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1. Introduction and summary 

Statistical analysis based on the complex multivariate normal dis- 
tribution has been developed as a counterpart  of classical statistical 
analysis based on the real multivariate normal distribution, and espe- 
cially in connection with the study of the spectral density matr ix of 
a multiple stationary Gaussian time series. The reader m a y  be refer- 
red to Goodman [5], Goodman and Dubman [6], James [10] and Khatri  
[14], [15] for the general theory, and Brillinger [1], Fujikoshi [4], Haya- 
kawa [7], [8], Khatri  [13], [16], Sugiyama [24] and Priestley, Subba Rao 
and Tong [22] for the fur ther  distributional results and the applications 
in t ime series analysis. 

In mult ivariate analysis based on the complex multivariate normal 
distribution, many of the distributions of the matrix variates and of 
the latent  roots can be expressed in terms of hypergeometric functions 

~ q  of one and two complex argument  matrices respectively. These 
results may be compared with the corresponding results in real multi- 
variate analysis, discussed in terms of hypergeometrie  functions pFq of 
one and two real a rgument  matrices. The hypergeometric functions 

~ are defined as the power series representation (James [10]) 

(1.1) 

and 

[a~],... [aA ~,(A) ~'q(a"""a~';b"''"bq;A)=~oZ, [-~d,- : �9 [b,~], k[ 

Jail,... [aA 5,(A)5,(B) (1.2) y~(a~,. . . ,  %; b, , . . . ,  b~; A, B)=~k=0 ,~ [bd,. [bq], C,(L~)k!= ' 

where a , , . - . , % ,  bl , - . . ,b~ are real or complex constants, [a]. is the 
complex multivariate hypergeometric  coefficient defined by 
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m 

[a].=~[ (a--iq-1)k~, (a),~=a(a+l)...(a+n--1). 
i = i  

C~(A) is the zonal polynomial of the m x m  Hermitian matr ix A corre- 
sponding to the partition r k2,. . . ,  kin), kl>=k~>= ...>=k,~O, of the 
integer  k into not more than m parts. It  is defined by 

(i. 3) 0,(A) = zE,~(1)G~(A), 

where zc~(1 ) is the dimension of the representation [~] of the symmet-  
ric group and is given by 

X~(1)=k! -~ (lc~--k~--i+ (k~+m--1)! ,  
7:<j  ; =  

and ZE,](A ) is the character of the representation {~} of the linear group 
and is given as a symmetr ic  function of the latent roots of A. 

The following simple recursive formula of C,(A) is given in Sugi- 
yama [24] 

C-~,,... ~)(A) = a; 0G.... , ~ , ( A ) -  a~o_,C'c,~,+,.s~ ..... ;~/(A) 

+a?~3-2C(?~1+I,;:+' ;4 ;~)(A) . . . .  , 

where a~ is the i th  elementary symmetr ic  function and (]~, k2 , . . . ,  k~) 
is the conjugate partition to ~=(k~, k2 , . . . ,  k~). From this reeursive 

formula, s tar t ing with C(~)(A)=a~, the  zonal polynomial of a Hermitian 
matr ix  can be calculated much more easily than for the real case. 
However, the determination of the series (1.1) and (1.2) requires an 
enourmous amount  of calculation, and so, from a practical point of 
view, it is useful to derive asymptotic expansions for the distributions 
involved. Such examples in the  complex case are in Fujikoshi [4] and 
Hayakawa [8]. It  is known that  partial differential equations (p.d.e.'s) 
are useful tools in obtaining asymptotic expansions in the real case 
(see e.g. Muirhead [18], [19], [20], Muirhead and Chikuse [21] and Chi- 
kuse [2]), and it appears that  obtaining p.d.e. 's  for the complex case 
could be certainly worth while. Sugiura [28] obtained derivatives of 
any latent  root of a symmetric  matrix,  and applied them to deriving 
p.d.e. 's  for zonal polynomials and to giving an asymptotic expansion 
for the distribution of any latent  root of a Wishart  matrix.  Similar 
results were also given for the complex case. 

In this paper, it is shown tha t  the function 2~-~(a, b;c;A) satisfies 
the  system of p.d.e. 's  

(1.4) A,(1 A" 32-~+[ ~ ] -- d ~  c - m + l - ( a + b - - m + a ) A ~ + Z  A~(1--AJ 3F 
=~ A~-- A j- 3A~ 
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_ ~  Aj(1--A~) a P = a b F  ( i = l ,  2 , . . . , m )  
i=i A~-As  OA s j # ~  

and that  the function 2/~(a, b; c; A, B) satisfies the p.d.e. 

(1.5) <~ A a2/~.l.2 ~ ~ A~ aF ~z_ i ~ ~2, ~ 4-(c--m-l-l) ~] aF 
j # i  

, : ,  OB, ~= ~ aBi; , :  ~ J=, B ,  - B j  
j ~ .i 

=ab[t r  (B)]F, 

where At, A2 , . . . ,  As  and B1, B2,- . . ,  B~ are the latent roots of the m 
•  Hermitian matrices A and B respectively. We note here that  the 
latent roots of a Hermitian matrix are real numbers. 

The methods adopted are essentially extensions of those, due to 
Muirhead [18] and Constantine and Muirhead [3], used for deriving the 
p.d.e. 's  satisfied by the hypergeometric functions 2FI in the real ease, 
to the complex ease. Using (1.4) and (1.5) we can obtain the systems 

of p.d.e 's and the p.d.e. 's for the functions ~_#~, 0_#~, >P0 and 0Fo. The 
results are shown in Sections 2 and 3 for the eases of one argument  
matrix and of two argument  matrices respectively. 

The paper concludes with presenting useful applications of the 
p.d.e. 's  to obtaining asymptotic expansions for distributions in complex 
multivariate analysis. 

2. A system of partial differential equations 

In this section it is shown that  the function 2i~l(a, b ;c ;A)  satisfies 
the  system of p.d.e. 's  (1.4). Muirhead [18] derived a system of p.d.e. 's  
satisfied by the 2F~ function of a real a rgument  matrix.  His method 
is extended to our complex case. 

Denote by ( ; ) t h e  coefficient of Oo(A)/O~(I)in the "complex bino- 

mial"  expansion 

(2.1) _ _ < ( : ) < ( ) / < (  C,(I § A)ICdI)= N ~ A I) . 

We use the following differential operators 

7n 

(2.2) E= Z A~a/aA~ , 

o (2.3) . = 
i = l  
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(2.4) 

and 

(2.5) 

m 

D * = ~  ~ A~O /OA,+2 ~, ~, [A~/(A~-Aj)13/3A~ 
i=I i=I j=l 

~ * = ~  A~a2/aA~+2 ~ ~ [AJ(A~--A~)]3/SA~ . 
i = 1  i = 1  j : l  

j~7 ;  

Here we notice the  slight difference between the coefficients of the 

terms in /)* and ~* and those in D* and ~* needed for the real case 
in Muirhead [18]. Corresponding to the partit ion ~, let 

(2.6) ~ = ( k ~ , k 2 , . . - , k ~ + l , . . - , k ~ )  and ~"~=(k, k 2 , . . . , k ~ - l , . . . , k , ~ )  

wherever  they  are admissible, i.e. so long as the parts are in non-in- 
creasing order. 

We obtain the effect of the operators E, ~, 1)* and ~* in 

LEMMA 2.1. 

(2.7) 

(2.8) 

(2.9) 

and 

EC,(A)=kC,(A) , 
~ ~ 

.>(A .>(1 , 
~=i K(O 

PROOF. We can prove them in the same manner  as James [11] and 
Muirhead [18] did for the real case. Therefore, it suffices to note tha t  

- ~lAk ~ Ak2 C,(A) is a homogeneons polynomial of degree k, tha t  C,(A)=c,A~ 2 "" 
+ t e r m s  of lower weight,  which is shown by (1.3) and James [10], eq. 

(113), and tha t  ~*=(d)* -b*~) /2 ,  in order to prove (2.7), (2.9) and (2.10) 
respectively. 

We apply Muirhead's approach [18] to our complex ease, using the 
results obtained in Lemma 2.1. The details are omitted here and only 
the final result is summarized in the following 

THEOREM 2.1. The function 2~'1(a, b; c; A) is the unique solution of 
each of the differential equations 

~h~' . Ic_m + l_ (a  + b_m + 2)A~+ ~i Adl--A31 ~-~' (2.11) A , ( 1 - A ~ ) ~ - t -  := A~--Aj 
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_ ~  Aj(1--Aj) OP =abF ( i = 1 , 2 , . . . , m ) ,  
J:, A~--Aj 3Aj j # ~  

subject to the conditions 

(a) F is a symmetric function of A~, A2, . . . ,  A~, and 

(b ) F is analytic about A= O, and ~'(0) = 1. 

From Theorem 2.1 and the confluences 

lira ~_#~(a, b; c ; b-~A) = ~F~(a ; c ; A) and 

lim 1F~(a ; c; a-lA)=o151(c; A) ,  

the systems of p.d.e.'s satisfied by the ~P~ and 0P'i functions are given in 

COROLLARY 2.1. The function ~/~(a; c; A) is the unique solution of 
the system of p.d.e.'s 

(2.12) A. a~-~a.~: +[  ~ A, ] aA, ~ ~ ~ A, ~ c - m + l - A ~ + ~ ,  A _ A j  j = - : - - ~  I =aF ~ A~--A~ 3A~ 

( i=1,  2 , . . - ,  m), 

and the function 0/~(c; A) is the unique solution of the system of p.d.e.'s 

~F I ~ A, 1 ~ _ ~  A~ ~ _ ~  
(2.13) A~-~-~-t- c--m+l+~ A , - A ~ J ~ A ,  ~ A , -A~  

( i=~,  2, . . . ,  m), 

subject to the same conditions as in Theorem 2.1. 

3. A partial diFFerential equation 

In this section, we shall show that the function 2Fl(a, b; c; A, B) 
satisfies the p.d.e. (1.5). Constantine and Muirhead [3] established a 
p.d.e, satisfied by the ~FI function of two real argument matrices. 
Their method can be extended to our complex case. 

Let us use the following differential operators 

(3.1) D'] = ~, A~O2/3A~ + 2 ~, ~, [A~/(A~-Aj)]5/aA~, 
i = l  i = l  j = l  

(3.2) a* = ~, A~2/OA~ + 2 Z Z [AJ(Ai-  Aj)]~/OA~, 
i = l  i = !  j = l  

(3.3) ~A=~a/aA~, 
~=i  
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(3.4) 

and 

(3.5) 

m 

r A = ~ A~OI3A, 
7:=1 

~1.~ = ~, A~52/SA~ + 2 ~ Z [A~/(A~- Aj)]O/~A~ + ( 2 -  m)y , .  
i : [  i ,=1  j = l  

Here we notice the difference between the coefficients of the terms in 

/9", ~* and ~A and those in D*, ~* and ~1.4 used for the real case in 
Constantine and Muirhead [3]. We use the same notation as in Sec- 
tion 2. 

From Lemma 2.1 we have 

~*G(A)IG(I)=2 ~ " ~ / -  
+ i = l  / ~ ( i )  i 

(3.7) 

and 

(3.8) 
i=1  Ig(i') 

Applying the operator eB with (3.8) to both sides of the well-known 
result (James [10]) 

f etr  (AUBO')dU=~, ~ C,(A)O,(B)/O,(I)k! 
U ( m )  k = 0  

and comparing the coefficient of C,(B) on both sides gives 

(3.9) ~(X~)C,~(A):(k+I)tr(A)C,(A). 

The effect of the operator ~ and ~ are given in 

LEMMA 3.1. 

k + l  {=1 
(3.10) 

and 

(3.11) ~C.(A) = 1D(xi}(k , - i+l)(k / ` - i+m)C=~(A).  
k+l = 

PROOF. The proof is similar to that  for the real case; so that  it 

suffices to note the fact ~h=(D*Ta--L4D*)/2. 
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Applying Constantine and Muirhead's approach [3] to our complex 
case, with the results obtained above, gives the final result in 

THEOREM 3.1. The func t ion  ~F~(a, b; c; A, B) is the unique solution 
of the p.d.e. 

"~ a217 ~ ,, '~ " A, 3[7 " ~ [7 (3'.13) ~ A~ t z  ~ ~ b ( c - m + l )  

- (a+b-2m+3)  017 8: a@ 

~rb m 

- 2  >2 ~ B2 a[7 =ab[tr (B)][7 
~=1 j=l B~--Bj ~ 

subject to the condition that [7 may  be expressed in  the series f o r m  

[7(A, B)=~,  Z a,C,(A)O,(B)/O,(I), 
k= t )  

where [7(0, 0)=1, i.e. a(o)=l. 

From Theorem 3.1 and the confluences 

lira 2P,(a, b ; c; A,  b-*B) = ,[7,(a; c; A,  B) and 
b ~  

lira ,[7~(a ; c; A, a-*B)=o[7~(c ; A,  B) , 
a ~ o o  

the p.d.e.'s for the ~[7~ and 017~ functions are established in 

COROLLARY 3.1. The func t ion  ~[7,(a; c; A, B) satisfies the p.d.e. 

A o F  , 2 ~  k(c 
(3.,4) ,=,Z ,~* ,=, ,=, A ~ - A ,  -d-A, - - m + l ) ~  aA, ,=~ ' aB,  

j : ~ i  

=a[ t r  (B)][7 

and the func t ion  0_~1(c; A, B) satisfies the p.d.e. 

" a217,~ A, a[7 ~ atg' (3.15) Z A,-~7~-~z ~, ~ b (c - -m+l )  = t r  (B)[7, 
i=I 3A~ ~=1 ~=1 A~--Aj ~-A~ f2=, 3A~ 

subject to the condition in  Theorem 3.1. 

Putting b = c = m - - 1  in (3.13) and a = c = m - 1  in (3.14) establishes 

COROLLARY 3.2. The func t ion  >Fo(a; A, B) satisfies the p.d.e. 

(3.12) 

i.e. 
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(3.16) >_E A~ O'F + 2 \ - '  \ ~  " ( a -  m + 2) ~ B~ 
j -~ ~ 

m 

--2 ~ ~ B? __OF =(m--1)a[ t r  (B)]/~ 
= J:~ B~--Bj 3B~ ]~-~, 

and the function 0F0(A, B) satisfies the p.d.e. 

(3.17) ~ 02~ .~ A~ 3,0 ~ 3 ~  A~w77+2 ~ Z Z B: = ( m - l )  
j #_.g 

tr  (B)F, 

subject to the condition in Theorem 3.1. 

4. Applications 

We conclude the paper with presenting applications of the p.d.e. 's 
for the hypergeometric functions, developed in the previous sections. 
Let A be the covariance matrix formed from a sample of size n + l  
drawn from a complex m-variate normal distribution with population 
covariance matrix 27 (assumed to be positive definite); then nA has 
the complex Wishart distribution W~(n, Z) (see e.g. James [10], p. 489). 
Let l~>l~>.. .>l~>O and ~>__22>=...__>2~>0 denote the latent roots of 
A and 2: respectively. In this section we shall derive asymptotic ex- 
pansions for the distributions of the extreme roots l~ and l~ of A by 
a partial differential equation method, when the population roots 2~, 2~, 
�9 . . ,  ~ are simple. 

The sample spectral density matrix of a multiple stationary Gaussi- 
an time series is distributed as complex Wishart. In this connection, 
it is of great  use to work with the distribution of the latent roots 1, 
12,..., l~ in our notation. Priestley, Subba Rao and Tong [22] obtained 
asymptotic distributions of the likelihood ratio criteria for testing hy- 
potheses concerning 2~. 

The problem of deriving asymptotic expansions for the distribu- 
tions of the latent roots of the sample covariance matrix formed from 
a real multivariate normal distribution has been considered by Muirhead 
and Chikuse [21]. 

Use will be made of the following results. 

LEMMA 4.1. The complex generalization of Laplace transform 
given as 

( 4 . 1 )  1 f etr  ( -  T) det T~-"7~(al, . . . ,  ap; bl, . . .  b~" TA)dT 
P (a) ' ' 

=~+l_~q(a,..., ap, a; b , . . . ,  b~; A).  

is 



PARTIAL DIFFERENTIAL EQUATIONS 195 

The "complex" confluent hypergeometric function has the integral repre- 
sentation 

(4.2) ~F~(a; c; A) 

_ /~(e) e tr  (TA) det T ~-" det ( I -  T) . . . . .  d T ,  

holding for all A, Re a >  m--  1 and Re ( c - a )  > m -  1. The "complex " 
Gaussian hypergeometric function has the integral representation 

(4.3) 2~'~(a, b ;c ;A)  

_ 
E~(a)['~(c--a) 

I det  T .... det  ( I -  T) . . . . .  det ( I - A T ) - ~ d T  
J O < T ' = T < I  

valid for Re A < I,  Re a > m -  1, Re ( c -  a) > m -  1 and all b. Here we have 

2 (a) = f [  ( a - i + 1 ) .  

Proof. (4.1) and (4.2) are verified by Fujikoshi [4]. (4.3) follows 
from using (4.1) and (4.2) and interchanging the  order of integrat ion 
(see Herz [9] for the  proof in the  real case). 

We consider first the  distribution function of the  largest  root l~. 
Since n A = S  is distributed as Wishar t  Ws X), we have, wi th  (4.2) 

(4.4) P (11<y)=P ( A < y I ) = P  (S<ny[)  

- f  1 - .,<~=s<~ ['~(n) det Z ~ e t r  ( - Z - I S )  det S~-~dS 

- (nY)~ etr  ( - n y X - I T )  det T~-~dT 
/~(n)  d e t Z  ~ 0<~,=r<~ 

_ /~(m) det (nyZ-1)~iF~(n; n + m ;  -nyZ-~) .  

Sugiyama [24] has obtained an approximation to P (l~<y) in te rms 
of a product of z 2 probabilities. Since (4.4) depends on X only via its 
la tent  roots, we can regard  27 as being diagonal i.e. Z = d i a g  (~, 22," ", 
~,~). From (4.4) the  distribution function of x~=#/2(lJ~--l) can be 
wr i t t en  as 

(4.5) P (x~<x)= /~(m) detR~P~(n �9 n + m ;  - R )  
r (n+m) 

where  R =  diag ( r .  r2, " . ,  r~) with r~= (n+#nx) z .  z~= ~/~ (i= 1, 2, . . . ,  
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m). S tar t ing  with  the  system of p.d.e. 's  (2.12) satisfied by the  ~2'1 
function it can be readily verified tha t  P_=P (x~<x) satisfies each of 
the  m p.d.e. 's  

, 22 , x2\ ~2P , [ x + _ ~ ( l + x 2  - +x___ 

- 2  x 1 I + A ~ -  z~ 
~=~ ~ /n  n 1 z~ Oz~ 

- 2  ~ + Xtz~ 3zP + ~ zgz~ - - ~ 2 P  __  0 

and 

(4.7) e--L-1 f 1 

+ z~- - l+  z~+ 1 1+  z,: ~P 
n j= z~--zj ~z~ 

7~ 7rt 

1 1 ~ z k  ~P 1 ~_~ zj 3 P _ o  ( i = 2 , . . . , m ) ,  
n 1 - - z t  ~=2 ~z~ n J=~ z i - - z j  ~zj 

with A ~ = E  1/(zj--1). 
j = 2  

We now look for a solution of these m p.d.e. 's (4.6) and (4.7) of 
the  form 

(4.8) P=r , 

where  r  denotes the  s tandard normal distribution function and the  
Q~ are functions of x, z2, . . - ,  z~. 

Now tha t  P possesses such an expansion as (4.8) follows from the  
asymptot ic  expansion for the joint density function of ll, 12,-.., 1,~, 
given by Li, Pillai and Chang [17], eq. (5.29). Adopting the  same 
manner  as in Muirhead and Chikuse [21] used for the real case, we 
can show tha t  if 24 is a simple root then,  for large n, l~ is asympto- 
tically independent  of the  o ther  sample roots and the limiting distribu- 
tion of nl/~(1J2~-l) is s tandard normal N(0, 1). 

Subst i tut ing (4.8) into (4.6) and (4.7) and solving the  result ing 
equations gives the  expansion in 

THEOREM 4.1. Let 11 and 2, be the largest roots of A and X respec- 
tively, where n A  is distributed as complex Wishart W~(n, X) and the 
roots of X are simple. Then the distribution funct ion of x~=n~n(1J2~-l) 
can be expanded for  large n as 

(4.9) P (xl < x) = ~(x) -k n-i/~Q~ + n-iQ2 + O(n -3 "), 

where q~(.) denotes the standard normal distribution function,  
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(4.10) 

and 

(4.11) 

with 

1 r § 3A~Ho(x)] 

Q2= - ~ r  § 3(3 § § 18(A~-B~)H~(x)], 

7~ m 

AI=~_.~ 1/(zd--1), BI=).~ 1/ (z j -1)  2 , zj--21/2~ ( j -=l ,  2 , . . . ,  m), 
j = ~  j = ~  

and Hi(x) the Hermite polynomial of degree j tabulated to j = 10 in Ken- 
dall and Stuart [12], p. 155. 

We now consider the  distribution of the  smallest root l,,, 

(4.12) P ( l~>y) 

= P (S ~ nyI) 

= f 1 e t r  ( -X-~S)  det S'~-'~dS 
.... y~< ~,: s /~(n)  det  2: ~ 

_ (ny) '~'~ etr  ( - n y f  -1) e tr  ( -nys  det ( I §  T)~-~dT 
/~(n)  det s o< ~,= r 

(.'. T = ( n y ) - ' S - I )  

_/~(m) det (nyX-~) ~ et r  (-nyX-~)~(m, n + m  ; nyX-~) . 

Here we define another  confluent hypergeometr ic  function of a Hermi- 
tian a rgumen t  matr ix  by 

DEFINITION. 

(4.13) ~(a,c;A)-F~(a)l fo<~,~re tr ( -AT)  de tT~- '~de t ( I+T)  . . . . . .  dT 

holding for R e A > 0  and R e a > m - 1 .  

We need the  following 

LEMMA 4.2. The functions ~_~(a; c; A) and ~(a, c; A) both satisfy 
the same system of p.d.e.'s (2.12). 

PROOF. This is proved by the  same a rgument  as for the  real case 
in Muirhead [19]. We can easily show, using Lemma 4.1, tha t  

lira y~(a, b; e; I - cA-~ )=de t  A~(b ,  b - a + m ;  A) ,  

and then  the  required result  follows from the  system of p.d.e. 's  for 
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the 2/~L function given by (2.11). 

Put x,~=nln(l,,J2,~-l). Then using the system of p.d.e.'s (2.12) 

satisfied by the ~ function, with (4.12), we can readily obtain the ex- 
pansion for the distribution function of x~. Hence 

THEOREM 4.2. Let l~ and 24 be the smallest roots of A and X re- 
spectively, where n A  is distributed as complex Wishart W,s X) and 
the roots of X are simple. Then the distribution function of x~ =nln(l,J 
2~-1) can be expanded for  large n as 

(4.14) P (x~ < x) = r  + n-I/~QI + n-IQ2 + O(n -3'2) , 

where z~=2~/2,~_~+~ in  Q~ and Q2 given by (4.10) and (4.11) respectively. 

Acknowledgment 

The author wishes to thank the referee for useful comments. 

RADIATION EFFECTS RESEARCH FOUNDATION, HIROSHIM.k 

R E F E R E N C E S  

[ 1 ] Brillinger, D. R. (1969). The canonical analysis of stationary time series, in Multi. 
variate Analysis--II (P. R. Krishnaiah, Ed.), pp. 331-350. Academic Press, New York. 

[2 ] Chikuse, Y. (1974). Asymptotic expansions for the distributions of the latent roots 
of two matrices in multivariate analysis, Ph.D. thesis. Yale University. 

[3 ] Constantine, A. G. and Muirhead, R. J. (1972). Partial differential equations for hy- 
pergeometric functions of two argument matrices, ] .  Multivariate Analysis, 2, 332- 
338. 

[ 4 ] Fujikoshi, Y. (1971). Asymptotic expansions of the non-null distributions of two cri- 
teria for the linear hypothesis concerning complex multivariate normal populations, 
Ann. Inst. Statist. Math., 23, 477-490. 

[ 5] Goodman, N. R. (1963). Statistical analysis based on a certain multivariate complex 
Gaussian distribution, Ann.  Math. Statist., 35, 152-176. 

[ 6] Goodman, N. R. and Dubman, M. R. (1969). Theory of time-varying spectral analy- 
sis and complex Wishart matrix processes, in Multivariate Analysis--II (P. R. Krish- 
naiah, Ed.), pp. 351-366. Academic Press, New York. 

[7 ] Hayakawa, T. (1972). On the distribution of the latent roots of a complex Wishart 
matrix (non-central case), Ann.  Inst. Statist. lYlath., 24, 1• 

[ 8 ] Hayakawa, T. (1972). The asymptotic distributions of the statistics based on the 
complex Gaussian distribution, Ann.  Inst. Statist. Math., 24, 231-244. 

[9 ] Herz, C. S. (1955). Bessel functions of matrix argument, Ann. Math., 61, 474-523. 
[t0] James, A. T. (1964). Distribution of matrix variates and latent roots derived from 

normal samples, Ann.  Math. Statist., 35, 475-501. 
[11] James, A. T. (1968). Calculation of zonal polynomial coefficients by use of the La- 

place-Beltrami operator, Ann.  Math. Statist., 39, 1711-1718. 
[12] Kendall, M. G. and Stuart, A. (1969). The Advanced Theorr of Statistics, Vol. 1, 

Hafner, New York. 
[13] Khatri, C. G. (1964). Distribution of the largest or the smallest characteristic root 



PARTIAL DIFFERENTIAL EQUATIONS 199 

under  null hypothesis concerning complex mult ivariate normal populations, A~ln. Math. 
Statist., 35, 1807-1810. 

[1,f] Khatri ,  C. G. (1965), Classical statistical analysis based on a certain mult ivar ia te  
complex Gaussian distribution, Ann.  Math. Statist., 36, 98-114. 

[15] Khatri ,  C. G. (1966). On the distribution problems based on positive definite quad- 
ratic funct ions in normal vectors, Ann.  Math. Statist., 37, 468-479. 

[16] Khatri ,  C. G. (1969). Non-central  distributions of ith largest characterist ic  roots of 
three matr ices  concerning complex mult ivariate normal populations, Ann.  Inst. Statist. 
Math., 21, 23-32. 

[17] Li, H. C., Pillai, K. S. C. and Chang, T. C. (1970). Asymptotic expansions for dis- 
t r ibut ions of the roots of two matrices from classical and complex Gaussian popula- 
tions, Ann .  Math. Statist., 41, 1541-1556. 

[18] Muirhead, R. J. (1970). Systems of partial differential equations for hypergeometr ic  
funct ions of matr ix  argument ,  Ann.  Math. Statist., 41, 991-1001. 

[19] Muirhead,  R. J. (1970). Asymptotic distributions of some mult ivariate tests, Ann.  
Math. Statist., 41, t002-1010. 

[20] Muirhead, R. J. (t972). The  asymptotic non-central  distribution of Hotell ing's  gener- 
alized T~, Ann .  Math. Statist., 43, 1671-1677. 

[21] Muirhead, R. J. and Chikuse, Y. (1975). Asymptotic expansions for the joint and 
marginal  distr ibutions of the latent  roots of the covariance matrix,  Ann.  Statist., 3, 
1011-1017. 

[22] Priestley, M. B., Subba Rao, T. and Tong, H. (1973). Identification of the s t ructure  
of mult ivar iable  stochastic systems, in Multivariate Analysis--III (P. R. Krishnaiah,  
Ed.), pp. 351-368. Academic Press, New York. 

[23] Sugiura, N. (1973). Derivatives of the characterist ic root of a symmetr ic  or a Hermi- 
t ian mat r ix  with two applications in mult ivariate analysis, Commun. Statist., 1, 393- 
417. 

[24] Sugiyama, T. (1972). Distributions of the largest  latent  root of the mult ivar ia te  com- 
plex Gaussian distribution, Ann.  Inst. Statist. Math., 24, 87-94. 


