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Summary 

This paper presents a unified approach for the construction of Second 
Order Rotatable Designs (SORD) with factors each at four and six levels. 

1. Introduction 

Second Order Rotatable Designs (SORD) were introduced by Box and 
Hunter [4]. They obtained these designs through regular geometrical 
configurations. Subsequently, various authors, viz., Bose and Draper [1], 
Box and Behnken [2], [3], Draper [10], Das [6], Das and Narasimham 
[7] and others constructed these designs using different techniques. An 
examination of these works on SORD however, reveals that  there is no 
design available with factors at four or six levels each. As designs with 
four or six levels of each of the factors are sometimes necessary, there 
is a need to investigate methods for constructing such designs. Some 
investigations in this direction have been made recently by Nigam and 
Dey [11] and Dey [8]. 

In the present paper, a unified method for the construction of four 
and six levels SORD has been presented. 

. SORD with factors at four levels each 

Consider a Balanced Incomplete Block (BIB) design with usual param- 
Let M=(m~j) be the incidence matrix of the BIB eters v, b, r, k, ~. 

design, where 

I 1, if the j t h  t reatment  occurs in the i th block 

0, otherwise; i = l ,  2 , . . . , b ;  j = l ,  2 , . . . , v .  

From the matrix M, we obtain another matrix D by omitting any 
column. Evidently D is b •  matrix. In D, replace the unity by 

and zero by /~, and call the resultant array as D*. Next 'mul t ip ly '  
(in the sense of [7]) each of the rows of D* by those of a 2 p factorial 
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with levels + 1  and - 1 ,  where  2 p denotes the  smallest fraction of 2 v-~ 
factorial such tha t  no interaction with four factors or less is confounded 
for obtaining the  fraction. As a consequence of this operation, we ob- 
tain a set of N=b2 p, (v-1)-dimensional  points. These points evident ly 
satisfy the fol lowing conditions : 

(A) x ~  =0 ,  if any ~ is odd for ~ = 0 ,  1, 2 or 3 and Z a~<4. 

N 

(B) N x~=Constant=2P[r~2+(b-r)~2]=Ni2 (say), 

N 

N x~=Constant=2"[rc~4+(b-r)~4], for all i=1, 2 , . . . ,  v - 1 .  
g = l  

N 

(C) N x~x}~=Constant=2"[2~+(b-2r+i)~'+2(r-2)~2~ ~] 

=N24 (say); i c j ,  i, j = l , - . . ,  v - 1 .  

In the  above expressions, x~ denotes the  i th  coordinate in the  u th  
point, i = 1 ,  2 , . - - ,  v - l ,  u = l ,  2 , . . . ,  N. 

Now, in order  t ha t  the  N, (v-1)-dimensional  points form a SORD in 
(v- - l )  factors,  these points must  satisfy two additional conditions, given 
below, apar t  f rom the  conditions (A), (B) and (C): 

~ i u X j u - -  ~,, ~u 

(E) 24/2~>M/(k'+2), where  M denotes the  number  of factors in the  
design;  in our case M = v - 1 .  

Condition (E) is evidently satisfied by the  N points, as these points 
do not lie on a "Sphere ."  

Applying condition (D) on the  N points obtained above, we have 

ra' § (b -  r)~' = 3[2s + (b -  2r + 2)~' + 2 ( r -  2)a~ 2] . 

Simplifying, we have 

(2.1) (32 - r )a  4 + (2b - 5r  + 32)fl 4 + 6 ( r -  2)a2~ -~ = 0 .  

We now classify the  BIB designs according as (i) r=32 ,  (ii) r < 3 2  
or (iii) r > 3 L  We t rea t  these cases separately.  

Case 1. r=32. 
When r = 3 L  (2.1) reduces to 

(2.2) (2b-- 4r)fl 2 + 6 ( r -  2)a~'~ 2 = 0 .  

From (2.2), it is clear tha t  a positive solution for ~2/a2 is possible 
if and only if 
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2 b - - 4 r < 0 .  

We now prove 

LEMMA 2.1. In  a B IB  design with parameters v, b, r, k, t, i f  r =  
3i, b>___2r. 

PROOF. It  has been shown in [9] tha t  for any BIB design, 

b>=3( r -~) .  
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Thus, obviously for r = 3i, b>_2r. 

We thus see tha t  a SORD with factors  each at four levels cannot 
be constructed through a BIB design with r = 3 L  using the above tech- 
nique. 

Case 2. r =/= 3i. 

When r r  (2.1) may be wr i t ten  as 

(2.3) ( 2 b -  5r + 3~)x ~ § 6 ( r -  2)x-i- 31 - r = 0 ,  

where  x=fl2/a z. Solving (2.3) for x, we obtain 

(2.4) x = [ - 6 ( r - ~ ) + _  ~/ { 3 6 ( r - ~ ) ~ - 4 ( 3 ~ - r ) ( 2 b - 5 r  +3~)} ]/ 

{2(2b-5r+3~)} . 

From (2.4), it is clear tha t  in order tha t  x is real, we must  have 

(2.5) 3 6 ( r -  2)~- 4 (31-  r) ( 2 b -  5r + 3i) > 0 .  

From (2.5), we infer tha t  if ( 2 b - 5 r + 3 ~ ) < 0  and r ~ 3 2 ,  a real posi- 
t ive solution for x will always exist. Fur ther ,  if r > 3 ~  and ( 2 b - 5 r +  
32)>0, a positive solution for x will always exist. I t  is also noted tha t  
the  solution is not equal to unity.  

We now prove 

LEMMA 2.2. For a B IB  design with r~3~,  S~O i f  2 v ~ 3 k + 2 ,  where 
S = 2 b - 5 r  +32. 

PROOF. We have 

(2.6) S = 2 b - 2 r - 3 ( r - ~ )  . 

Also, 

(2.7) r -  2 = r -  r ( k -  1 ) / (v -  1) . 

Subst i tu t ing for r - ~  from (2.7) in (2.6) and af ter  some simplification, 
we obtain, 



170 T . K .  GUPTA AND A. DEY 

(2.8) k ( v -  1)Sir= ( v - k )  ( 2 v - 3 k + 2 ) .  

Hence the lemma. 

It  is easy to note tha t  the following series of BIB designs satisfies 
(i) r < 3 2  and (ii) 2 v < 3 k + 2 :  

(2.9) v=b , r = k = v - 1 ,  2 = v - 2  , v ~ 3  . 

However, this series of designs does not exclude the possibility of exist- 
ence of other BIB designs with r < 3 2  and satisfying 2 v < 3 k §  For 
instance, the following two BIB designs do not belong to the series (2.9) 
and still have r < 3 2  and 2 v < 3 k + 2 :  
i) v=5,  b=10, r=6,  k=3 ,  2=3. 

ii) v=6 ,  b=15, r=10 ,  k=4 ,  2=6. 
We may now summarise the above discussion in the following. 

THEOREM 2.1. I f  there exists a BIB  design with parameters v, b, 
r, k, 2 satisfying (i) r < 32 and (ii) 2v< 3k+2,  then we can construct a 
SORD for  ( v - l )  factors with factors each at four  levels. 

It  has been remarked earlier that  if r > 3 2  and ( 2 b - 5 r + 3 2 ) > 0 ,  a 
real positive solution for f12/a2 is always available. From (2.8) we find 
tha t  if 2 v > 3 k + 2 ,  then (2b--5r+32)>0.  We note that  the following 
series of BIB designs have this proper ty :  

(a)  v , b = ( ~ ) ,  k=2,  r = v - 1 ,  2=1, v>4.  

(b) v = b = s 2 §  r = k = s + l ,  2=1, s>2.  
(c)  v=b, r = k = l ,  2=0. 

Thus, if there exists a BIB design satisfying r>32  and 2 v > 3 k + 2 ,  
we can always construct a (v-1)-factor  SORD, using the BIB design. 
If the  chosen BIB design is symmetrical  the resultant SORD will ob- 
viously have minimum number  of points. 

3. SORD with factors at six levels each 

In this section, we deal with a method of construction of SORD 
with factors at six levels each. 

Let it be possible to find an s •  array D satisfying the following 
conditions : 

i) There are exactly three symbols in the array, denoted by 0, 1, 2 
(say). 

ii) In each column of the array, the i th  symbol occurs exactly r~ 
times ( i=0,  1, 2). 

iii) In each row of the  array, the  i th  symbol occurs exactly k~ t imes 
(i = 0, 1, 2). 
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iv) In any s •  sub-array of D, the f requency of the pair ( i , i )  is 2, 
and is constant  for any permutat ion of columns, i = 0 ,  1, 2. 

v) If 2~i denotes the  f requency of the ordered pair (i, j )  in any s •  
sub-array of D, then ~j+2j~ is constant for given (i, j )  i=/=j, i, j 
=0,  1, 2 and for any permutat ion of columns. 

From D, we obtain another  a r ray  D* by omit t ing a column of D. 
It  is easy to see then tha t  D* also satisfies all the  conditions i), ii), 
iv) and v) of D but  not iii). 

Now, for construct ing a six-level SORD replace in D*, zero by a, 1 
by ~ and 2 by 7. 'Mul t ip ly '  each of those s combinations involving 
a, fl and y by those of a 2" factorial with levels _+1, where  2 p is the  
smallest fraction of 2 ~-I without  confounding any interaction with  four 
factors or less. Thus, we get  N (=s2P), (k-1)-dimensional  points which 
satisfy the  following relat ions:  

(A') ~ I~:[ 'x ' ; '}=0, if any a, is odd for a ,=0,  1,2 or 3 and ~a ,=<4.  
u = l  [ i = 1  

N 

x" - Constant = 2P[r0a 2 + r~fl 2 + r2y :] = N).:, (say), (B') Z ~--  

N 

~, x~ --Constant=2p[roa~ +r~fl~ +r2y4] ", i = 1 ,  2 , . .  �9 k - 1 .  

iV 

(C') ~, x ~ x ~  = Constant = 2~[200a 4 + ~nfl 4+ ~-~ + (~0~ + ~,0)a~ ~ 
~ t= l  

+ 

=N2~ (say) ; i c j ,  i, j = l ,  2 , . . . ,  k--1.  

Now, in order tha t  the  N points obtained above form a SORD, 
these points must  satisfy the  conditions (D) and (E) of Section 2, 
apar t  f rom (A'), (B'), (C') above. Condition (E) is satisfied by these N 
points, as they  are not equidistant f rom the origin. Applying condi- 
tion (D) on these N points, we obtain, 

" 2 2 roa ~ + r ~  ~ + r~T ~ = 3 [~ooa ~ + ~nfl ~ + 2s~ ~ + /~ f l~  + t;:a ~ + t~fl~T ] ,  (3.1) 

where  

ttl=20~-}- ~10, /~2=,~02+ ~20, ' ~=  212+,tu. 

The equation (3.1) reduces, a f te r  simplification, to 

(3.2) (r0 - 3~00)u 2 + (r~ - 3~n)o~ 2 - 3/~uo~- 3/~2u- 3u~(o § ( r2-  3~2~) = 0 ,  

where  

, . 

Since (3.2) involves two unknowns u and oJ, we may choose one of 
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them arbi t rar i ly  so t ha t  the solution of the other is real and positive. 
The value of ~ can be determined from the relation 

2p[r0u + r~oJ + r2]y s =- N (fixing 22-- 1) .  

From the  above discussions, it  is clear t ha t  a six-level SORD can be 
constructed if we can find an a r ray  D, sat isfying conditions i), ii), iii), 
iv) and v), which fu r the r  permits real positive solutions for u and o~. 
In what  follows, we shall demonstrate  tha t  if v ( = 2 t + 1 ) ,  t a positive 
integer  is a prime or a prime power, we can construct a six-level SORD 
for (v--l)  factors. Since t can be ei ther  even or odd, we take up these 
two cases separately.  

Case 1. t = 2 n  

Since v = 2 t + l = a  prime power, GF(v) exists. I t  has been shown 
by Saha and Gupta [12] t ha t  a three-symbol Part ial ly Balanced Array  
[5] of s t r eng th  two exists with v = 4 n + l  constraints and 8 n + 2  assem- 
blies. We describe their  method of construction for the sake of com- 
pleteness. 

Let  0, 1 , . . - ,  v - 1  be the elements of GF(v) and x be a primitive 
element of GF(v).  Let  R be a row vector containing all the v elements 
of GF(v). From R, obtain another  row vector R* by replacing in R, 
zero by 1, the  elements corresponding to even powers of x by 2 
and the elements corresponding to odd powers of x by 0. Next ,  per- 
mute  R* cyclically t o  obtain a square matr ix  A~ of order v. Let  As 
be another  mat r ix  whose rows are ' i m a g e s '  of the rows of A~, i.e. if 
z~ 1) is the i th  row of A~, then  the corresponding row of A2, say, z~ ~) is 
given by 

z~1)+z~=(2, 2 , . . . ,  2) . 

A - f A ~  is a three-symbol Part ial ly Balanced Array involving v Then, - \As /  

constraints,  2v assemblies, and s t reng th  two, where v = 4 n + l .  
I t  is easy to see t h a t  A satisfies all the  requirements of D. For 

this case, we have 

r 0 = 4 n ,  r ~ = 2 ,  r 2 = 4 n ,  

200=2n--1, 2 ~ = 0 ,  ~ 2 = 2 n - 1 ,  

~ = 2 ,  /~2=4n, t t3=2.  

Subst i tu t ing these values in (3.2), we have 

(3.3) or, 
- -  (2n -- 3)u 2 + 2oJ s -- 6uoJ -- 12nu -- 6o~-- (2n-- 3) = 0 

(2n -- 3)u ~ -  2oJ s + 6u~o + 12nu + 6(o -~- 2 n - -  3 = 0 . 
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Solving for u in te rms of oJ, we obtain 

(3.4) u . -  -(6oJ+12n)_+~ 
( 4 n - 6 )  ' 

where  

(3.5) ~2 = 12oJ2 + 128n 2 + 96noJ + 48n + 16noJ ~ + 72o~- 36 . 

In order to make the value of u real and positive, we must  have 
(for n > l )  

(a)  8>0  
(3.6) 

(b)  3 - - (6oJ+12n)>0 .  

Thus, the  problem now reduces to the  choice of oJ in such a man- 
ner tha t  (3.6) is satisfied. Since oJ is necessarily positive, (a) of (3.6) 
can readily be satisfied by  a suitable choice of oJ. Fur ther ,  condition 
(b) of (3.6) is equivalent to the following condition: 

(3.7) - 2 o J 2 + 6 o ~ + 2 n - 3 < 0  . 

It may be remarked here tha t  if (3.7) holds, then (a) of (3.6) also 
holds. Thus, we may choose o~ in order to sat isfy (3.7) only. I t  is 
easy to see tha t  (3.7) is satisfied for all oJ given by  

i) o~ < (3-- ~ / ~ - +  3 )/2 
(3.8) 

ii) oJ>(3+ ~ /4n+3  ) /2 .  

The value of oJ given in i) of (3.8) is however  in admissible for our 
purpose. Thus, we shall consider only the  value of oJ given in ii) of 
(3.8). 

For  n=l ,  it is seen tha t  oJ=2 provides a positive solution for u. 
The following table gives the  solutions of u and o~ for 1_-<n<5. 

T ab l e  1 

n No. of f ac to r s  No. of des ign  
po in t s  

Solut ion of* 

1 4 160 0.1244 2 

2 8 1152 0.1454 4 

3 12 6656 0.0830 4 

4 16 8704 0.0415 4 

* In  t he  above table,  only  one so lu t ion  of u and  w is g iven .  

Case 2. t = 2 n + l  

For this ease also, one can get  a three-symbol Part ial ly Balanced 
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Array  in the  same manner  as described for the case t=2n. However ,  
when t = 2 n + l ,  the  matr ix  A~, defined earlier, itself serves our purpose, 
as A, satisfies all the  conditions of D. 

r 0 = 2 n + l ,  r ~ = l ,  

200:n , 2 n : 0  , 

/~,=1,  t ~ 2 = 2 n §  

In this case, we have 

r 2 = 2 n §  , 

2 = = n ,  

/ ~ 3 = 1  . 

Subst i tu t ing  these values in (3.2), we obtain 

(3.9) (n--1)u2 +(6n + 3oJ+ 3)u + 3o~+(n--1)-o~2=O . 

The equation (3.9) involves two unknowns u and o~ (for a given 
value of n) and hence we fix oJ arbi trar i ly so that  a positive solution 
of u is obtained. In the  following table, we have presented solutions 
of u and o~ for 1_<n_<4. 

Tab le  2 

n No. of fac tors  No. of des ign  
po in t s  

Solut ion of* 

Zl (0 

1 6 224 0.1905 4 

2 10 704 0.1107 4 

4 18 4864 0.0256 4 

* Here  also, 0n ly  one  so lu t ion  of u and  oJ is repor ted .  

Remark 

I t  is clear f rom Table 1 tha t  most of the designs for the  cast t =  
2n require a large number  of points. However ,  designs with smaller 
number  of points can be obtained by  omit t ing a requisite number  of 
columns from the  designs for the  case t = 2 n + l .  For instance, the  de- 
sign in 8 factors  given in Table I requires 1152 points whereas,  an 8- 
factor  design in only 704 points can be obtained by  omitt ing any two 
columns from the 10-factor design given in Table 2. 
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