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Summary

This paper presents a unified approach for the construction of Second
Order Rotatable Designs (SORD) with factors each at four and six levels.

1. Introduction

Second Order Rotatable Designs (SORD) were introduced by Box and
Hunter [4]. They obtained these designs through regular geometrical
configurations. Subsequently, various authors, viz., Bose and Draper [1],
Box and Behnken [2], [3], Draper [10], Das [6], Das and Narasimham
[7] and others constructed these designs using different techniques. An
examination of these works on SORD however, reveals that there is no
design available with factors at four or six levels each. As designs with
four or six levels of each of the factors are sometimes necessary, there
is a need to investigate methods for constructing such designs. Some
investigations in this direction have been made recently by Nigam and
Dey [11] and Dey [8].

In the present paper, a unified method for the construction of four
and six levels SORD has been presented.

2. SORD with factors at four levels each

Consider a Balanced Incomplete Block (BIB) design with usual param-
eters v, b, r, k, . Let M=(m,,) be the incidence matrix of the BIB
design, where

1, if the jth treatment occurs in the 4th block
My, =
i 0, otherwise; i=1,2,---,b; j=1,2,--+,v.

From the matrix M, we obtain another matrix D by omitting any
column. Evidently D is bx(v—1) matrix. In D, replace the unity by
a and zero by 8, and call the resultant array as D*. Next ‘multiply’
(in the sense of [7]) each of the rows of D* by those of a 27 factorial
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with levels +1 and —1, where 2? denotes the smallest fraction of 2°°!
factorial such that no interaction with four factors or less is confounded
for obtaining the fraction. As a consequence of this operation, we ob-
tain a set of N=0b2?, (v—1)-dimensional points. These points evidently
satisfy the following conditions :

(4) Z {]—[ 2,38 ;: , if any «; is odd for «;=0,1,2 or 3 and X a;=4.

ns

(B) E =Constant =27[ra’+ (b—7r)8*] = N2, (say),

Eijxju_Constant 27[rat +(b—r)f'], for all +=1,2,---,v—1.

ha
(C) X atah,=Constant =27[Aa*+ (b— 27+ 2)§* + 2(r — D3]
u=1
:Nlé (Sa‘Y) ; 1:$j’ ,’:; j:]_,- ) v—1.

In the above expressions, z,, denotes the ith coordinate in the wuth
point, +=1,2,---,v—1, u=1,2,..-, N.

Now, in order that the N, (v—1)-dimensional points form a SORD in
(v—1) factors, these points must satisfy two additional conditions, given
below, apart from the conditions (A), (B) and (C):

(D) 333 whah=2 ol
(E) AJE>SE](K +2), where k' denotes the number of factors in the
design ; in our case K =v—1.

Condition (E) is evidently satisfied by the N points, as these points
do not lie on a “Sphere.”
Applying condition (D) on the N points obtained above, we have

rat+(b—r)8 =3[t + (b—2r + ) + 2(r — D*F] .
Simplifying, we have
(2.1) (B1—r)at +(2b—5r+32)8 +6(r— Do’ F=0 .

We now classify the BIB designs according as (i) r=34, (i) r<32
or (iii) r>34. We treat these cases separately.

Case 1. r=3a.
When r=34, (2.1) reduces to

(2.2) (20— 47) G+ 6(r — DB =0

From (2.2), it is clear that a positive solution for f%/a* is possible
if and only if
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2b—4r <0 .

We now prove

LEmMMA 2.1. In o BIB design with parameters v, b, r, k, 2, if r=
32, b=2r.

PrOOF. It has been shown in [9] that for any BIB design,
b=3(r-—-2) .
Thus, obviously for =34, b=2r.

We thus see that a SORD with factors each at four levels cannot
be constructed through a BIB design with r=32, using the above tech-
nique.

Case 2. r=34.
When r+#34, (2.1) may be written as

(2.3) (2b—57+32)2+6(r— Dx+31—r=0 ,

where x=48a*. Solving (2.3) for z, we obtain

(2.4) w=[—6(r—2) =+ [36(r— A —4(31—7) (2b—5r + 3011/
{2(26—5r+32)} . '

From (2.4), it is clear that in order that x is real, we must have
(2.5) 36(r— 2y —4(32—7)(2b—5r+31)>0 .

From (2.5), we infer that if (26—57r+31)<0 and <34, a real posi-
tive solution for z will always exist. Further, if »>34 and (26—5r+
31)>0, a positive solution for x will always exist. It is also noted that
the solution is not equal to unity.

We now prove

LEMMA 2.2. For a BIB design with r<32, S<0 if 2v<3k+2, where
S=2b—5r-+32.

Proor. We have

(2.6) S=2b—2r—-3(r—12) .
Also,
(2.7 r—l=r—rk—-1)/(v-1).

Substituting for »—2 from (2.7) in (2.6) and after some simplification,
we obtain,
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(2.8) Ev—1S/r=(w—k)(2v—3k+2) .
Hence the lemma.

It is easy to note that the following series of BIB designs satisfies
(i) <32 and (i) 2v<3k+2:

(2.9) v=b, r=k=v-1, A1=v-2, v=23.

However, this series of designs does not exclude the possibility of exist-
ence of other BIB designs with <3 and satisfying 2v<8k+2. For
instance, the following two BIB designs do not belong to the series (2.9)
and still have r<32 and 2v<3k+2:
i) v=5, b=10, r=6, k=3, 1=3.
ily v=6, b=15, r=10, k=4, 1=6.

We may now summarise the above discussion in the following.

THEOREM 2.1. If there exists a BIB design with parameters v, b,
r, k, 1 satisfying (1) r<31 and (i) 2v<3k+2, then we can construct a
SORD for (v—1) factors with factors each at four levels.

It has been remarked earlier that if >31 and (26—5r+32)>0, a
real positive solution for g%/a? is always available. From (2.8) we find
that if 2v>8k+2, then (2b—57r+32)>0. We note that the following
series of BIB designs have this property:

(2) v,b:(%’), k=2, r=v—1, 1=1, v>4.

(b) v=b=s+s+1, r=k=s+1, 1=1, s>2.
(e¢) v=b, r=k=1, 2=0.

Thus, if there exists a BIB design satisfying r>31 and 2v>3k+2,
we can always construct a (v—1)-factor SORD, using the BIB design.
If the chosen BIB design is symmetrical the resultant SORD will ob-
viously have minimum number of points.

3. SORD with factors at six levels each

In this section, we deal with a method of construction of SORD
with factors at six levels each.
Let it be possible to find an sxk array D satisfying the following
conditions :
i) There are exactly three symbols in the array, denoted by 0,1, 2
(say).
ii) In each column of the array, the ith symbol occurs exactly r;
times (=0, 1, 2).
i) In each row of the array, the ith symbol occurs exactly %, times
(i=0,1, 2).
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iv) In any sx2 sub-array of D, the frequency of the pair (4, 7) is 4,
and is constant for any permutation of columns, 1=0, 1, 2.

v) If 2,; denotes the frequency of the ordered pair (¢, 7) in any sx2
sub-array of D, then i1, is constant for given (¢, J) 1#J, %, 7
=0,1, 2 and for any permutation of columns.

From D, we obtain another array D* by omitting a column of D.
It is easy to see then that D* also satisfies all the conditions i), ii),
iv) and v) of D but not iii).

Now, for constructing a six-level SORD replace in D*, zero by «a, 1
by B8 and 2 by y. ‘Multiply’ each of those s combinations involving
@, 8 and y by those of a 27 factorial with levels +1, where 27 is the
smallest fraction of 27! without confounding any interaction with four
factors or less. Thus, we get N (=s2?), (k—1)-dimensional points which
satisfy the following relations:

N (k=
(A" ug{gl xi,‘;ii:O, if any «; is odd for «,;=0,1,2 or 3 and ;aigél.

N
(B") E,l x}, = Constant =27[r* +r 2+ 1;y*]= N1, (say),

M=

x}, = Constant =27[r' + 18 +7y']; 1=1,2,---, k—1.

3
il

1

N
(C’) wfuxiu = ConStant - 21’[2006!4 + 111‘84 + /222]’4 + (201 + Zlo)azﬁ?‘

u=1
+ (on + 1zo)a27‘2 + (312 + 221).3272]
=N, (say); %74, t,5=1,2,---, k—1.

Now, in order that the N points obtained above form a SORD,
these points must satisfy the conditions (D) and (E) of Section 2,
apart from (A", (B'), (C') above. Condition (E) is satisfied by these N
points, as they are not equidistant from the origin. Applying condi-
tion (D) on these N points, we obtain,

(3.1) 7t 7B 1t =3t + 2B At 4 gl Bt P B
where
m=dnt Ay, m=Aetlw,  pm=Aaey
The equation (3.1) reduces, after simplification, to
(8.2)  (ry—3l)u’+(ry— 320 —Bpuw—3pu — 3w+ (r;—32) =0 ,
where
u=dlt,  o=FIr.

Since (3.2) involves two unknowns % and w, we may choose one of



172 T. K. GUPTA AND A. DEY

them arbitrarily so that the solution of the other is real and positive.
The value of y can be determined from the relation

2 rgu+rio+rlf=N (fixing 3,=1) .

From the above discussions, it is clear that a six-level SORD can be
constructed if we can find an array D, satisfying conditions i), ii), iii),
iv) and v), which further permits real positive solutions for % and .
In what follows, we shall demonstrate that if v (=2t+1), ¢ a positive
integer is a prime or a prime power, we can construct a six-level SORD
for (v—1) factors. Since ¢ can be either even or odd, we take up these
two cases separately.

Case 1. t=2n

Since v=2t+1=a prime power, GF(v) exists. It has been shown
by Saha and Gupta [12] that a three-symbol Partially Balanced Array
[5] of strength two exists with v=4n-+1 constraints and 8n+2 assem-
blies. We describe their method of construction for the sake of com-
pleteness.

Let 0,1,---,v—1 be the elements of GF(v) and z be a primitive
element of GF(v). Let R be a row vector containing all the v elements
of GF(v). From R, obtain another row vector R* by replacing in R,
zero by 1, the elements corresponding to even powers of z by 2
and the elements corresponding to odd powers of x by 0. Next, per-
mute R* cyclically to obtain a square matrix A, of order ». Let A4,
be another matrix whose rows are ‘images’ of the rows of A,, i.e. if
2 is the ith row of A;, then the corresponding row of A4,, say, z® is
given by

EO+20=(2,2,--,2).

Then, A=<ﬁ‘> is a three-symbol Partially Balanced Array involving o
2

constraints, 2v assemblies, and strength two, where v=4n-+1.
It is easy to see that A satisfies all the requirements of D. For
this case, we have

ro=4n, r=2, ry=4n ,
200:2”/"'1 9 111——-—'0 y 222-—_—27&—1 y
m=2, m=4n, m=2.

Substituting these values in (3.2), we have

—(2n—3)u+ 20— 6uw—12nu—6w—(2n—3)=0
(3.3) or,
(2n—3)yut—20*+6uw+12nu+6w+2n—-3=0 .
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Solving for « in terms of w, we obtain

(4n—6) ’
where
(3.5) F=120"+ 1281+ 96nw+ 4810+ 1616°+720—36 .

In order to make the value of % real and positive, we must have
(for n>1)

(a) 6>0
(b) 0—(Bw+12n)>0 .

(3.6)

Thus, the problem now reduces to the choice of w in such a man-
ner that (3.6) is satisfied. Since « is necessarily positive, (a) of (3.6)
can readily be satisfied by a suitable choice of w. Further, condition
(b) of (3.6) is equivalent to the following condition:

(3.7 —20*+60+2n—3<0 .

It may be remarked here that if (3.7) holds, then (a) of (3.6) also
holds. Thus, we may choose w in order to satisfy (3.7) only. It is
easy to see that (3.7) is satisfied for all w given by

) w<(B—v4n+3)/2
(3.8)
) o>@+vdn+3)/2.

The value of w given in i) of (3.8) is however in admissible for our
purpose. Thus, we shall consider only the value of w given in ii) of
(3.8).

For n=1, it is seen that w=2 provides a positive solution for wu.
The following table gives the solutions of # and « for 1<n<5.

Table 1

i £
No. of design Solution of

n No. of factors points » .
1 4 160 0.1244 2
2 8 1152 0.1454 4
3 12 6656 0.0830 4
4 16 8704 0.0415 4

* In the above table, only one solution of # and ® is given.

Case 2. t=2n+1
For this case also, one can get a three-symbol Partially Balanced
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Array in the same manner as described for the case t=2n. However,
when t=2n+1, the matrix 4,, defined earlier, itself serves our purpose,
as A, satisfies all the conditions of D. In this case, we have

ry=2n+1, r=1, ry=2n+1,
An="n, 2=0, lp=mn,
‘ul:l, #2:27&"‘_1, ‘113:1.
Substituting these values in (3.2), we obtain
(3.9 (n—Du*+(6n+30+3)u+30+(n—1)—o’=0 .

The equation (3.9) involves two unknowns u and o (for a given
value of n) and hence we fix o arbitrarily so that a positive solution
of u is obtained. In the following table, we have presented solutions
of w and » for 1<n<4.

Table 2
: Solution of*
n No. of factors No. of design
pomts u ©
1 6 204 0.1905 4
10 704 0.1107 4
‘ 18 4864 0.0256 4

* Here also, only one solution of # and o is reported.

Remark

It is clear from Table 1 that most of the designs for the cast t=
2n require a large number of points. However, designs with smaller
number of points can be obtained by omitting a requisite number of
columns from the designs for the case t==2n+1. For instance, the de-
sign in 8 factors given in Table 1 requires 1152 points whereas, an 8-
factor design in only 704 points can be obtained by omitting any two
columns from the 10-factor design given in Table 2.
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