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1. Introduction

Let us define some notations in the following way:

(X, A, )
O ;
{Pa; 6¢ @} ;
(%ny <—an’ #’ﬂ) ;
Pnﬂ ;
ta(x) ;
T.=t(X) ;
(X} ;
L[T| P] ;

a o-finite measure space
a parameter space which is a closed subset of k-dimen-
sional Euclidean space R*
a family of probability measures on (¥, 4), dominated
by #
p(-, O)=dP,/dy
the usual n-fold measure space of (X, A, p)
the n-fold probability measure of P with the density

(-, 8), ie.

pn(xr 0)=;D;p(xu 0): xz(xli"'yxn)
a k-dimensional measurable function on R*, z=(z,---,
)
an estimator of # where X=(X,,---, X,) is a random
vector
a sequence of random vectors which are independent
and identically distributed with P,
the distribution function of the random variable T un-
der a true probability measure P

Wolfowitiz [6] and Kaufman [3] argued about the sequence of esti-
mators with uniformity property:

(1.1)

LA (T,—6) | P)](y)— Li(y)

uniformly for (y, 6) ¢ R*xC where C is any compact subset of ©°, the
interior of ®. Such a sequence of estimators, {T,}, is said to have uni-
formity property and the family of such sequences is denoted by &.

* This concept is introduced by Wolfowitz [6] and is called “Property U” in [7].
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We can see in Theorem 2.2 below that the sequence of maximum likeli-

hood estimators {m.l.e.), say, {én} has the uniformity property under
suitable conditions. Kaufman obtained an optimality of the sequence of

m.le.’s {4,} among the family &; for any {(T,} €&
(1.2) lim P, {n**(T,—6) ¢ S} < lim P,{n"*4,—6) ¢ S},

where S is any symmetric (about the origin) convex subset in R*. This
implies that the sequence of m.l.e.’s is more concentrated about the
true parameter 4 than others in &.

The purpose of this paper is to improve the proof of (1.2) given by
Kaufman [3] to be the more elegant and prospective one in the follow-
ing sense: under the same conditions as in Kaufman [5] the limiting
distribution function L, of the sequence of estimators with uniformity
property can be exactly represented as a convolution

(1.3) Lg:Gﬁ*@g s

where G, is some distribution function and @, is the normal distribution
function with mean 0 and covariance matrix I(6)~!, I(6) being the Fisher’s
information matrix. Then the optimality of m.l.e. (1.2) is easily verified
to be the immediate result of (1.83) and Anderson’s Theorem®. Although

T.. in Kaufman is the smoothing of T, by the uniform distribution
function on the k-square with the size K, we shall however use, in place
of it, T¥ which is smoothed by the normal distribution depending on
the sample size #n, in order to simplify the proof®.

In Section 2, we shall state some known results without proofs. In
the later half of this section we shall prove two preparatory lemmas
(LLemma 2.2 and 2.3 below) which are the corresponding lemmas when
T.. is replaced with T.F. In Section 3 we shall verify the main theorem
(1.3).

I am indebted to Professor M. Okamoto and Mr. K. Takahasi for
their useful comments.

2. Preliminary lemmas

Throughout this paper, we assume the same regularity conditions
on {p(-, 9} as (4.1)-(4.11) in Kaufman ({3}, p. 167).
THEOREM 2.1 (Wolfowitz [6] and Kaufman [3]). For {T,} ¢ & with

L Let G and @ be probability distribution functions. If @ has a unimodal probability
density function, then

SsdG *(Dggsd(l), for S, the same as in (1.2).

D For Tuk, see Kaufman ({3], p. 163) and for Ty and Ty*, see Lemmas 2.1 and 2.2 be-
low.
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the limiting distribution L,, it holds that

(i) L(---, —o0,--)1=0 and L,(+oco,---, +c0)]=1 for 6 ¢ @ and each
convergence is uniform in C,

(ii) for each fized 8 €&, L,(-) is continuous in R*, and for each fixed
y e R*, L.(y) is continuous in ©°,

(iii) L, 7s absolutely continuous with respect to Lebesgue measure,

(iv) LJdy) is strictly increasing in the sense that if y<y' (i.e. ¥,<¥7,
7=1,--, k and y,<y; for some j7), then

L) <Ly') ,

(v) LiS) is continuous in @ for any simple set” S where
L(s)=|_dL,,
S

and
(vi) for any sitmple set S,

2.1 P,{nV(T,—6) € S}— Ly(S)
unyformly in C.

THEOREM 2.2. There exists a sequence of m.l.e.’s {9n} such that for
n=12-.-, 5,,(:0) 18 @ root of the likelthood equation with probability p,(0)
where p,(6)— 1 uniformly in C, and that

(2.2) Ln0,—8) | P,](y)— Bu(y)?
untformly for (y,8) ¢ R*xC.

THEOREM 2.3. The sequence of m.l.e.’s {én} 18 asymptotically suffi-
cient for {P,; 0 € 6"} in the sense that there exists a family {Q.,; 0 <€ 6"}
of probability measures on (X,, A, with the demsities {q.(-,8)} with

respect to pu,, such that 6, is sufficient for {Q.; 08¢ 6"} 1.e.
2.3) 0(®, 6)=0,(0:(x), O). ()

and such that

2.4) 1 Pu=Qull={ 12 ) —u(2, 6) | 0

1A set S is called “simple” in this paper if for any finite interval /CR* and 4>0,
there exist D and D, finite unions of disjoint intervals such that DCSpJc D’ and H(D’—D)
<d, where 2 is the Lebesgue measure. For example, convex set is simple.

»  We can see that I(#)! (which is the covariance matrix of the distribution ®,) is con-
tinuous in 69, See [5] for the proof of this theorem, for example.
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uniformly in C. Furthermore g,(y, -) is Borel measurable in ©°.

Remark. Let

uB)=\; g @M,

b1(B)
and

where I,={y; ||y |[<8./2}, d.=o(n™"?), and ||y |[=max{|y,|;j=1,---, k}.
Then we can choose ¢, such that, for bounded B, Borel set, 7z, (B)<oo,
and for any M >0 and compact Cc@°, there exists a positive integer
N=N(M, C) such that for n=N,

(2.5) {y; n*||y—6||<M}cD,, for any 6¢C,
ie. {y;d{y,C)<n*M}cD,.

Since the relation (2.4) implies that any asymptotic property hold-
ing for {P,} holds also for {Q.}, we can utilize {Q,; <} obtained
in Theorem 2.3 in order to investigate properties of the limiting distri-
bution L,.

For {T,} €& and B¢ B* Borel o-fleld of R¥, let

5u(B, ¥)=Qu{ Ty € B| 6=y}
which is independent of 4 because of sufficiency of én for {Q.,; 6¢6.

LEmMA 2.1 (Kaufman [3], p. 160). Given {T,} €& and associated
{v.}, let {5} be a sequence of positive mumbers tending to zero with the
order of o(n="?), and let {W,} be a sequence of random wvariables in R*
with uniform distribution over the square I, = {y; || y|]<3d./2}.

Define, for each n,

5ﬂ:én+W’
w(w, =0 |, dL11Qul(2)=0:Qu (00 € L+3)
for ye R¥ and 6¢€6°, and

(B, %) gfn+y v B, 2)d7,(2)
Yn , Y)=

for Be B* and y € D,={y; denominator+0}, and v,(B, y)=0 +f y¢ D,.
Then,
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(1) The distribution function of 6, is absolutely contimuous with the
density w,(-, 8) with respect to Lebesque measure.
(ii) There exists a {6,}, mentioned above, such that

nEW (nT 6, 6)— d(u, 6)

uniformly for (u, 8) € R* X C where ¢(u, 9) is the J1,(0, I{9)Y)-density.
(iliy For any convex symmetric set S and 6¢6°

lim Q,, {n"8,—0) € S} = lim Q,, {n"*(0,—6) € S} .

n—sco n

(iv) ~ For each m and ye D,, v.(-,y) is a probability measure on (R*- 5H*)
and defines an estimator T, which has v,(-,y) as the conditional dis-

tribution for 0,=y, and therefore
QulT, € BY = 5B, vy, 0)dy .
(v) For any stmple set S and 6 ¢ 6°,
lim Qu, (T, —6) € S} = lim Q, {n"*(T,—0) € S}

the convergence being uniform for 6¢C.

The following two lemmas correspond to the lemmas due to Kaufman
although we use T.F in place of T,,.

LEmMmA 2.2. Using {v.} in Lemma 2.1, define

(2.6) v (B, y) = {141} S U(B+n" %, y+ 0~ )(t)di
where
2.7) 147(y) =1 / Snm sy PO 0<E<L,

and ¢ is the density of 91,0, E), E being the identity matrixz of order
k, then

(i) for each n and y < R*, vi(-,y) 1s a probability measure on (K*, B¥)
and defines an estimator TF, which has v¥(-,y) as the conditional dis-

tribution for given 8,=vy, and therefore
QT € By= | 52(B, ww.(y, O)dy

and
(ii) for any simple set S and 6¢€6’,

lim Q. {n'*(T,*—0) € S} = lim Qu {n"*(T,—6) € S},
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the convergence being uniform for 8 ¢C.

Proor.
(i) It is obvious that for fixed y € R*, v¥(-,y) is a probability measure
and for fixed B, v¥(B, -) is measurable,

Qu(Tyr € B)=S VE(B, Y)w.(y, O)dy .

(ii) Let ¢ be any small positive number, and fix it. Let M, be a posi-
tive number such that

(2.8) F(E)dt<e/8 .

S el >ar,

It follows from Lemma 2.1 (v) that there exists a positive number
N, such that for n=N, and ||[t]|SM

| Qrpin—8/2 (W T,—O0+n")] € S} —Qu [0 (T, —0) € S}| <¢/8,
and hence that

2.9) Quin(To—0es)—| st

Lol sy

e Quoen=ir (W[ T — (0+n5"t)] € S}| <e/4 .

Since ¢(u, 6) is continuous in # (see the footnote 2, p. 3), it holds
that there exists M;>0 such that for any 0¢C

(2.10) SM o, O)du<e8.

Since C is a compact subset of ' (CRF), we can see easily that

d=d(C, (0)¥)>0
and so, that let
C'={0;d(0, C)<4/2},

then ' is compact and CcC'cé’. If in (2.4) we take compact set ('
and M,>0, it follows that there exists a positive integer N=N(M,, M,,
C') such that for n=N, || ||SM;, [[t||SM;, and 6 €C,

o+n~*teC  and  y=nTuto+nteD,,
and hence that
121/ {1+ 7.(n"""u+6)}

= Snﬂ/2(Dn—n—1/2u_g) ¢(t)dtg S”t” éMI ¢(t)dt .
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Hence we have that 7.(n "*u+60)—0, uniformly in [u||<M, and 6¢C,
i.e. there exists N;=N,(¢) such that for n=N,, [|[ull<M, and fcC,

=

(2.11) 0 7u(n U +60)<ef8 .

By Scheffe’s theorem?, it follows from Lemma 2.1 (ii) that for meas-
urable functions {f,}, bounded by 1 and ||¢t|{|<M,, there exists a posi-
tive integer NN, such that for n=N; and #¢C,

(2.12) “ F (0 O, B n )
~S Fuw)d(u, O)du| <<f8..
Therefore we have that for nzmax (N, N;, N;) and #¢C

{ g T HEVAEQ, o=tz (WA T, — (F+n"7t)] € S}
—Qu{nH(T*~6) € S) l
= | S v, 2O 5 v TS +0+n7, yyway, I+nt)dy
—~S wy', O)dy'vi(n S +6, y’)]
= ' S”L”W $(t)dt S Ua(n S0+ 07, mT U G
h - T, (0 P+ 0+ n R, 0+ nm ) du
-S 0 (0 w6, O)duvi(ni S+, n‘1/2u+0)|
(by letting y=n""*u+6+n""* and y'=n"""u+0)
= l S”,M $()dt S Do+ O+ 0P, m w0+ ) (u, O)du
h _S é(u, Hduvi{n =S5+4, n""%c—%—ﬁ)‘ +2-¢/8
(from (2.12) and 0<v,Z1)

§€/4+ 1 S ¢(t)dt S ;n(n‘l/zs'}"ﬁ‘i“’n_ﬁ/?t,

ull =M.
n Pu 0+ 0 )G (u, B)du
—S 3, O)duvi(n-23+6, n‘“u—l—ﬂ)t +2-¢/8
flufl <My

el 3y

(from (2.10) and 0=y,, v¥<1)

=24 l S H(t)dt S D(nVAS 0 +nm %,

Wull =My
P u+0+n" ) d(u, A)du

e

D For example, see Rao ([4], p. 104).
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—Sn I $u, O)du{l+r.(n™"*u+0)]
u §M‘2
’ S H()dt v (n S+ +n"4, 77,‘1f”~’u+0_{_n—s/2t)i
(from (2.6))

ze+|| swar|  mmrsieren,

o> hult S,

BV 00 )b, a)du[ /8

(from (2.11))
Sef/24-¢/84¢/8=3¢/4 (from (2.8)).

That is,
(2.13) ’ &M B0yl T (6175 )] € 5)
—Qu{n"(TF—0) e S}|.

Consequently, from (2.9) and (2.13) it holds that for m=max (IV,,
N;, N;) and 0¢C

| Qus (0T, —8) € S} — Qu{n"*(TF—6) e S} <=
The proof is complete. |

LEMMA 2.3. The random variables U,=n"*0,—0) and V,=n"*(T¥—
0,) are asymptotically independent in the following sense:

[ Quo{U, € By, Vi, € B} — Quo{U, € Bi}Qu{V, € By} | —0
wniformly for By, B, ¢ $*.

Proor. Fix ¢ &' It follows from Lemma 2.1 (ii} that there exist
a positive integer N, and M,;>0 such that for n=N,

(2.14) QuillU. 1> M} <efd .
From the definitions of T and 4,, we have

=¥ (N By+n" u 40, n u+0)

= {147 u+0)) & D (n TV By 0+ Py 4n e,
f+n"u+n" ) e (t)dt
e {l‘l‘fn(n_lﬂu—l—(?)} S ;n(n_l/ng-}-a“}-/ﬂ-ﬁ/Stl, 0+n—§,gt/)¢(t,_n_(l_ﬁ)ﬁu)dt,

(letting t4+n~""P2%y=¢").
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Since ¢ is uniformly continuous, 0< <1, and 7,(n " u-+8)—0 uni-
formly in |ju||<M, (and 6 €(C), we can show that there exist M,>0
and a positive integer N, such that for n=N, and ||, [|ZM, 1=1, 2,

2.15) S” L He—nr <8,

(2.16) | (=17 — $(E—m ) | < (M) %<3
and

(2.17) 0<ra(n 2 4-6)<e/8 .

Hence, it follows that for n=N, and ||u; || M), 1=1, 2,
| Quo (Ve € By | Un=ti} — Qu (V5 € By | U=} |
= ‘ {147 u,+6)} S D (7 By+0+n" 2, 6407 ) S(E—nm By, dt
— (L4 p s+ 6)) S 5.0 B, O£ 0t G- )
. gﬁ(t——n‘“‘ﬂ’ﬁ%z)di1

=

S DN VIR 6+ 0V, G0 F) Gt —n AP y,)

—¢(t—n‘““”/2u2)}dt‘ te/d
(from (2.17))

<efdt S[ 1B ) — (=0 | diof3
N3 §JIZ
<B¢/3+(2M)-(2My) %/ (from (2.16))
=¢/2, i.e.
(2'18) | Qnﬂ {Vn € B‘.Z ] zjn—:‘ul} - Q:w{‘fn € BZ l (]n::u?_} [ <5/2 .

Therefore it holds that for nz=N=max (V,, N,) and |ju, || M|,

(2.19)  [QuiV. ¢ B, |Up=u) — QulV, € B)
=HWMW&BAm=m%%MWﬁBﬂ%=MMIKm&Mm

gqﬁj |QulV, € B, | Us=u)

Hult<ar,
—Qu{V. € B, |U=u}|d LU, | Qul ()
(from (2.14))
<ef/d4¢/2=3¢/4 (from (2.18)).

Finally we have for n=N and B,, B, ¢ &,
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| Qui{U, € By, V, € By} — Quo{U. € B}Qu{V.. € By}
S1Qu{U. € By, |U.[|IEM,, V, € By}
—Qu{U. € By, || U, || M} Qu{V, € Bo} | +2/4
Ze/d+{QuiV, € B:| U, € By, || U, |S M} — Qui{V, € By}
<e/4+ By [|QuiV.c B U~ QuiV. e B)| | U, By, | U, || <M
Le/d+3c/4=¢ (from (2.19)).

This proves the lemma.

3. Main theorem

We assume the same conditions as in Section 2.

THEOREM 3.1. The limiting distribution function L, of the sequence
of estimators with uniformity property is represented as a convolution

LozGo * @, ,

where G, is the limiting distribution function of V,=n"T¥*—8,) and
@, is that of U,=n"%6,—6), i.e. IO, I(6)™).

Proor. Fix 6 in 6" and we shall omit the index # for brevity. Let
L (y)=Qu{n" (T —6)<y},
Fw)=Qu{U,<u},
G(v)=Qu{V,<v},
H.(u, v)=Qu{U.<u, V,<v}
and
Ju(th, V) =Qus {U, <u} Qo {V,. <0} .

For simplicity we shall use the same symbol for example,
L(S)=| dL,.
From the definitions and arguments above, we have
F(y)—9(y)=2y) ,

L=\  dH@),

Jut+o<ly

G, * Fn(y)=g AT (u, ) ,

ut+v<y
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(3.1) Ly)— L(y)=L,(y)  for ycR*,
and
(3.2) lim {H (B, % B,))—J.(B,xB)} =0,

the convergence being uniform for B,, B, ¢ $*.

By Helly's theorem®, it follows that for any subsequence {n'} of
{n} there exists some subsequence {m} of {n'} and G (not necessarily
a probability measure) such that

(3.3) : Gon(uw)—G(u)
at continuity point u of ¢. Then we have® that
(3.4) G x Fo(y)—G = O(y)

for all y ¢ R* because G * @ is continuous since @ is continuous. Fix
y € R*,

From (3.1), (3.4) and the continuity of the limiting distributions L
and G« @, it follows that there exist d>0 and a positive integer N,
such that for m>N,

(3.5) | L(y) — Ln(y) | <¢[8,

(3.6) |G O(y) =G * Fru(y) | <e/8 -

(3.7 0=L,(y+d-e)—L,(y)<¢/3,

and

(3.8) 0<G, * Fl(yt+d-e)—G,, * F,(y)<e/8,

where e=(1---1), the kx1 vector.
Let

A(ily"'rik):{u:(u}.!”’yuk),;ijd§u1<(ij+1)d’jzl’.."k}
fOI' ’I:j:-O, ily iz;" hr) (j:lv"'!k)’

and let
B(iy, -, i) ={(u, v); ut+v<y+d-e, uec Al -, W)},
By, 1) ={(w, v); u+v<y, u € A(iy,- -, 1)}

and

B(il" “ty ’L.k):A(ily' ) ik) X {v:(vlr' ) /Uk),;
v;<y;—i;d, j=1,---, k}.

1) See Feller ([2], p. 261).
2 See Theorem 2 of Feller ([2], p. 251).



12 NOBUO INAGAKI

, Since B(iy,- -, i) C By, - -, i) C B(i,,

= b
g(...:>«? k=1 "++, ), we have

%!
<N
B(-)—K \Hd 3.9
'v' m d m b
N N
\ \B(“ de(u, )
d
u < T‘
0 = KB(“ de(u, )
AT —Lm(y+d -e),
Fig. 1

and, similarly,

310) GurFu)= T (g o )S6us Fulytd-o).

) )

Similarly as in (2.14), we have that there exist M >0 and a posi-
tive integer N, such that for m=N,

(3.11) F.{llul]|>M}<¢/8.

Hence we have that for m=N;,,

b L, )<

@12) 0=3 |, e A S FLul> M) <ef8
and

G13) 0=3( e e DS FL( > M) <eB.

Thus from (3.5)-(3.13) we have

(3.14) ’ Ly)—3 S
and

(3.15) 4@ D(y)—

Blis -, i (ljul| 500) x e (0 ”)I <3-¢/8

\B(u in{ljul|S M) x Re A (1, U)‘ <3-¢/8.

Furthermore it follows from Lemma 2.3 that there exists a posi-
tive integer N, such that for m=N, and B,, B, ¢ &,

| H,(B; X By) —J (B X By) | <e/4 x (21)7*
where I=[M/d]+1. Then we have for m=N;,

(3.16) dH,(%, v)

‘2 SB(ily-“, w)n {llul| S M} x RE

_3
= SB(A,’-',i;c)n(uungM} s g W2 0)
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Y| HJ[B(, - w)n{llu [ EM} X RF]
—a B, -, ) o {llu || S M} X R
<(20)*- (2 Fe/d=2¢/4

(counting the number of set B(%,,---, 1) . {|| # [| S M} X R¥).
Hence it follows from (3.14), (3.15) and (3.16) that for m =max (IV,,
NZ: M)

| L(y)—G * P(y) | <2-3¢/8+¢[d== .
Since ¢ is arbitrary, we have
(3.17) Ly)=G * O(y) .

The relation (3.17) implies that since G chosen before does not de-
pend on the choice of the subsequence {m},

Gu(u)—G(u)

at continuity point w of G, and, therefore, that G is a probability dis-
tribution function.
The theorem is completely proved.
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