  n- fo ld  m e a s u r e  space of (~C, ~ , / l )  

the  n- fo ld  p robab i l i t y  m e a s u r e  of  P w i t h  t he  dens i ty  
p(. ,  0), i.e. 

n 

pn(x, #)= T[ p(x~, # ) ,  x = ( x , , . . . ,  xn) 
i = l  

a k-d imensional  m e a s u r a b l e  func t ion  on _ ~ ,  x=(x~ , . . . ,  
x~) 

an e s t i m a t o r  of  0 w h e r e  X = ( X ~ , . . . ,  Xn) is a r a n d o m  
vec t o r  

a sequence  of r a n d o m  vec to r s  which  a r e  i ndependen t  
and  ident ica l ly  d i s t r i bu t ed  w i t h  P~ 
the  d i s t r ibu t ion  func t ion  of the  r a n d o m  va r i ab l e  T un-  
der  a t r u e  p robab i l i t y  m e a s u r e  P 

Wolfowitiz [6] and Kaufman [3] argued about the sequence of esti- 
mators with uniformity property: 

(1.1) .if[rim( T,~-- O) [ Po] (y) ~ Lo(y) 

uniformly for (y, 0)E ~• where C is any compact subset of O ~ the 
interior of O. Such a sequence of estimators, {T~}, is said to have uni- 
formity property and the family of such sequences is denoted by E. 

* This concept is introduced by Wolfowitz [6] and is called "Property U" in [7]. 
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We can see in Theorem 2.2 below that  the sequence of maximum likeli- 

hood estimators (m.l.e.), say, {0~} has the uniformity  property under 
suitable conditions. Kaufman obtained an optimality of the sequence of 

m.l .e. 's  {d~} among the family c?; for any {T~} s E 

(1.2) lim Po{n'/2( T~--O) ~ S} < lim Po[nln(O~-O) ~ S } ,  

where S is any symmetric  (about the origin) convex subset in s  This 
implies tha t  the sequence of m.l .e. 's  is more concentrated about the 
t rue  parameter  0 than others in E. 

The purpose of this paper is to improve the proof of (1.2) given by 
Kaufman [3] to be the more elegant and prospective one in the follow- 
ing sense: under the same conditions as in Kaufman [5] the limiting 
distribution function L0 of the sequence of estimators with uniformity 
property  can be exactly represented as a convolution 

(1.3) Lo=Go �9 r 

where Go is some distribution function and r is the normal distribution 
function with mean 0 and covariance matr ix  I(O) -1, I(O) being the Fisher 's  
information matrix.  Then the optimality of m.l.e. (1.2) is easily verified 
to be the immediate result of (1.3) and Anderson's Theorem". Although 

T~ in Kaufman is the smoothing of T~ by the uniform distribution 
function on the k-square with the  size K, we shall however use, in place 
of it, T* which is smoothed by the  normal distribution depending on 
the sample size n, in order to simplify the prooPk 

In Section 2, we shall s tate some known results without  proofs. In 
the later half of this section we shall prove two preparatory lemmas 
(Lemma 2.2 and 2.3 below) which are the corresponding lemmas when 
T~ is replaced with Ti*. In Section 3 we shall verify the main theorem 
(1.3). 

I am indebted to Professor M. Okamoto and Mr. K. Takahasi for 
their  useful comments. 

2. Preliminary lemmas 

Throughout  this paper, we assume the same regular i ty  conditions 
on {p(., 0)} as (4.1)-(4.11) in Kaufman ([3], p. 167). 

THEOREM 2.1 (Wolfowitz [6] and Kaufman [3]). For {T~} ~ E wi th  

1) Le t  G and  ~ be probabi l i ty  d i s t r ibu t ion  func t ions .  If (P h a s  a u n i m o d a l  probabi l i ty  
dens i ty  func t ion ,  t h e n  

fsdG *(I)<fsd(1), for  S, t h e  s a m e  as in (1.2). 

~) For T~, see Kaufman ([3], p. 163) and for Tn and Tn*, see Lemmas 2.1 and 2.2 be- 
low. 
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the l imi t ing distribution Lo, it holds that 
( i ) Lo[(. . . ,  - -oo, . . . )]=O and L0[(+oo, . . - ,  +co) ]=1  for  0 ~ 0 ~ and each 
convergence is un i form in C, 
(ii) f o r  each fixed 0 ~ 0 Q, Lo(.) is continuous in  . ~ ,  and for  each fixed 
y ~ R ~, L.(y) is continuous in  0 ~ 
(iii) Lo is absolutely continuous with respect to Lebesgue measure, 
(iv) Lo(y) is strictly increasing in the sense that i f  y<y '  (i.e. Y~<YS, 
j = l , . . . ,  k and yj<y} for  some j) ,  then 

Lo(y)<Lo(y') , 

(v) Lo(S) is continuous in  0 ~ for  any simple set ~ S where 

and 
(vi) 

(2.1) 

uni formly  in  C. 

THEOREM 2.2. 

Lo(S) = Is dLo , 

for  any simple set S, 

Po {n'2(T~- O) ~ S}---, Lo(S) 

There exists a sequence of m.l.e.'s {t}~} such that for  
^ 

n = 1, 2 , . . . ,  O~(x) is a root of the likelihood equation with probability p~(O) 
where p0(O)--~l uni formly  in  C, and that 

(2.2) s  o) I Po] (y)--* r ~ 

uni formly  for  (y, O) ~ R~• C. 

THEOREM 2.3. The sequence of m.l.e.'s {(~} is asymptotically su.t~- 
cient f o r  {Po; 0 ~ 0 ~ in  the sense that there exists a f a m i l y  {Q~e; 0 ~ 0 ~ 
of probability measures on (2C~, ~ )  with the densities {q,(., 0)} with 

respect to [~, such that O~ is su~cient for  {Q,~o; 0 s 0 ~ i.e. 

(2.3) 
A 

q~(x, O)=g~(O~(x), O)h~(x) 

and such that 

(2.4) l[ Poo- Q~o 11 = f [ p~(x, o ) -  qn(x, o) I dz~ -~ 0 

1) A se t  S is cal led " s i m p l e "  in th i s  pape r  if for  a n y  finite in te rva l  [ c R  �9 and  8 > 0 ,  
t h e r e  ex i s t  D a n d  D I, finite u n i o n s  of d is jo in t  i n t e rva l s  s u c h  t h a t  D c S n I c D  t a n d  2(DI--D)  

<8, w h e r e  2 is the  L ebesgue  m e a s u r e .  For  example ,  convex  se t  is s imple .  
2) We  can  see  t h a t  I(0)-1 (which is t he  covar iance  m a t r i x  of  the  d i s t r ibu t ion  r is con- 

t i n u o u s  in 0% See [5] for the  proof  of  th i s  t h e o r e m ,  for examp le .  
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uniformly in C. Furthermore g~(y, .) is Borel measurable in 0 ~ 

and 

Remark. Let  

r~(B) = fa.-~(B) h~(x)d[~, 

D~= IY; I[~+ydr,~(Z)>O I 

where  /~---{y; ]]y[[<~J2}, ~=o(n-ln), and [[yXI=max{ly~l; j = l , . . - ,  k}. 
Then we can choose qn such tha t ,  for bounded B, Borel set, r~(B)<c~, 
and for any M > 0  and compact CcO~ there  exists a positive in teger  
N = N ( M ,  C) such tha t  for n > N ,  

(2.5) {y;nl/~]ly--O]l<M}cD~, for any O~C, 

i.e. {y; d(y, C)<n-I/2M} cD~.  

Since the  relation (2.4) implies tha t  any asymptot ic  proper ty  hold- 
ing for {Pno} holds also for {Q~o}, we can utilize {Qr, o; 0 ~ 0 ~ obtained 
in Theorem 2.3 in order to invest igate  properties of the l imiting distri- 
but ion Lo. 

For  { T~} ~ s and B ~ _~', Borel a-field of R ~, let 

~(B, y) = Q~o { T~ E B l O~ = Y} 

which is independent  of 0 because of sufficiency of 0~ for {Q~e; 0 ~ 0~ 

LEMMA 2.1 (Kaufman [3], p. 160). Given {T~} ~E  and associated 
{v~}, let {Sn} be a sequence of positive numbers tending to zero with the 
order of o(n-m), and let {W~} be a sequence of random variables in R ~ 
with uniform distribution over the square I~ = {y; ]l Y !I <~ /2} .  

Define, for each n, 

8~=~,~+W, 

ff~+y d~[~ l Q~~ (z)=~;kQ~~176 ~ L + y} Ion(y, 0)=~2 ~ 

for y ~ R ~ and 0 ~ 0 ~ and 

~(B, y)= tz~+y vn(B, z) d~n(z) 

f & + y dr~(z) 

for B ~ ~ and y ~ D~ = {y; denomina to r r  and ;,~(B, y ) = 0  i f  y ~ D,~. 
Then, 



(2.6) 

where 
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( i )  The dis tr ibut ion func t ion  of On is absolutely continuous wi th  the 
density w,~(., 0) wi th  respect to Lebesgue measure. 
(i i)  There exists a {~}, mentioned above, such that 

n-~/2W~(n-~nu +8. 0)---~0(u, 0) 

u n i f o r m l y  fo r  (u, 8) E R ~ x C where r 8) is the ~k(O, I(8)-')-density. 
(iii) For any  convex symmetr ic  set S and 0 ~ 0 ~ 

lira Q~, [n~/2(G~- 8) ~ S} = lira Q~ [n~/2(o~- 8) ~ S} . 

(iv) For each n and y ~ D~, -~(., y) is a probability measure on (R ~. ~k) 

and defines an estimator T~ which has ~ ( . ,  y) as the conditional dis- 

tr ibution f o r  ~ = y ,  and therefore 

Q~oiT~ ~ B} = I ~(B, y) w~(y, 8)dy . 

( v ) For  any  simple set S and 8 ~ ~o, 

lira Q~, {nm(~/'~- 0) ~ S} = lirn Q~8 {n~/2(T~- 8) ~ S} 

the convergence being u n i f o r m  fo r  0 ~ C. 

The fol lowing two lemmas  correspond to the  lemmas  due to K a u f m a n  
a l though  we use T~* in place of T~ .  

LEMMA 2.2. Using {~} in  L e m m a  2.1, define 

,*(B, y) = {1 +~-~(y)} t -~(B+ n-~nt, Y+n-~/:t)r dt 
2 

( 2 . 7 )  i+r~(y)=lfffn,/:(D,_y)r 0 < ~ < i ,  

and ~ is the density of ~ ( 0 ,  E),  E being the ident i ty  ma t r i x  of order 
k, then 
( i ) f o r  each n and y ~ R ~, ~*(., y) is a probability measure on (R k, 2B ~) 
and defines an estimator T~*, which has ~*(., y) as the conditional dis- 

tr ibution f o r  given J~=y, and therefore 

and 
(ii) 

Q,,~( T~* e B) = f ,*(B, y)w=(y, 8)dy , 

f o r  any  simple set S and 0 ~ ~o, 

" n~/'( T 0 S} lim Q~o[n~/2(T,*-O) e S} = lim Q~ot , ~ -  ) e , 
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the convergence being uni form for  0 ~ C. 

PROOF. 

( i )  I t  is obvious tha t  for fixed y c R ~, ~;~(-, y) is a probability measure 
and for fixed B, ~*(B,-) is measurable. 

Q.( T~* ~ B)= f ~(B, y)wT,(y, O)dy . 

(ii) Let e be any small positive number,  and fix it. Let M~ be a posi- 
t i re  number  such tha t  

(2.8) ! ~t H >1,~1 ~(t)dt < ~/8. 

It  follows f rom Lemma 2.1(v) tha t  there exists a positive number 
N1 such tha t  for n ~ NI and [[ t ][ _=M 

I Q~,o+~-r {n~/~'[T~-(O+n-a/2t)] ~ S} -Q~[n~/~(T~-O) ~ S}]<s/8, 

and hence tha t  

(2.9) Q~ {nm(T~- O) ~ S} - f lit ,i ~_,~ r 

�9 Q~,o+~-~/~t[n~/2[T~-(O+n-~/2t)] ~ S} <=~/4. 

Since r 0) is continuous in 0 (see the footnote 2, p. 3), it holds 
tha t  there  exists 21//2>0 such tha t  for any 0 ~ C 

(2.10) f ii~tl >.,~ r O)du<s/8. 

Since C is a compact subset of O~ we can see easily tha t  

5 =d(C, (O~ ~) > 0 

and so, tha t  let 

C ' =  {t~; d(8, C)__<3/2}, 

then C' is compact and C c C ' c e  ~ If in (2.4) we take compact set C' 
and 21//2> O, it follows tha t  there  exists a positive integer N=N(M~,  M2, 
C') such tha t  for n>=N, ]lu]]~M~, [[tl]<-_M~, and t ~ C ,  

O+n-~/2t ~ C' and y=n-'/2u +O+n-~/2t ~ D~ , 

and hence tha t  

1 >__ 1/{1 + ~.~(n-~/~u + ~)} 

= f,,/:(D,_n_~/:u_O) r flltll<M ~ r 
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Hence we have that  r~(n-~/~u+O)---~O, uniformly in ][u [[<M~ and 0 ~ C, 
i.e. there exists N2=N~(~) such that  for n>__N~., [[u[l<=M~ and ~ ~ C, 

(2.11) 0 < r~(n-'% + ~) < ~/8. 

By Scheffe's theorem", it follows from Lemma 2.1 (ii) that  for meas- 
urable functions {f~}, bounded by 1 and lltlI<M~, there exists a posi- 
tive integer Na such that  for n>N~ and 0 ~ C, 

(2.12) i f,~(u)n-~nw~(n-lnu + t~ + n-~/~t, 0 + n-~/2t)d ~ 

- f  A(u)r ~)du' < #8 . 

Therefore we have that  for n > m a x  (N~, N2, Ns) and 0 ~ C 

I li ~ II ~ M  1 
r {n~/~[T~-(~+n-,~/~t)] ~ S} 

- Q .  [n~ /2 (T:  - 0) e S}  

= f,~,~, ~(t)dt i ~"(~-lJ2s+~+n-~t' y)wo(y, o+n-,~t)dy 

-- f w~(y', ~)dy',~*(n-lnS+6, y') 

= f,,~,t<_.~ r f ~(n-i/2S+O+n-~nt' n-lnu+O+n-'~nt) 

. n-~/2w~(n-~/2u+~+n-~/2t, O+n-~/~.t)du 

- f  n-k/2w~(n-~/2u +t~' t~)du'*(n-~/:S+t~' n-~/2u +t~) 

(by letting y=n-~/2u+6+n-~nt and y'=n-~/~'u-kt~) 

<= I r I ~(n-lnS+O+n-~/2t' n-~nu §247162 ~)du 
] l t l l < M  1 

- f r o)du,:(~-'~-z +~, ~-~,'-'~ +~)J + 2. ~/s 
(from (2.12) and 0_<~<__1) 

__<s/4+ I,,,,,~.,, r f,,<,~j -~(n-'/2S+t~+n-'/~'t, 
n-~/O'u + t~ + n-.~nt)p(u, t~)du 

-- f r O)du,*(n-~nS+O, n-~":u +O) -[-2-~/8 
Null <'~2 

(from (2.10) and 0 < ~ ,  r * < l )  

r f ~_,~ -~(n-~/~'S+O+n-~/2t' 

n-~/"u + ~ + n -~''t)r ~)du 

1) For  example ,  see Rao ([4], p. 104). 
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< s12 + 

r O)du {1 + r.(n-~/~u + 0)} 

i -- --i/2 - :  �9 ~(t)dt,,~(n ' S + O + n  ...... t, n-~/2u+O+n-'~/:t) 

(from (2.6)) 

i,l~ll>.,~ r f 

(from (2.11)) 

=< 42 + ~/s + 48 = 344 

That is, 

(2.13) f 
. [] t [I --<311 

-~,~(n- ~/2S + 0 + n -  '~/:t, 
I lul [  <ig 2 

n - ' 2 u + O + n - ~  "-t)r O)du +s/8 

(from (2.8)). 

r { n - t n [ T ~ - ( O §  -~ ~t)] e S} 

- Q .  { n , / ~ ( T :  - O) ~ S }  . 

Consequently, from (2.9) and (2.13) it holds tha t  for n > m a x  (N~, 
N2, N~) and 0 ~ C 

[ Qno{n~/2(T~-O) ~ S} - Q,,o{nm(T;*-o) E S}[<s  . 

The proof is complete. 

LEMMA 2.3�9 The random variables U~=n~n(-O,,-O) and V~=nl/2(T, * -  

-d~) are asymptotically independent in  the following sense: 

I Q~o{U~ ~ B~, V~ ~ B2} - Q~o{U~ ~ B~}Q,,o{V,, ~ B2} I--~0 

u n i f o r m l y  f o r  BI,  B2 c ~ .  

PROOF. Fix 0 ~ 0 ~ It  follows from Lemma 2.1 (ii) that  there exist 
a positive integer N~ and 3//i>0 such that  for n > N t  

(2.14) Q,,o{I[ g= II >Mt} <s/4 . 

From the definitions of T2 ~ and 0,~, we have 

=,*(n-~/2B2 + n-~/2u + O, n-~/2u + O) 

= { 1 + r~(n-i/2u + O)} f -;~(n-'nB2 + 0 + n-~nu + n -  ':~ ~t, 

0 + n-~''u + n-~/2t)r 

= { 1 + 7~(n-t/2u + 0)} f ~(n-~/2B~ + 0 + n-r ', 0 + n-  ~t ')d(t '  n -  (i ~ ~ ~2u~d ~ 

(letting t + n-(~-~'2u = t'). 
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Since r is uniformly continuous, O<fl<l ,  and y~(n-'/~uq-O)-~O uni- 
formly in [Iu [[<M~ (and 0 e C), we can show that there exist M~>0 
and a positive integer N~ such that  for n>__N:~ and I]u, ll_<_M~ i=1 ,  2, 

(2.15) 

(2.16) 

and 

(2.17) 

I r < ~/8, 
IIt [I >)/2 

I r162 l< (2MO-~/8 , 

0 <= r.(n-~/h~ + t~) < ~/8. 

Hence, it follows that for n>-N,2 and Ilu~ll~M~, i = 1 , 2 ,  

I QnolG ~ B2 I G = u d  - Q.[V~ ~ B~ I U~=ud I 

-{l+r~'(n-~/~u~+~)} f -~,~(n-tl2B2 + O + n-~/~t, 

�9 ~(t-n-~-~/2u2)dt t 

- -  r  n-(~-~/2u~)} dt + ~14 

(from (2.17)) 

<~/4+ f EI~H~,~ Ir dt+-:/8 

< 3~/8 + (2M~) ~. (2M2)-%/8 (from (2.16)) 
= e / 2 ,  i . e .  

(2.18) IQ,,~{E, cB~IU~=u~}-Q,,~{V,~B2IU,~=u2}I<~/2. 

Therefore it holds that for n>=N=max(N~, N~) and I]u~ II_-__M~, 

(2.19) [Q~{E~cB2]U~,=ud-Q~{V~B2}I 

i [Q.{E~ ~ B~ I U~=ud - Q,,~{G ~ B2 I U,~=u}]dZ[GIQ,,,] (u) 

_<-s/4+t < ]Q~o{V~B~IU~=ud 
d ] lu l l  =M I 

-Q, , ,[G ~ B~ I U,,=u}ld~s 
(from (2.14)) 

_<_~14+e/2:3~/4 (from (2.18)). 

Finally we have for n>__N and B~, B~ ~ ~ ,  
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I Q~{U~ E B~, V~ E Bd  - Q~o{U~ E B~}Q.~o{V~ E Bd[ 
<1 Q~o{U~ E B~, II U. I1 ~M~, V~ E Bd 

<=~/4+E%o[1Q,~o{V,~ E B2 [ U.} -- Q,,o{V. e Bdll  U,~ ~ B,, II U~ II <3/i] 
=<#4+3~/4=~ (from (2.19)). 

This proves the lemma. 

3. Main theorem 

We assume the same conditions as in Section 2. 

THEOREM 3.1. The l imi t ing  distribution funct ion Lo of the sequence 
of estimators with un i fo rmi t y  property is represented as a convolution 

Lo = Go * r , 

where Go is the l imi t ing distribution funct ion of V~=n~/2(T,*-O~) and 

~ is that of U~=n~/2(O~-6), i.e. DT~(O, I(8)-~). 

PROOF. Fix 0 in e ~ and we shall omit the index 0 for brevity.  Let  

L~(y) = Q~o { #n (  T .  - 6) < y} , 

F~(u)=Q~{U~<u} , 

G~(v) =Q,~ {V~< v}, 

H~(u, v)=Q~{U~<u, V~<v} 

and 

J,(u, v)=Q,o{U~<u}Q~{V~<v}. 

For simplicity we shall use the same symbol for example, 

L~(S) = Is dL,~. 

From the definitions and arguments  above, we have 

F~(y) --~ r y) = q~ o(y) , 

L~(y) = !~+,<y dH~(u, v) , 

G,~ * F~(y)= t dJ~(u, v) , 
J uTv<y  



(3.1) 

and  

(3.2) 

ON THE LIMITING DISTRIBUTION OF A SEQUENCE OF ESTIMATORS 

L,~(y)--~L(y)=Lo(y) f o r  y c R ~ , 

l im {H,,(B, • B~)-J~(BI • B2)} = 0 ,  

(3.5) 

(3.6) 

(3.7) 

and  

(3.8) 

11 

and 

and let 

O<=G~ * F~(y+d.e) -G,~  * F , ~ ( y ) < e / 8 ,  

w h e r e  e = (1. �9 �9 1)', t h e  k • 1 v e c t o r .  

L e t  

A( i~ , . . . ,  i k )=  [ u = ( u ~ , . . . ,  u~) ' ; i jd<uj<( i~+l)d ,  j - = l , . . . ,  k} 

fo r  i j = 0 ,  _+1, + 2 , - . . ,  ( j = l , . . . , k ) ,  

/~(i t , .  �9 -, i~)=  [(u,  v);  u + v < y + d . e ,  u ~ A ( i t , . . . ,  i~)}, 

_B(i~, . . . ,  i~)=  {(u, v);  u + v < y ,  u ~ A( i~ , . . . ,  i~)} 

B( i~ , . . . ,  i k )=A( i~ , " ' ,  ik) • ( v = ( ' v ~ , . . - ,  vD' ;  

v j ~ y j - - i j d ,  j = l , .  �9 -, k} .  

1) See Feller ([2], p. 261). 
2) See Theorem 2 of Feller ([2], p. 251). 

the convergence being uniform for BI, B2 E ~k. 
By Helly's theorem ~), it follows that for any subsequence {n'} of 

{n} there exists some subsequence {m} of (n'} and G (not necessarily 
a probability measure) such that 

(3.3) Gm(u)-~G(u) 

at continuity point u of G. Then we have ~) that 

(3.4) G,~ * F, dy)-~G * r 

for all y E R ~ because G, ~ is continuous since r is continuous. Fix 
yER ~. 

From (3.1), (3.4) and the continuity of the limiting distributions L 
and G* r it follows that there exist d~0 and a positive integer NI 
such that for m~N1 

] L ( y ) -  L,dy) ] < ~/8 , 

/G * r  �9 F ~ ( y ) I < e / 8 ,  

0 < L~(y + g. e) - L,,(y) < ~/8, 
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\ 

_B(...) 

k=1 

y+d 

! 
~ (..:) 

Fig. 1 

F 
(3.10) G~ * F~(y)<= Z J~B(i,," 

(i1'  "'"ik) 

Since B ( i , , . . . ,  i~) c B(i~,. . ., i~) c ]~(i~, 
�9 . . , i~) ,  we have 

(3.9) 

L~(y) = ~ �9 f B(i~,.. i~) dH,~(u, v) 
(il,'"~i k) ~__ ", 

<-- ~ i i~) dH~(u' v) (i 1, ...,%) . B( i l , . . . ,  

~ - IB(i~ i~) dH~(u, v) 
(il,'",ik) J , ' ' ' ,  

=L,~(y§ , 

and, similarly, 

�9 , i~)dJ,~(u, v)<=G,~ * F~(y+d.e) .  

Similarly as in (2.14), we have tha t  there  exist M > 0  and a posi- 
t ive in teger  N:,, such tha t  for ~n>N2 

(3.11)  F~{llull>M}<sl8. 

Hence we have tha t  for m>-_N2, 

(3.12) 

and 

O<=X fB(i,,..., i~)n (llull >M} xR ~dH'~(u' v)_-<F~(ll u II>M} <~/8 

( 3 . 14 )  

and 

(3.13) O~X tB(ii,..., i~)nCllulI>M} xR~ dJ~(u, v) F, {ll u 11 > M }  <s /g ,  

Thus  f rom (3.5)-(3.13) we have 

L ( y ) - 2  B(i~,..., i~)n{llull__<M) xR ~dH'~(u' v) <3.s /8  

(3.15) G * r v iB(il,..., i~)n {llttll~M] x R  ~ dJm(~6, v) < 3 - s / 8 .  

F u r t h e r m o r e  it follows f rom Lemma 2.3 tha t  there exists a posi- 
t ive in teger  N3 such tha t  for m>=N3 and BI, B2 e 2% 

I H,.(B, x B2) -J=(BL • B2) l<s/4 • (2t) -~ 

where l = [ M / d ] + l .  Then we have for m~N:a,  

(3.16) Z fB(il,..., i~)n{lltbll<M)xRdH,~(u, v) 

tB(A,..., i~)n Cllutl <-vs} • R~ 
dJ,~(u, v) 
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<2IH,~[B(i~ , . . . ,  i~)n Ill u I[<M} •  ~1 

--J~[B(i~ , . . . ,  i,:) n {II u I! _-<M} • 

<= (2/) ~. (2/)-~e/4 = 4 4  

(counting the number of set B ( i l , . . . ,  i~)n{llull=<M} • 
Hence it follows from (3.14), (3.15) and (3.16) that  for m>=max (Nt, 

~ ,  N~) 

I L ( y ) - G  * ~(y) l < 2 . 3 s / 8 + s / 4 = ~ .  

Since ~ is arbi t rary,  we have 

(3.17) L(y) =G * r . 

The relation (3.17) implies tha t  since G chosen before does not de- 
pend on the choice of the subsequence {m}, 

Gn(u)--~G(u) 

at continuity point u of G, and, therefore,  tha t  G is a probability dis- 
tribution function. 

The theorem is completely proved. 

THE INSTITUTE OF STATISTICAL MATHEMATICS 
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