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Summary

Let {X,} be defined recursively by X,=6X, ,+U, (¢=1,2,---), where
X,=0 and {U,} is a sequence of independent identically distributed real
random variables having a density function f with mean 0 and vari-
ance ¢*>. We assume that [#|<1. In the present paper we obtain the
bound of the asymptotic distributions of asymptotically median unbiased
(AMU) estimators of # and the sufficient condition that an AMU esti-
mator be asymptotically efficient in the sense that its distribution attains
the above bound. It is also shown that the least squares estimator of
6 is asymptotically efficient if and only if f is a normal density function.

1. Introduction
Let X, (¢=1,2,---) be defined recursively by
X, =6X,.,+U, t=1,2,---,

where X;=0 and {U,: t=1,2,---} is a sequence of independent identi-
cally distributed real random variables having a density function f with
mean 0 and variance o°.

We shall define an estimator of # to be asymptotically efficient if
the asymptotic distribution of it attains the bound of the asymptotic
distributions of asymptotically median unbiased (AMU) estimators of 6.
We assume that [#]<1. The purpose of this paper is to obtain the
bound of the asymptotic distributions of AMU estimators of ¢ using
the asymptotic normality of the best test statistics and the sufficient
condition that an AMU estimator be asymptotically efficient. We shall
also give a necessary and sufficient condition that the least squares
estimator of # be asymptotically efficient. In fact, Theorem 2 of Sec-
tion 4 shows that under some regularity conditions the bound of the
asymptotic distributions of AMU estimators of # is a normal distribu-
tion with mean 0 and variance (1—6%/¢°I, where I is the Fisher infor-
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mation of f. Then it is easily seen that an AMU estimator is asymp-
totically efficient if it has the asymptotic normal distribution. The

least squares estimator 4,5 of 4 is given by <i Xt_lXt)/Enj X2, Itis
t=1 /i t=1

shown by Anderson [5] that n‘fz(é,;s—é’) has a limiting normal distribu-
tion with mean 0 and variance 1—#. Then Theorem 4 of Section 4

shows that under some conditions the limiting distribution of n'¥4,s—6)
attains the bound of the asymptotic distributions given by Theorem 2
if and only if f is a normal density funection with mean 0 and vari-
ance o’

The outline of the proofs of Theorems 2 and 4 is stated in Take-
uchi [9], but in this paper we shall strictly discuss them under more
general conditions. The approach in this paper is similar to Bahadur
[6] dealing with the bound for asymptotic variances.

The second order asymptotic efficiencies are discussed in Akahira
[2] and Akahira and Takeuchi [4], [10]. Further the third order asymp-
totic efficiency is studied in [10].

2. Notations and definitions

Let 2¥ be an abstract sample space whose generic point is denoted
by x, B a o-field of subsets of ¥, and let & be a parameter space,
which is assumed to be an open set in a Euclidean l-space R'. We
shall denote by (X™, ™) the n-fold direct products of (¥, B). For
each n=1, 2,---, the points of X will be denoted by Z,=(x:,---, %.).
We consider a sequence of classes of probability measures {P,,: 8¢ 6}
(n=1,2,--.) each defined on (¥, B™) such that for each n=1,2,--.
and each 6 € ©® the following holds:

Pn, B(B(n)) — P?H—l, B(B(n) X %)

for all B™ ¢ 4™,

An estimator of 0 is defined to be a sequence {4,} of F™’-measur-
able functions én on X¥™ into & (n=1,2,---).

For an increasing sequence of positive numbers {¢,} (¢, tending to
infinity) an estimator {4,} is called consistent with order {e¢,} (or {c.}-
consistent for short) if for every ¢>0 and every 9 of 6, there exist a
sufficiently small positive number § and a sufficiently large positive
number L satisfying the following:

fm  sup P,,({c.|0.—0|=L})<:

n—>o0 §:]0-9|<é
(Akahira [1], [3]). In the subsequent discussions we shall deal only with
the case when ¢,=n'"
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DEFINITION 1. A distribution function Fj;,(y) is called to be the
asymptotic (or limiting) distribution function of n*4,—6) (or {4,} for
short) iff for each y, F; ,.(y) is continuous in ¢ and for each y

lim | P, o({n"(0,—0) <y})— Fis,y.o(y) | =0
Let {4,} be a {n"?}-consistent estimator.

DEFINITION 2. {4,} is asymptotically median unbiased (or AMU
for short) iff for any 9 ¢ ® there exists a positive number § such that

lim  sup |P,({n"%8,—0)<0})—1/2|=0
n—roo §:|0—9|<3

im  sup | P, ({n"¥6,—6)=0})—1/2|=0
)

n—oo 4: |0—-9|<
If {6,} is AMU, then G;}n,,g and Gy, are defined as follows:
(1) Gii,.o(v)=Tm P, ({n**(6,—0)<y})  for all y20,

(2) Gioy)=lim P, ({n'*(6,—0)<y})  for all y<0.

Let 6, (€ ) be arbitrary but fixed. Consider the problem of testing
hypothesis H*: §=6,+in"'* (1>0) against alternative K: 6=6,. We
define 8;(2) as follows:

(3) (l)~ Sup lim E, ;(¢.) »

1€y /g noo

where @,,={{¢,}: hm E, ki (4,)=1/2, 0<0.(%,)<1 for all &, (n=1,2,

--)}. Putting A(, 0, {n'*(8,—6,)< 2} we have for 1>0 P, oy +in=t2(A G 3,0,)
= Pn,go+1n—1/2({’nl/2(0n—‘—00 m 4 <0})—1/2 (n—oo0). Since a sequence
(I A‘gn}’%} of the indicators (or characteristic functions) of A, (n=1,
2,--+) belongs to @,,, it follows from (1) and (3) that

(4) G (DB

for all 2>0.

Consider next the problem of the testing hypothesis H™: =6,+
n~'? (1<0) against alternative K: #=6,. Then we define §;(1) as fol-
lows: -
(5) Bi(A)= inf lmE,,(4,) .

(¢n) e¢1/2 n—co

Note that
(6) Bi(A)=1— SU-p ImE,, 0(n) -

( Jeo 1/2 N
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In a similar way as the case 2>0, we have from (2) and (5)
(7) Gliy,0(2) Z B D)

for all 2<0. Sinee 4, is arbitrary, the bounds of the asymptotic dis-
tributions of AMU estimators are obtained as follows:

Gy [ N=BF(2)  for all 2>0;
Gy, oA ZB7 (D) for all 2<0.
For any 6 ¢ @ letting §;(0)=1/2 we make the following definition.

DerFinITION 3. For {én} asymptotically median unbiased it is called
asymptotically efficient iff for each ¢ @

() for all 2=0,
(8) Fi 8=
B7(2) for all 2<0.
It is shown by Takeuchi and Akahira [11] that the definition of the
asymptotic efficiency works in the most common situation.
Throughout the subsequent sections we assume that X' =R' and 6
is an open interval (—1, 1) and consider the autoregressive process {X.}
given in Introduction.

3. Preliminary lemmas
The following lemma is given in Diananda [7].

LEMMA 3.1. Let {Z,: n=1,2,---} be a sequence of random variables
satisfying the following :
(i) Z,=Z,5x+R,y (n>N);
(ii) For each fixed N, the asymptotic distribution of Z,.y is normal with
mean 0 and variance o ;
(iii) 1V1m oy=0d";
(iv) R,y converges in probability to 0 uniformly in n.
Then Z, has a limiting normal distribution with mean 0 and var-

iance o
Let
(9) Y, Y.,

be a sequence of random variables.
If for some function g(n) the inequality s—r>g(n) implies that the
two sets

(YUY.”"':Yr)’ (Ys;Ys+1;"'yYn)
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are independent, then the sequence (9) is said to be g(n)-dependent ([8]).
Let (9) be m-dependent and such that E(Y,)=0, E(Y}) <o (i=1,
2,---). Then we define

A=E(Yi)+2 D E(Vin, Viw)  (1=1,2,-+).
j=1

The following lemma is given by Hoeffding and Robbins [8].

LEMMA 3.2. Let Y,,Y,, -+ be an m-dependent sequence of random

variables such that
(a) E(Y)=0, E(|V;[)SR*<o0 (i=1,2,---),

(b) limp™ ﬁ‘, A=A exists, uniformly for all 1=0,1,--..
h=1

P

Then i} Y, 18 asymptotically normal with mean 0 and variance nA.
i=1

Throughout the remainder of this paper we assume the following:

ASSUMPTION (3.1). f is once differentiable and f(u)>0 for all u
and lim f(u)=0.

u—too

Then we get the following lemma.

LEMMA 3.3. Under Assumption (3.1), if E[|U.fl<oe and

' s " . 1 2 f(0)
E[i@ | then the limiting distribut 1 S ¢
lf(U,) ]<oo en the limiting distribution of 77 & ) ot
2 ! 2
18 mormal with mean 0 and variance o'l , Wwhere Izg w)—}—du.
1-¢° flu)

. "0
ProoOF. Putting VtzL—, (t=1,2,---), we have
f(U)
VXL =2V, 50 U= 07 5V, U
t=2 j=1 t=1

t=1 =1

Put W,,=V,,;U,. Then for any fixed j, {W,,: t=1,2,---} is a jJ-
dependent sequence and E(W,,)=0 (¢=1,2,---). Since E(U})=¢"* and
E(Vi)=I (t=1,2,---), we obtain E(W;,)=4¢I (t=1,2,---). Put Z,=

(Uym) S¢S W, (n=1,2,---). Then for n=N+2
Zn:Zn,N+Rn,N ’

N n—jF n— n—j
where Z,y=(/yT) S0 S W,, and R, y=1V&) X 65 W,,.
j=1 t=1 j=N+1 t=1
We now show that Z,, has an asymptotic normal distribution with
— g . .
¢ )ﬂ. Since E(WiaryoiiaWyenson) =0 (i=1,

02

mean 0 and variance <1
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-, 73 t,h=1,2,.-.) and — 1 EE(W},HM)—UI, it follows from Lemma
3.2 that 2_1 W,. is asymptotlcally normal with mean 0 and variance
(n—7)d*l. Hence g’- 12 W;,, is asymptotically normal with mean 0 and
variance (n— )%™ 2I Put Wm=(1/y )0~ ‘2 . (7=1,2,---, N).
Then it can be shown that for each fixed N, Wf“% W, ... W are

2N
asymptotically jointly normal with mean 0 and variance (1 00 > .

Hence for each fixed N, Z,, has a limiting normal distribution with

. 1_021\/
mean 0 and variance < - >02I.

Next we show that R, , converges in probability to 0 uniformly
in n. For the purpose we have

n—-1

Eo(Rz,N)=l EH b3 0ZW”

J=N+1

J=N+1

n—-j ‘ \
+2,§ (g )( o))
_1 =D ~ wWe
= 2 =B

1 5 o N
=_Ej=%‘,+10 ID(n—5)e'l

1 n—-N-1

Z 02(n-—k—1)k0.21'
k=1

IA
3|

:_1_ {021'02("_2) n—ﬁ_l k@-m‘—l)l
n k=1 )

-N-1
< S2Jgrr-» " 2 Jof—2k=D
- k=1 :

So_21’02(1\l—2) i k0—2(k—1)
- k=1

0.2102(1\1—-2)
S (-0

Hence we see that lim E,(R% y)=0 uniformly in n. Using Chebyshev’s
N—co

inequality we obtain R, y converges in probability to 0 uniformly in n.

1-—- 02 9T 0.21' :
Since lim T aI_l 7 it follows from Lemma 3.1 that Z, has
N—eo — p—
a limiting normal dlstribution with mean 0 and variance Thus

we complete the proof.
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4. Asymptotic normality and asymptotic efficiency

In this section it will be shown that the bound of the asymptotic
distributions of AMU estimators of ¢ is obtained using the best test sta-
tistics and that the least squares estimator of ¢ is asymptotically effi-
cient if and only if f is a normal density with mean 0 and variance ¢°.

Let 6, be arbitrary but fixed in 8. Putting 6,=6,+in "% (1#0) we
define Z,, as follows:

f(Xt—ooXt—l)

Z,,=log .
fX—0.X,_1)

We assume that f is twice continuously differentiable. If #=4,, then
we have

) Ez—t f(U)
U - U A

=31 {log f(Uy)~log £(U,—in""X, )}

B S W) 2 dlog AU 4
=i g K B

o

where for each ¢, U* lies between U, and U,—in"*X,,. If 60=6,,
then we have

f(U+in"X, )
£(0)

= 2 log (U, +in~X, _)—log f(U,)}

S S(U) 1" d*log f(UX*) +,
Z f(U) XL 1+ KZ—I—_dU——Xt -1

(11) ZZm Zlog

where for each t, Ux* lies between U, and U,+in"":X,_,.
Throughout the subsequent discussions we make the following as-
sumptions :

ASSUMPTION (4.1). f is three times differentiable in a real line
and lim f’(u)=0.

U—rtoa

ASSUMPTION (4.2). d?log f(u)/du? is a bounded function and E (| U, [*)
< co.

ASSUMPTION (4.3). For each 6, €6 the following hold:
(a) limn 3 B, ([ X P sup lg'(U+nl1=0 (7=0,1);

oo & 1 o<yl <an 2| X1}
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() tma~m, [351X.0 s (g(Uanl)]=0 (=01,

0< |7l <an~ 2 Xy
d’ log f(u)
dut

Putting T,=3 X2,9(U), T¥=3 X2,g(U#) and Tn**-—-i X2.9(U),
t=1 t=1 t=1

we get the following lemmas and theorem.

where g(u)=—

LEMMA 4.1. Under Assumptions (3.1) and (4.1)—(4.3) the following
hold -

(12) E,(T)= Z E, { 2 I{f'(Uz)m _al{n—-l _0i(1—=63D))

A0 -, A-%)
(7=0,1);
(13)  lim |B,, (T/m)—E, (T/n)|=0
(14)  lm|E, (T2%/m)—E,, (T,/n)| =0
(15)  lm [Eo( T /) —Eo (T ) | =0
(16)  lim B, (T+))— B, (T/n) =0
PrROOF. Since
Xo=30770 (=01,
we have
E, (T,)=E, [g X29(U)]
g e -Eagg)
e 2. 2 (0]
=éEﬂ»[X ol
=EE B[

BN

— z:‘:i =10 B ([?)
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=1 é 02———1—0?
=t 1-—8;

- 21{"_1—6;'(1—0;(”—”) =0,1).
e -y (=0,

Hence (12) holds.
Using the mean value theorem we have

| By, (T%/m) B, (To/m)]
= (1/n) 3B, (X2 19U —g(T)]

=127 2 By [[ X sup ' (U]

0<in}<|n™H3 Xy

It follows from (a) of Assumption (4.3) that (13) holds. Similarly (14)
holds. By Schwarz’s inequality we have
17 | By, (T /12— By, (T2 /m%)|
SA{E, (T In— T )Y {Ey (T n+ Ton)}*
It follows from Assumption (4.2) and that
2

T B, (7)) =F 07 B, | {3 X2a9(U0)] |

N~ 00

<Himn™E,, Hi Xz, sup o( U}*)}Z] <o,

oo |U,~ U3t <12l V2| X e
Similarly it follows that
im E, (T2/nf) <o .
Hence we have
(18) Bm (B, (T /n-+ Tufn)} *<oo .

On the other hand it follows from (b) of Assumption (4.3) that
(19)  ImE, (T¥/n—T./n)?

=l 07t By [ {53 X005 ~a(U)] ]

N—eo

<lmn™E, [fn“{;:j{ | Xt sup g Uﬂr’mﬁ

n—oco o< ini<lain~ 3 X o)

=fm 7B, [ (S X0 sw (W)} |=0.

n—co o<inl <|2ln~ 2 xpmg|

From (17), (18) and (19) we have
lim | E,, (T [0 —Eq, (T2 | =0 .

N0
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In a similar way it follows from Assumption (4.2) and (b) of Assump-
tion (4.3) and (12) that

lim | E”x (Tn**2/n2)'—E01 (T2 n?) [=0.

Thus we complete the proof.

S0 ‘}
S(U)
<o, then both of the sequences T.[E, (TF) and T.**|E, (T}*) converge
in probability to 1.

LEeMMmaA 4.2. Under Assumptions (3.1) and (4.1)-(4.3), if E [

Proor. From (13)-(16) of Lemma 4.1 we have

lim | Var,, (T:t/n)— Var,, (T,/n)| =0 ;
lim | Vax,, (T%/m)=Var, (T,/n)|=0 ;
lim [{,, (T/m)} — (B, (T/m)}| =0 ;

lim [{E,, (T /m)}— (B, (Tm} =0 ,

where Var designates variance. Hence in order to prove that both of
the sequences T./E, (T.*) and T*/E, (T;*) converge in probability to
1, it is enough to show that

. Var, (T, .
20 m ——2-=0, =0,1).
. w (Ey (T)) o=

Indeed, it follows from (12) of Lemma 4.1 that
{E, (T)P=0(x%  (§=0,1).
Also it follows from Assumption (4.2) that

Var, (T,)=3] Var,, (X2:g(U)
+3 31 Cov,, (X2.9(U), X2ng(U)=0(m)  (=0,1),
where Cov designates covariance. Hence (20) holds. Thus we complete
the proof.
For Theorems 1, 2 and 3 we assume further the following:
! U) 4
ASSUMPTION (4.4). E[ S0 }<oo
F(U)

In the following theorem we shall show that the best test statistics
have limiting normal distributions.
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THEOREM 1. Suppose that Assumptions (3.1) and (4.1)-(4.4) hold.

If 6=6,, then é Z, has a limiting normal distribution with mean
t=1

2.2 2.2
AT ond variance 2 ”{ )
21— 16

mal distribution with mean —

If 6=6,, then é Z,, has a limiting nor-
=1

I’GZI . el
and variance .
2(1 —&) 1—¢

Proor. If #=4,, then it follows from (10) that

12 f(U) -

ROy |
W B, (T7) 2 B, (TF)
If 6=6,, then it follows from (11) that

—nE, (Tf){z

e in S T LT R

(22) zz = Zzlf(Ut) X, - 2 T.
i ol V B ONAONE g
=n"'E, (T; ){ n R, (T+%) 2 Eal(Tn**)}

It follows from (12) and (18) of Lemma 4.1 that

lim 0 B, (T)=lim n~' B, (T**)—iﬁ% (j=0,1).
oo :

Hence it is seen from Lemma 3.3 that both of the sequences of

n D (FUNFUNK 3 (PO AU o
= and t=1 have a limiting
YE,, (TF) n7t B (%)

normal distribution with mean 0 and variance

1-—-6;
=7
follows from (21), (22) and Lemma 4.2 that X Z,, has limiting normal dis-

t=1

S . Al o
tributions with means —=*=_— and ——22—
21—-65) 2(1—63)
prd g

- for =6, and for ¢=4,, respectively. This completes the proof.

0

THEOREM 2. Under Assumptions (3.1) and (4.1)-(4.4), the bound of

the asymptotic distributions of AMU estimators {én} is grven as follows:
for each €6

Therefore it

and common variances

(23) Tﬁpn,a({nl/z(én—o)gz})g@( j/‘;ﬂ; ) for all 220;
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Jor all <0,

@49 lim P, ,({n"(6,—0)<2) );gp( j/Ti 702 >

where © 18 a normal distribution with mean 0 and variance 1.

ProoF. Let 4, be arbitrary but fixed in 8. Let i be an arbitrary
positive number. Then we consider the problem of testing hypothesis
H*: =0,+n"""* against alternative K: 4=6,. If we choose a sequence

{k.} such that lim Pn,f,nﬂn-l/z({ﬁ] Zm>kn}>=1/2, then it follows by Theo-

2
rem 1 that limk,= ———'2-25'—1—.
- 2(1—63)

Furthermore we have from Theorem 1

(BET by
=1-&(—vT)=0(J),

lim P,,,%q 5 Zm>kn}> —lim P, ,

n—voo n-—s00

2 2 '
where J 2120612' Hence it follows by (3) and the fundamental lemma
of Neyman and Pearson that for each 1>0

ﬂ%(z)=a>(j‘;1_zeg) .

From (1) and (4) we obtain for every 1>0

oV T > )

]niTE P,q {n1/2(én—90)§2})§¢< V-G

Since {4,} is AMU, Bi(0)=9(0)=1/2. Hence since 4, is arbitrary, it
follows that (23) holds.

Let 1 be an arbitrary negative number. Then we consider the
problem of testing hypothesis H~: 6#=8,+in""* against alternative K:
#=6,. Henceforth by a similar way as the case 1>0, we have from (6)

- o' I Jov' T
5 (2 _~1—(I)<—— >=(D< )
Bl V1-6; V1-6;
for all 2<0. Hence it follows from (2) and (7) that for each 1<0

. A oV T
1/2 _ < > .
lim P, (6,00 1) 20( 2220

Since 6, is arbitrary, (24) holds. Thus we complete the proof.

From Theorem 2 and Definitions 1 and 3 we get the following the-
orem.



ON THE ASYMPTOTIC EFFICIENCY OF ESTIMATORS 47

THEOREM 3. Under Assumptions (3.1) and (4.1)-(4.4), an AMU
estimator {6,} is asymptotically efficient if and only if the limiting dis-
tribution of nV(6,—0) is normal with mean 0 and variance (1—6%)/al.

The least squares estimator éL s of @ is given by ( é Xc_lXt> / é X2,

It is shown by Anderson [5] that if E(U}) <o then for |9|<1, (6, ~6)
has a limiting normal distribution with mean 0 and variance 1—¢*. It
is seen that under Assumptions (3.1), (4.1) and (4.2) 8¢ is a {n¥3}-
consistent estimator. Then it is easily shown that 6, is asymptotically

median unbiased.
Throughout the remainder of this paper we assume the following:

ASSUMPTION (4.5). lim uf(u)=0.

Then it will be proved that the least squares estimator of @ is
asymptotically efficient if and only if f'(u)/f(u)==cu, where ¢ is some
constant. Indeed, since

= {S uzf(u)du} Eg <§%>2f(u)du} = {S uf’(u)du}zzl R

“=" is obtained if and only if f"(u)/f(u)=cu. It follows by Theorem 2
that the limiting distribution of nm(ém—ﬂ) attains the bound of the
asymptotic distributions if and only if f is a normal density function
with mean 0 and variance ¢°. Hence it is seen by Theorem 3 that the
least squares estimator is asymptotically efficient if and only if f is a
normal density function with mean 0 and variance ¢*. Therefore we
have now established

THEOREM 4. Under Assumptions (3.1) and (4.1)-(4.5), a mecessary
and sufficient condition that the least squares estimator of 6 be asymp-
totically efficient is that f be a mormal density fumction with mean 0
and variance a°.

Remark. As is immediately seen from above, Assumptions (3.1)
and (4.1)-(4.5) are not necessary for the proof of sufficiency.
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