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Summary 

Let {X~} be defined recursively by X~=OX~_,+U~ ( t = l ,  2 , . . . ) ,  where 
2<2o=0 and {U~} is a sequence of independent identically distributed real 
random variables having a density function f with mean 0 and vari- 
ance z~. We assume that  [0]<1. In the present paper we obtain the 
bound of the asymptotic distributions of asymptotically median unbiased 
(AMU) estimators of 0 and the sufficient condition that  an AMU esti- 
mator be asymptotically efficient in the sense that  its distribution attains 
the above bound. It is also shown that  the least squares estimator of 
0 is asymptotically efficient if and only if f is a normal density function. 

1. Introduction 

Let X~ ( t = l ,  2 , . . - )  be defined recursively by 

X~=OX~_I+U~ t = l ,  2 , - . . ,  

where X~=0 and {U~: t = l ,  2 , . . .}  is a sequence of independent identi- 
cally distributed real random variables having a density function f with 
mean 0 and variance a 2. 

We shall define an estimator of 0 to be asymptotically efficient if 
the asymptotic distribution of it attains the bound of the asymptotic 
distributions of asymptotically median unbiased (AMU) estimators of 0. 
We assume that  [0]<1. The purpose of this paper is to obtain the 
bound of the asymptotic distributions of AMU estimators of 0 using 
the asymptotic normality of the best test statistics and the sufficient 
condition that  an AMU estimator be asymptotically efficient. We shall 
also give a necessary and sufficient condition that the least squares 
estimator of 0 be asymptotically efficient. In fact, Theorem 2 of Sec- 
tion 4 shows that  under some regularity conditions the bound of the 
asymptotic distributions of AMU estimators of 6 is a normal distribu- 
tion with mean 0 and variance (1-02)/~"L where I is the Fisher infor- 
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mation of fl  Then it is easily seen that  an AMU estimator is asymp- 
totically efficient if it has the  asymptotic normal distribution. The 

least squares estimator 0ss of 0 is given by X~_~X~)//Z_~ X~L~. It  is 

shown by Anderson [5] tha t  nl/~(dss-O) has a limiting normal distribu- 
tion with mean 0 and variance 1 - 0 k  Then Theorem 4 of Section 4 

shows tha t  under  some conditions the limiting distribution of n'2(O~s-O) 
attains the bound of the asymptotic distributions given by Theorem 2 
if and only if f is a normal density function with mean 0 and vari- 
ance a ~. 

The outline of the proofs of Theorems 2 and 4 is stated in Take- 
uchi [9], but  in this paper we shall strictly discuss them under more 
general conditions. The approach in this paper is similar to Bahadur 
[6] dealing with the  bound for asymptotic variances. 

The second order asymptotic efficiencies are discussed in Akahira 
[2] and Akahira and Takeuchi [4], [10]. Fur ther  the third order asymp- 
totic efficiency is studied in [10]. 

2. Notations and definitions 

Let LE be an abstract  sample space whose generic point is denoted 
by x, _~ a a-field of subsets of :E, and let e be a parameter  space, 
which is assumed to be an open set in a Euclidean 1-space R 1. We 
shall denote by (:~,c,), .~c,)) the  n-fold direct products of (5~', .~). For 
each n=l ,  2 , . . - ,  the  points of 2U ") will be denoted by ~ = ( x l , . . - ,  x~). 
We consider a sequence of classes of probability measures {P~,~: 0 e e} 
(n=l, 2 , . . . )  each defined on (2U "), _~r such that  for each n-- l ,  2, . . .  
and each 0 e 0 the  following holds: 

P., o(B ~) = P,+ 1, ~(B~"'x :~) 

for all B c~ ~ _~c,). 
An est imator of O is defined to be a sequence {0~} of _~<~)-measur- 

able functions 0, on ~E r into 0 ( n = l ,  2 , . . . ) .  
For an increasing sequence of positive numbers {c~} (c~ tending to 

infinity) an est imator {0~} is called consistent with order {c~} (or {c~}- 
consistent for short) if for every ~>0 and every O of O, there  exist a 
sufficiently small positive number  a and a sufficiently large positive 
number  L satisfying the following: 

l~m sup P~,~({c,~IO,-OI>=L})<s 
n-~oo O: ]O-Ol<a 

(Akahira [1], [3]). In the subsequent discussions we shall deal only with 
the case when cn=n ~/~. 
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DEFINITION 1. A distribution function F{a.,,o(y) is called to be the 

asymptotic (or limiting) distribution function of n~/2(O.-O) (or {0~} for 
short) iff for each y, F@,o(y) is continuous in 0 and for each y 

lira ] P.,0( {n l /@. -  0) _<_ y} ) -- F@,o(y) { = 0.  
n ~ c ~  

Let  {0~} be a {n~/q-consistent estimator.  

DEFINITION 2. {0~} is asymptotically median unbiased (or AMU 
for short) iff for any O ~ 0 there  exists a positive number  5 such tha t  

lim sup 

lim sup 
n-~oo O: [0--01<6 

}P=,o( {n*/2(d=- 0) ~ 0} ) - 1/2 {= 0 ; 

I P~,o( { n ' ~ ( d ~ -  o) >__ 0} ) - 1/21 = 0 .  

If  {0~} is AMU, then Gc)~l,o and G~nl,o are defined as follows: 
+ 

( 1 ) G@,o(y)=hm P~,o({nl/2(O~--O)<y}) for all y > 0 ,  

( 2 ) G~=~,o(y)=lim P=,o({nl/@~-O)<y}) for all y < 0 .  

Let  0o (~ O) be arbi t rary but  fixed. Consider the problem of test ing 
hypothesis H+:  O=Oo+2n -'/2 (2>0) against al ternative K:  0=00. We 
define ~O+o(2) as follows: 

( 3 ) 80~(2) = sup ~ E=,oo(r ) , 

where  q~m= { {r lira E~,o0+~-.~ (r 0 < r  for all ~ (n=l ,  2, 
�9 . .)}. Pu t t ing  A@,oo= {n~/2(O,,--Oo)<=2} we have for 2>0 P~,0o+~-.~(A@,go) 

=P~,oo+~-.~({n~/@~-Oo-2n-'/2)<=O})-+l/2 (n----,oo). Since a sequence 
{I<a~,o0} of the indicators (or characterist ic functions) of A@,o o (n=l ,  
2 , . . . )  belongs to r it follows from (1) and (3) tha t  

for all t > 0. 
Consider next  the problem of the test ing hypothesis H - :  0=00+ 

2n -'j2 (2<0) against al ternative /<7: 0=00. Then we define 87o(2) as fol- 
lows : 

( 5 )  8~(2)= inf lim E=,,o(r ) . 

Note tha t  

( 6 ) 820(2 ) = 1-- sup lim E~,oo(r 
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In a similar way as the  case 2>0 ,  we have f rom (2) and (5) 

( 7 ) G~,Oo(2) >~o(2 ) 

for all 2<0 .  Since 00 is a rb i t rary ,  the  bounds of the  asymptot ic  dis- 
t r ibut ions  of AMU est imators  are obtained as follows: 

G~,0(2)____/~/(2) for all 2 > 0 ;  

G~j,0(2)>fl/(2) for all 2 < 0 .  

For any 0 ~ O le t t ing  /~o+(0)=1/2 we make  the  following definition. 

DEFINITION 3. For {0~} asymptot ical ly  median unbiased it  is called 
asymptot ical ly  efficient iff for each 0 e 0 

~:(2) for all  2 ~ 0 ,  
( 8 ) F~,o(2) = i 

t /3;(~) for all 2 < 0 .  

I t  is shown by Takeuchi  and Akahi ra  [11] tha t  the  definition of the  
asymptot ic  efficiency works  in the  mos t  common situation. 

T h r o u g h o u t  the  subsequent  sections we assume t h a t  X ? = R  ~ and e 
is an open in terval  ( - 1 ,  1) and consider the  autoregressive process [X,} 
g iven in In t roduct ion .  

3. Preliminary lemmas 

The  following l emma is g iven in Diananda [7]. 

LEMMA 3.1. Let {Z.: n = l ,  2 , . . - }  be a sequence of random variables 
sat is fy ing the following: 
( i ) Z~=Z~,zc+R~,N ( n > N ) ;  
(ii) For each fixed N,  the asymptotic distribution o f  Z~,v is normal  wi th  

mean 0 and variance a~.; 
(iii) ' lim a~v = a 2 ; 

(iv) R~,,v converges in  probability to 0 un i fo rmly  in  n. 
Then Z~ has a l imi t ing  normal  dis tr ibut ion with  mean 0 and var- 

iance a S. 

Let  

( 9 )  Y1, Y 2 , . "  

be a sequence of random variables. 
I f  for some funct ion g(n) the  inequal i ty  s - - r>g(n)  implies t h a t  the  

two sets 

( Y  l, Y 2 , ' " ,  Yr) , ( Ys, Ys+, , ' " ,  Y~) 
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are independent,  then the sequence (9) is said to be g(n)-dependent ([8]). 
I4 ~ Let (9) be m-dependent  and such tha t  E (Y,)=0, E(  ; )<oo ( i=1 ,  

2 , - . . ) .  Then we define 

A~=E (Y~. )+2  ~, E (Y~+._j Y~+.,) 
j = l  

(i--1, 2 , . . . ) .  

The following lemma is given by Hoeffding and Robbins [8]. 

LEMMA 3.2. Let Y~, Y2,""  be an m-dependent sequence of random 
variables such that 
(a) E(Y~)=0, E(]Y~[3)__<R~<oo ( i = 1 , 2 , . . . ) ,  

P 

(b) lim p-~ Sl, A~+~= A exists, uniformly for all i=O, 1 , . . . .  
p ~  h = l  

Then ~ Y~ is asymptotically normal with mean 0 and variance hA. 
i = l  

Throughout  the remainder of this paper we assume the following: 

and 
ASSUMPTION (3.1). f is once differentiable and f ( u ) > 0  for all u 
lim f(u)=O. 

Then we get  the following lemma. 

LEMMA 3.3. Under Assumption (3.1), i f  E [I U, 13] < oo and 
E [ f '(Ut) 3] 1 ~ f'(U,)_Xt_ ~ j <  then the limiting di tributio  of 

a2I where I= f {f'(u)}2 du. is normal with mean 0 and variance ~-,-~, f (u)  

P U, , 
PROOF. Put t ing  V , -  f ( ' )  ( t = l ,  2 , . . . ) ,  we have 

f(Ut) 

vex,_,- 0 ~-1-~ ~ - - V~ Z ~ -  Z OJ-' Z E + j  U~ 
t = l  t = 2  ~=1 j = l  t = l  

Put  Wj,~=V~+jU~. Then for any fixed j ,  {Wj.~: t = l ,  2 , . . . }  is a j-  
dependent sequence and E(W~.~)=0 ( t=l ,  2 , . . . ) .  Since E ( U : ) = a  ~ and 
E ( V 2 + ~ ) = I ( t = I ,  2 , . . . ) ,  we obtain E(W].~)=a~'I(t=I, 2 , . . . ) .  Put  Z== 

n--1 n - - j  

(1/~/W) Z 0 j - 1 Z  Wj,t ( n = l ,  2 , . . . ) .  Then for n>=N+2 
j = l  t = l  

Z,, = Z,,,~v + R,,,_v , 

~V n - j  n - 1  n - j  

where Z~,~=(1/JN) Z 0 ~-l z Wj,~ and R~,.,=(1/J-ff) Z 0 j-l ~ Wj,~. 
j = l  t = l  j = N + I  t = l  

We now show tha t  Z~,~ has an asymptotic normal distribution with 
2N 

mean 0 and variance (1 -0"]~2L  Since E(W~,~+j_~+~W~,~+j+~)=O ( i=1,  
\ 1 - - 0  2 / 
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�9 . . ,  j ;  t, h = l ,  2 , . . . )  and 1 ~, E(W],~+j.O=z2L it follows from Lemma 
n--j p h = l  

3.2 tha t  ~ Wj,, is asymptot ical ly normal with mean 0 and variance 
t = l  n--j 

(n--j)a2I. Hence #J-~Z Wj.t is asymptot ical ly normal with mean 0 and 
t:l n--j 

variance (n--j)#2(J-i)q2L Pu t  W}~)=(1/~/W)# j-~ Z Wj,~ ( j = l ,  2 , . . . ,  N) .  
t : l  

Then it can be  shown tha t  for each fixed N, W~ (~), W~(~), . . .  , W~ (~) are 

asymptot ical ly jointly normal wi th  mean 0 and variance k -~L-~ /  " 

Hence for each fixed N, Z~,~ has a limiting normal distribution wi th  
2N 

mean 0 and variance ( 1 - - ~ ' ~ q 2 ~  
\ 1 - - 0  2 / 

Nex t  we show tha t  R~,~ converges in probabili ty to 0 uniformly 
in n. For  the  purpose we have 

1 Eo 02c~-" ~ Wj,~ 
92, L J = N +  1 t = l  

EW~,~ W;,~ 
j<j '  \ t = l  

1 n--1 n--j W 2 
=-- ~, o 2~-" 2] E ( ~,~) 

j:N+I t = l  

n--1  

= - -  ~ #2(J-'(n--j)a2I 
j = N + I  

• !  n--N--I 
_ ~I, O2(~-~-'ka2I 

~'b k = l  

--• t n--N--1 = a2IO 2(~-2) Z kO -~(k-1)! 
k=l ) 

7t--N--I 

<~2102c~-2) Z kO -2~-1) 

<~210~c~-2) ~ kO -2c~-" 
k = l  

G 2 / ' 0 2 (  hr - 2 )  

(1 - -# -2 )  2 

Hence we see tha t  l imEo(R~,~)=0 uniformly in n. Using Chebyshev ' s  
N~oo 

inequali ty we obtain R~,N converges in probabili ty to 0 uniformly in n. 
2N 

Since lim 1-02~ e~I= ~---~/ it follows from Lemma 3.1 tha t  Z~ has 
~ 1-- 02 1 -  02 ~2I Thus 

a limiting normal distr ibution with mean 0 and variance i--Z~" 

we complete the  proof. 
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4. Asymptotic normality and asymptotic efficiency 

In this section it will be shown tha t  the bound of the  asymptot ic  
distributions of AMU est imators  of 0 is obtained using the best  tes t  sta- 
tistics and tha t  the  least squares est imator  of 0 is asymptotically effi- 
cient if and only if f is a normal density with mean 0 and variance a 2. 

Let  Oo be a rb i t ra ry  but  fixed in O. Put t ing  O~=Oo+2n -'/2 (2r  we 
define Z~ as follows: 

z~=log f(x~-OoX~_~) 
f ( X~--O~X~_t) 

We assume tha t  f is twice continuously differentiable. I f  0=00, then  
we have 

(lo) = log f(u ) 

-- {log f (  U~)--log f (  U~-2n-'nX~_~)} 

~ f (U~)  - 2 ~=~ g U~" 

where  for each t, U** lies be tween  Ut and U ~ - 2 n - m X , _ , .  If  0=0~, 
then  we have 

(II) log 
~=1 ~=l f (U~)  

= Z {log f (  U~+2n-~ /2X ,_d- log  f (  U~)} 

r , r  U, ~ 2 3 d" =2n_,/2 ~ j v ~, ~ _j_ _ ,  ~ log f(U~**) X~I 
- -  f(U~) - 2 ~:, d U~ ~ 

U~ + 2n X~_~. where  for each t, U~** lies be tween U~ and -'~ 
Throughout  the  subsequent  discussions we make the  following as- 

sumptions : 

A S S U M P T I O N  (4.1). 
and lira f ' ( u ) = 0 .  

f is three  t imes differentiable in a real line 

ASSUMPTION (4.2). d ~ log f ( u ) / d u  2 is a bounded function and E ([ U~ h A) 

(a)  

ASSUMPTION (4.3). For each 00 e e the  following hold: 

lim n -3n ~ Eoj [IX~_~I ~ sup Ig'(U~+7])[]=0 ( j = 0 ,  1) ; 
n ~  t = l  0<1~1 <~n-1/-'l.y~_tl 
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[{ (b) limn-3Eoj :~IX,_IP sup Ig('U~+v)l =o ( j=0,1) ,  
n-,~ t= l  o<l,H <In-1/2lXt-ll 

where g(u)= d 2 log f ( u )  
du  ~ 

n ~ n 

Putting T . = E  XL~g(UJ, T * =  ~, XLlg(U,*) and T**=~,  XL,g(U2*),  
t = l  t = l  t = l  

we get the following lemmas and theorem. 

LEMMA 4.1. Under Assumpt ions  (3.1) and (4.1)-(4.3) the fol lowing 
hold : 

n ( ~  1 4 9 ( n - 1 )  F~ l f ' ( u ~ ) l q = o 2 / t ~  ~j(1-o~ )) (12) Eoj (T~)=,Z__~ Eoj F~_llf-7-03-) t j - ( 1 - ~ )  2 I 

(13) lim [E, o (T*/n)-- Eo o (TJn)[ = 0 ; 

( j=0 ,  1); 

(14) 

(15) 

(16) 

lira lEo1 ( T * * / n ) - E , ~  ( T d n )  I=O ; 
n ~ c o  

lira I Eoo(T;*~/n2)--E~o(T:/n2)]=O ; 

lim lEo1 (T**2/n2)-E,,  (T:ln2) l=O �9 

PROOF. Since 

t - - 1  

v, ( j=0 ,  1), 
i = l  

we have 

- E~j X L I  dUe t = 1  2 

= - -  Eo~ ;-1 f ( U j  t-ll  f-~-~) i J 

= F x :  l l f ' (  v,)  l l 
,=1 L - ( f ( U J )  J 

rt ! V ~  " 

- (X:-_I) E F l f'( u,) l'] 
,:~ L(f(E) ) ] 

=:E E~ (X: 1)1 
t = l  

= I  Z E~j ~-1-~ 

= I  ~, E a].-1-,, E (U:) 
t =  ') i = l  
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1 0 ~ = I  E s - i 
,=2 l - -O~  

= ~ I  Oj(l  - -  Oj j 
(1 - -0~)  2 J 

Hence (12) holds. 
Using the mean value theorem we have 

(j=o, i). 

I E~o ( T ' i n )  -- E~o (TJn)  1 

< (1In) ~ Eoo [X?_, I g( U,*)-  g( UD 1] 

n 

--<1~1 n ' ' / `  E Eo o [[ X,_~ 13 sup 
t = l  O<l,~l <l~ln-ll2,,Xt_ll 

It  follows from (a) of Assumption (4.3) that  (13) holds. 
holds. By Schwarz 's  inequality we have 

(17) i Eoo ( T *  ? n  2) -- Eo o ( T : / n  2) I 

{Eoo ( T ' i n - -  T,#n)2} ~/2 {E, o (T*ln  + T~/n)2} 'i2 . 

I t  follows from Assumption (4.2) and tha t  

I{ i'1 lira Eoo(T:%2)=lim~ Eoo ,=,~ XAg( U~*) 

_<lim n -2 Eo o X ~ sup 
- -  n ~ r  t - - 1  

Similarly it  follows tha t  

'U ,  I g ( , + , ; )  l] 

Similarly (14) 

Hence we have 

(18) 

Eoo ( T : i n 2 ) <  oo  . 

lim {Eoo ( T: ln + T.In) 2} ,,2< oo . 

On the other  hand it follows from (b) of Assumption (4.3) tha t  

(19) lim E% ( T , * / n -  T i n )  2 
n ~ o o  

= }im n -~ Eo ~ I{~=~ X2'=-l(g( U;~) -g (  UJ)} :] 

__<limn-~Eoo R2n -1 ~ IX~_,l ~ sup Ig(U,+v)l 
k t t = l  - 2 _ n--o~ O<lv l< l~qa ~/ IX (  ~1 

[{ =lima~n-~Eoo E IX~_,I ~ sup Ig( ,+~)1 =0  t U] . 

n - - ~  t = l  o< l 'd  < l ' l n  " [ S t - d  

From (17), (18) and (19) we have 

!<i~ I E.o (T,*%:)-E~o (T:/n'-)  I = 0 .  
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In a similar way it follows from Assumption (4.2) and (b) of Assump- 
tion (4.3) and (12) that  

lira ]E~ (T**~/n~)--E~I (T~/n2)]=-O . 

Thus we complete the proof. 

Vi f'(U') '7 LEMMA 4.2. Under Assumptions (3.1) and (4.1)-(4.3), i f  E L l - f ~ -  J 

~oo, then both of the sequences T*/E,o(T* ) and T**/Eo~(T**) converge 
in probability to 1. 

PROOF. From (13)-(16) of Lemma 4.1 we have 

lim ] Varo0 ( T * / n ) -  Var~ 0 (TJn) ] = 0 ; 

lim ]Var~ (T** /n ) -Var~  1 (T~/n)]=O ; 

lira [[E~0 (T*/n)} 2 -  {E~0 (TJn)}:l  =0 ; 

lira I{E~l (T**/n)} ~- {E~ (T~/n)}~l = 0 ,  
n ~ o o  

where Var designates variance. Hence in order to prove that  both of 
the sequences T*/E~o(T;* ) and Ti**/E~(T**) converge in probability to 
1, it is enough to show that  

(20) lim Var~j (T~) = 0 ,  ( j =  0, 1). 
~ {E~j (T.)} ~ 

Indeed, it follows from (12) of Lemma 4.1 that  

{E,: (T,,)}~=O(n 2) ( j=0 ,  1). 

Also it follows from Assumption (4.2) that  

Vary: (T~) = ~ Varsj (X:_~g(U~)) 

X ~ ~ n + E  E Cov.j (~_~g(U,), x:_~g(U.))=o( ) ( j = 0 ,  1), 
t r  

where Cov designates covariance. Hence (20) holds. Thus we complete 
the proof. 

For Theorems 1, 2 and 3 we assume further the following: 

A S S U M P T I O N  (4.4). E I f '(Ut) '7 < O O .  

In the following theorem we shall show that  the best test statistics 
have limiting normal distributions. 
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THEOREM 1. 

I f  O=Oo, then ~,Z,~ has a 
t = l  

"~2z21 and variance "?a~l 
2(1-o~) l--O~ 

real distribution with mean 

Suppose that Assumptions (3.1) and (4.1)-(4.4) hold. 

l imit ing normal distribution with mean 

I f  e=o~, then Z. Z~ has a l imi t ing nor- 
t = l  

22~21 2 ~ I  and variance - - .  
2(1-o~) l--O~ 

PROOF. I f  O=00, then  it follows from (10) tha t  

r U, ~ 22 
(21) ~ Z~=2n -I/~ ~ J ' ~ X • n-~T * 

n -'~ 2 (f '(G)/f(U~))X~-~ 2~ T :  

= n - l g , o ( T : )  2 n - ~ g % ( T : )  ~ 2 Eoo(T:) " 

If  0=0~, then it follows from (11) tha t  

, 22 (22) ~ z~=2n-l~ ~ f (~) ~ ~-i~'** 
~=, ~=1 f ( U J  

n 

n -1/~ ' U, U, X,  ~ ( f (  J / f (  J) ~-~ 22 T** 

I t  follows from (12) and (13) of Lemma 4.1 tha t  

lim n -t E~ (T*)- - l im n -t E~. ( T * * ) -  s . . . . . .  ~ 1 -a~  0"=o ,  1) .  

Hence it is seen from Lemma 3.3 tha t  both of the  sequences of 

n -in ~, (f '(  U,)/f( U,))X,_I n -m ~, (f '( U~)/f( U~))X,_, 
,=1 and ~=~ have a l imiting 

n -1 EOo (T;*) n -~ Eo~ (T**) 

1-0~ Therefore  it normal distribution with mean  0 and variance s . 

n 

follows from (21), (22) and Lemma 4.2 tha t  Z Z~ has limiting normal dis- 

tr ibutions with means 22a2I and 2~s and common variances 
2 ( 1 -  o~) 2 (1 -  Oo) 

2 ~ I  for 0=0o and for 0=01, respectively. This completes the  proof. 
1--0~ 

THEOREM 2. Under Assumptions (3.1) and (4.1)-(4.4), the bound of 

the asymptotic distributions of A M U  estimators {t~} is given as follows: 
for  each 0 E O 

(23) lim P~o([nl/2(O~-O)<a})<_r 2a~f-[ I for  all 2>--0" 
. -~ ' - - ~ / i - : - ~  - ' 
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(24) l ira P~,o({n"(~,~-~)<~})>-r  for all 2 < 0  ....  - \ ~ /  

where ~ is a normal  d is t r ibut ion wi th  mean 0 and variance 1. 

PROOF. Let 00 be arbitrary but fixed in e. Let 2 be an arbitrary 
positive number. Then we consider the problem of testing hypothesis 
H+: 0=~0+2n -1/2 against alternative K: 0=00. If we choose a sequence 

s u ~  ~ ~ m ~ 0 + ~  ~ ( I ~ > ~ l t : ~  ~ ~ ~ ~ o n  i~ ~o.ow~ ~ ~ e o  
t = l  

rein 1 that  lira k~-  22a2I 
~-~ 2(1--0~)" 

Furthermore we have from Theorem 1 

. . . .  ~ ~oo({~ ~>~})=!i~ P~ oo(t ~ ~_~-~ > ~ - ~  ~ ~) 
= 1 -  ~ ( -  # 7 )  = ~ (~ f2 - ) ,  

where J =  22~2I Hence it follows by (3) and the fundamental lemma 
1-0~" 

of Neyman and Pearson that  for each ~>0 

~(~) = ~ ( ~ , / T  

From (1) and (4) we obtain for every 2:>0 

P~,~o( {n'~(~ Oo) <2} ) <-_ ~ ( ) l i ra 

Since {0,} is AMU, fl~(0)=@(0)=1/2. Hence since 0o is arbitrary, it 
follows that  (23) holds. 

Let ~ be an arbitrary negative number. Then we consider the 
problem of testing hypothesis H - :  0=#0+2n -~/2 against alternative K: 
0=t~0. Henceforth by a similar way as the case 2>0, we have from (6) 

~(2)=1- \ - ~ /  , / ~ /  

for all ~<0. Hence it follows from (2) and (7) that  for each 2<0 

Since 80 is arbitrary,  (24) holds. Thus we complete the proof. 

From Theorem 2 and Definitions 1 and 3 we get the following the- 
orem. 
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THEOREM 3. Under Assumptions (3.1) and (4.1)-(4.4), an A M U  

estimator {t~} is asymptotically ej~cient i f  and only i f  the l imi t ing  dis- 

tribution of n~/2(~--8) is normal with mean 0 and variance (1-82)/r 

The least  squares es t imator  0Ls of 8 is given by ( '~ X~_~Xt X~(,. 

I t  is shown by Anderson [5] t ha t  if E ( U~ ~) < co then  for 181 < 1, n~/~(~- 8) 
has a l imit ing normal  distr ibut ion wi th  mean  0 and variance 1--8 2. I t  

is seen t h a t  under  Assumptions  (3.1), (4.1) and (4.2) t~:s is a {n~n} - 

consis tent  es t imator .  Then it is easily shown t h a t  ~Ls is asymptot ical ly  
median  unbiased.  

T h r o u g h o u t  the  remainder  of this paper  we assume the  following" 

ASSUMPTION (4 .5) .  l i m  uf(u)=O. 
U ~ •  

Then i t  will be proved t h a t  the  least squares es t imator  of 8 is 
asymptot ical ly  efficient if and only if f ' ( u ) / f (u )=cu ,  where  c is some 
constant .  Indeed, since 

t u 2 2 

\ 3tu) / 

"="  is obtained if and only if f ' ( u ) / f (u )=cu .  I t  follows by Theorem 2 
n 

t h a t  the  l imi t ing distr ibut ion of n '~(SLs-8)  a t ta ins  the  bound of the  
asympto t ic  distr ibutions if and only if f is a normal  densi ty  funct ion 
wi th  mean  0 and variance a 2. Hence it  is seen by Theorem 3 t h a t  the  
least  squares es t imator  is asymptot ical ly  efficient if and only if f is a 
normal  densi ty  funct ion wi th  mean  0 and variance r Therefore  we 
have now established 

THEOREM 4. Under Assumptions (3.1) and (4.1)-(4.5), a necessary 
and suj~cient condition that the least squares estimator of 8 be asymp- 
totically eJ~cient is that f be a normal density funct ion with mean 0 
and variance a 2. 

Remark.  As is immedia te ly  seen from above, Assumpt ions  (3.1) 
and (4.1)-(4.5) are not  necessary for the  proof of sufficiency. 
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