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ABSTRACT 

Although the surface seiches of Lake Constance have been observed as early as 1549 and received 
serious scientific attention since 1893 in the classical work of Forel, they have only recently been 
investigated by modem hydrodynamical methods. It is the goal of this report to critically compare 
theoretical predictions of the periods and form of seiches with recent and historical observations as well 
as to examine the mechanisms of generation of these surface oscillations by means of applying measured 
atmospheric forcing in Lake Constance to a theoretical model, In the first part of this work, we 
review the findings of a large number of previous investigations, while the second part consists of a 
verification analysis of the model predictions of seiches. In the final part, we present a theory, pre- 
dictions and observations of the excitation of seiches by arbitrary wind and barometric pressure 
gradient forcing. 

1. Previous findings on the seiehes of Lake Constance 

The first report  on  seiches o f  Lake Constance stems f rom the chronicler, Chr is toph 
Schulthaiss [15], who describes an oscillation o f  the lake at the city o f  Constance  
on 23 Februa ry  1549 with a wave height  o f  about  60 cm and a period between 
12 and 15 minutes. As a result o f  our  computat ions,  this remarkable  seiche ease 
has been identified as a higher mode  o f  seiche o f  Lake Constance in resonance with 
the fundamen ta l  oscillation o f  the Bay o f  Kons tanz  (see fig. I 1). 
The In'st systematic investigation was under taken  by Forel [1] in the years 1874, 
1890 and 1891. He  determined the periods o f  the first three and some higher  modes  
(table 1). Since the spatial resolution o f  his observations was not  sufficient, the 
second and  third mode  were not  identified correctly. Due  to a misinterpretat ion 
o f  the observed periods by Merian 's  formula  as it turned out  f rom our  computa t ions ,  
Forel considered the third m o d e  as the second, and  left the latter one unexplained.  
After  Fore r s  study, the seiches were observed frequently in Kons tanz  and  Bregenz. 
Gasser  [3] evaluated the records be tween 1931 and 1939 f rom Bregenz and  those 
from Kons tanz  between 1913 and 1950 with respect to the weather  conditions 
prevailing dur ing the occurrence o f  seiches. He  concluded that pressure changes  as 
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well as strong and local winds may cause the oscillations and gave a frequency 
distribution of higher seiches and of their damping rate throughout the year. 
A thorough investigation of the seiches and their generating forces was then under- 
taken from 1966 through 1973 by Mt~hleisen and Kurth [I0]. In this programme, 
the seiches were observed at 10 stations, the windfield at up to 16 stations on the 
shore, and the air pressure by microbarographs at up to 5 stations. The wind was 
also observed over the lake on board the ferry Friedrichshafen-Romanshorn 
(fig. 11). It is this observational material which underlies the following investigation 
of the seiches of Lake Constance. 
In a first attempt, Mfihleisen and Fischer [9] used this material and treated the 
excitation of seiches by air pressure changes in a rectangular model of the lake. The 
results show that a satisfactory explanation is only possible when a two-dimensional 
theory is applied which accounts for the generation by pressure gradients as well 
as variable wind stress. 

2. The seiches of Lake Constance 

2.1 Theoretical model 

The equations governing the dynamics of surface seiches are the shallow-water 
equations for a homogeneous fluid on a plane of constant rotation. Let the ver- 
tically averaged velocity have components, U and v, in the east and north direction 
and the fluid have an equilibrium depth of h. Letting g denote the acceleration of 
gravity and f the local Coriolis parameter, then our mathematical description of 
seiches may be written as, 

dt f v + g  - 0 ,  

~ t + f  u Or/ + g ~ y  =0 ,  

Or/ O(h u) O(h v) 

.......... Ot + ~ +  Oy 
=0 .  

In the above equations, the free surface displacement is denoted by r/ and the 
frictional and non-linear terms are neglected. Since we seek periodic solutions, it 
is convenient to assume that the dependent variable have an exponential time 
dependence of frequency a. 
It is straightforward to derive an appropriate variational formulation of the above 
equations for all boundary conditions requiring zero energy flux across the 
boundaries. In this ease, we may write the functional, I, as 

I(r/)-- r f + ~  ~ Ox Ox Oy 
A 

+ m Or/ d~/* + ar/ d r /*} ]dxdy  
dx dx fly dy 
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where the asterisk denotes the complex conjugate of the complex free surface 
variable, q, and i is the square root of minus one. 
Implicit in the boundary condition of zero radiation of energy across the boundaries 
are the usual dynamical conditions namely: 1. zero depth at the shoreline and finite 
q and its gradients; 2. finite depth at the boundary but vanishing normal velocity; 
3. finite depth and normal velocity but zero free surface displacement along the 
boundary. In Lake Constance conditions 1 and 2 apply. 
Physically, the quadratic form represents the total kinetic and potential energy 
within the lake associated with the free oscillations. The solution of our variational 
problem is the function that minimizes the functional. The essence of the numerical 
procedure adopted here is that an approximation to the quadratic form is first 
obtained by partitioning the lake into a series of small zones or elements, re- 
presenting the solution in each element by a polynomial of the second degree, 
performing the integrations piecewise in each element and finally after the summa- 
tion of contributions from all elements is taken, the minimum of the approximate 
functional is found. 
If the variables, q and ~/*, are represented locally by Lagrangian interpolation 
functions, ~, then the unknowns at certain points in each element which will be 
referred to as nodal points become the weighting coefficients, qk, as follows. 

,1 = E qk 
k 

Substitution of the above definition into the functional yields a system of 6 
equations for each element 

\ 0y 0x j ~ l  

O~k O~j O~k O~j + . 
Ox Oy Ox Ox 

+ 0~t__._Kk O~j ~ ] qkq~ dxdy--Ik 
Oy Oy Jd 

k = l  ..... 6. 

The equations for the entire lake are obtained by successive integrations of each 
element and by addition of the resulting equations. 
When the appropriate integrations are performed on the basis of the approximation 
to the free surface, the functional becomes in terms of the unknown free surface 
displacements q and q* at each node 

I (q, q*) =, q.T 0.3 [L] q + q.'r r [M] q + q.z [N] q. 

The vectors q and q~* are the undetermined displacements at each node and the 
Hermetian matrices L, M and N have been introduced for convenience. 
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Taking the minimum with respect to el*, we obtain 

OI 
m ~  0 

o r  

a 3 [L ]  ~1 + a [M] ~1 + [NI  ~1 = 0 

where ~1 is now the vector of displacement minimizing I. 
The problem has been reduced to an algebraic eigenvalue problem of the non- 
linear or lambda-matrix type. The details of the solution of this problem by the 
method of generalized Rayleigh quotient iteration are given by Hamblin [4]. 
A brief outline of the method used to partition the lake into elements is in order. 
Lake Constance was divided into 98 triangles with straight sides in the interior 
region and with curved sides adjacent to the lake shoreline as shown in figure 1. 
The triangularization was performed manually to ensure finer resolution in the 
areas of interest such as the Bays of Bregenz and Konstanz. In each element the 
aforementioned nodal points are specified to be the vertices and the three mid- 

DISTANCE IN KILOMETRES t7 

Figure 1. Triangularization of Lake Constance into 98 elements. 

edge points, figure 2a. Figure 2b demonstrates that the edge point along a 
boundary is allowed to coincide with the shoreline. 
All integrations arising from the functional expression can be performed analytically 
save for the boundary elements when a coordinate transformation mapping the 
curved edge into a straight side requires that numerical methods of integration be 
employed. 
It is noteworthy that the depth variable, h, in the functional is also expanded in an 
identical polynomial expression in each element when the weighting coefficients 
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Figure 2. a) Triangular element in the interior of the lake. The six nodes def'ming the element are 
numbered, b) Element adjacent to a boundary. 

become the specified depths at the six nodes of the triangle. Depths were scaled from 
the bathymetric chart for Lake Constance published by Graf Zeppelin [18] and 
updated by the Cartographical Survey of Baden-Wtirttemberg (1968), scale 1 to 
5 x 104. The outlines of the bathymetry are depicted in figure 11. Finally, before the 
computations could be started, the Coriolis parameter was prescribed a constant 
value appropriate to a central latitude of Lake Constance of 48 ~ N. 

2.2 Model results 

The lowest 11 gravitational seiches have been computed by the method described 
above. The theoretically determined periods are summarized in table 1. Because of 

Table i. Theoretically predicted and observed periods in minutes of the lowest 11 gravitational seiches. 
Mixed type'refers to both longitudinal and transverse motions. Modes with large amplitudes in 
Konstanz Bay are indicated. 

Mode Type Theoretical Observed 
period period 
(min) (rain) 

1 Longitudinal 53.4 55.5 (25 June 1967) 
2 Longitudinal 35.7 38.6 (12 November 1969) 
3 Longitudinal 27.2 28.1 (20 July 1967) 
4 Longitudinal 19.4 
5 5th mixed 18.6 
6 5th longitudinal 16.4 
7 Mixed 14.8 15 2 ) 
8 Mixed, Constance Bay 14.3 14.6]) 3) 
9 Mixed 12.5 

lO Mixed, Constance Bay 12.0 3) 
11 Mixed 11.3 11.61 ) 

1) Fischer [9]. 2) Forel (1]. 3) Schulthaiss [15]. 
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the volume of material involved only the most important directly observed solutions 
are presented here. A data report is in preparation which lists all computed free 
surface distributions and the associated current fields [7]. 
The method of presentation of the spatial distributions of the seiche solutions is 
somewhat condensed. The free surface displacement at any point in the lake and at 
any time during an oscillatory cycle may be computed from the plotted amplitude 
distribution, A (x, y), and the distribution of phase, r (x, y), in figures 3-7 according 
t o  t h e  expression 

t/(x,y, t) -- A (x,y) cos(a t + r (x,y)).  

The free surface distributions are normalized to a maximum free surface displace- 
ment of  I00 units. 
The calculated periods range from 54 to 11 minutes. In the case of the lowest four 
gravitational modes, the sense of the rotation of high water around points of zero 
displacement known as amphidromic points is in the direction of rotation. In the 
fifth and higher modes, the distribution of phase is more complex with cells rotating 
in both directions comprising the solutions, for example, the case of the eighth mode, 
figure 7, where the open circle represents a progression of phase in the clockwise 
direction. This solution also demonstrates as does the tenth mode the resonance of 
water in the Bay of Konstanz. 

LAKE CONSTANCE 
PERIOO 53.4 rain 
~ . l r u ~ E  . . . . .  K,,ou~rR~s 

Figure 3. Phase ( ~ )  and amplitude ( . . . .  ) distribution of the free surface of the lowest 
mode, period 53.4 minutes. 

A representative example of  the associated seiche currents is shown in figure 8 for 
the fundamental seiche. There it may be evident that when the water level is high 
at the ends &the  Iake, the flow is zero and that the flow is maximum when the water 
level displacement is least. Westerly currents are found when the high water is 
along the southern shore of the lake; It is unlikely that seiche currents are to be 
found in conventional current meter recordings since for a typically large seiche am- 
plitude of  10 cm maximum currents are only about 1 cm/s. For this reason, cur- 
rents are not discussed further. 
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Figure 4. Phase ( 

LAKE CONSTANCE 
PERIOD 35.7 rain 
AWUTUDE . . . . .  K,LO~E~ES 
PHASE 0 ,5 ,~ ,~ 

) and amplitude ( . . . .  ) distribution of the free surface of the second mode, 
period 35.7 minutes. 

LAKE CONSTANCE 
PERIOD 27.2 ink1 KILOMETRES 
AMPUTUOE . . . . .  , ~? ~p 
PHASE o ? 

Figure 5. Phase ( ) and amplitude ( . . . .  ) distribution of the free surface of the third mode, 
period 27.2 minutes. 

- 9 0  0 

LAKE CONSTANCE 
PERE)D ~9.4 n~n 
AMPUT'I.E~ . . . . .  KLOMETRES 

Figure. 6. Phase ( ) and amplitude ( . . . .  ) distribution of the free surface of the fourth mode, 
period 19.4 minutes. 



126 P.F. Hamblin, E. Hollan: Gravitational sr of Lake Constance 

_ I ~ l e o -  9 0  

. . _ _  ,, . , o - - . . .  

LAKE CONSTANCE 
PER~DID I4-3 rn~ 
/U~:ClTUDE . . . . .  K~LOMETRES 

Figure 7. Phase ( ) and amplitude ( . . . .  ) distribution of the free surface of the eighth mode, 
period 14.3 minutes. The open circle denotes advance of phase in the clockwise sense. 

LAKE CONSTANCE 

0 10 20 0 5 10 
. . . . .  [ I 

VERTICALLY AVERAGED VELOCITY DISTANCE tN KILOMETRES 
IN units/sec 

Figure 8. Velocity distribution associated with the fundamental seiche. Solid line means major axis 
of the current ellipse. The dots in the triangles, and circles represent the position of the flow vector 
at a t  ffi 0 and at  ffi n/2, respectively, with respect to an origin located at the mid point of the major 

axis. 

2.3 Model verification 

In an extensive programme of investigation during the years from 1967 to 1970, a 
network of 10 water level gauges was established around Lake Constance which is 
illustrated in figure 1 I. Several gauges operated until 1973. From a visual inspection 
of the analogue records at these stations, we selected approximately one dozen 
cases when seiches were clearly in evidence. It is these data which have been em- 
ployed for the purpose of model verification. 
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As will be evident in figures 12-14, seiches are exhibited remarkably clearly com- 
pared to other lakes. Therefore, analysis of the records was done by direct inspection 
rather than by such statistical methods as spectral analysis. 
The period of the fundamental seiche was observed to be 55.6 minutes on a 
particularly clear example on 25 June 1967, which is in agreement with the earlier 
published results of Forel. The discrepancy of 4% between the observed and com- 
puted periods may not be explained by water level differences between the chart 
depths and the actual depth at the time of measurements. A difference of 1.3 m 
existed at this time which would account for only a 0.42% correction. It is more 
likely that the neglect of friction and non-linear effects may account for this dif- 
ference. 
By the use of six episodes in which the fundamental seiche is excited predominantly, 
we have attempted to verify the amplitude and phase distribution. The amplitudes 
occurring at simultaneous times were scaled directly from the analogue charts and 
then normalized by the amplitude at Ludwigshafen. The theoretical and observed 
distributions are listed in table 2. By careful attention to timing marks on the 
individual records, the timing of seiche events relative to the Ludwigshafen gauge 
was evaluated to an estimated resolution of + 5 minutes. 
With the possible exception of the Lindau gauge, the observed distribution of 
amplitude on the average conforms remarkably closely to the predicted free surface 
amplitude. It is immediately apparent from the theoretical phase distributions 
that it is impossible to detect the sense of rotation of the fundamental seiche from 
the established network of stations and from the timing resolution of _+ 5 minutes. 
However, the general features of phase, that is, whether a station is approximately 
in phase or 180 ~ out of phase, may readily be established with the possible exception 
of the Friedrichshafen record. At that location, the phase appears to be opposite 
to that predicted. 
The binodal seiche is rarely exhibited in the lake. In only one instance, 12 November 
1969, did we find a distinct example at the Hard station. An average of 10 succes- 
sive oscillations yielded an estimated period of 38.6 minutes which compares with 
the theoretical period of 35.7 minutes. It is probable that the period may be some- 
what lower than 38.6 minutes. Mtihleisen and Fischer [9] have observed 37.5 minutes 
which is in closer agreement with the predicted values. 
The trinodal seiche is exited more frequently than the binodal case. We obtained a 
period of 28.1 minutes from the eases of 20 July 1967 and 18 June 1969 which 
compares closely with Fischer's result of 28.0 and the theoretical result of 27.2 
minutes. It is possible to estimate certain features of the amplitude distribution of 
the third mode. At the stations Konstanz-Jakobsbad, Hagnau and Langenargen, 
the amplitudes are in the ratios 5:3:2.5 compared to the theoretical ratios of 
5:2.5:1.3. The in-phase agreement between Konstanz and Hagnau has been con- 
firmed in the two episodes whereas the phase at Langenargen does not appear to 
fit the predicted distribution. 
Seiches of higher orders are seldom clearly exhibited in the records except for the 
case of the eight mode which is found only at the Bay of Konstanz station. This 
mode has an observed period of 14.6 minutes [9] compared to the predicted period 
of 14.3 minutes. It is evident from figure 7 that the waters of the Bay of Konstanz 
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co-oscillate with the open lake seiche of this frequency. In addition, there is a weaker 
co-oscillation in this bay of the tenth mode of period 12.0 minutes. Either of these 
oscillations may account for the remarkable observations of seiches of Schulthaiss 
in 1549 [15]. 
In summary, at least the form of the predicted gravitational seiches have been 
identified through direct observations. In each case, the predicted period has con- 
sistently been several percent less than the observed period which is considered to 
be attributed to frictional effects. The predicted amplitude and phase distribution of 
the fundamental seiche has been confirmed with a degree of certainty not often 
found in numerical modeling of lakes. Certain features of the higher order seiches 
have been verified on a more qualitative basis, in particular the resonant co-oscilla- 
tion of the eight order seiche in the Bay of Konstanz. 

3. The generation of seiches by atmospheric disturbances 

3.1 Theory 

In this part, a theory is outlined for the excitation of seiches by wind and pressure 
gradient forcing of arbitrary time history. Measured atmospheric variables are 
subsequently employed as driving functions for the model. Finally, the model pre- 
dictions are compared with the observed seiche motions. 
The mathematical model of general forced motion is as follows: 

a t /  0Pa ~x Z'bx 0u - f v + g  = ~- 
Ot Ox pox ph ph 

0v + f u + g ~ y - - -  0Pa + . ~ _ _  rby 
- ~  pOy p h p h 

_ _  _ (hu) 
&/ + + 0  =0  8t 0 " - ~ x  

~ d  

where the variables have the previous definitions with the addition of barometric 
pressure, Pa, water density p, wind stress components, ~x and ~y and bottom friction 
components, ~bx and ~by. 
This problem is solved by the spectral method rather than by more traditional 
time-stepping techniques. This method exploits the linearity of the basic set of 
equation and has the advantage of computational efficiency, and allowing direct 
examination of the basic physics of the generation process. Thus, the relative 
importance of friction, pressure gradient and wind forcing may be readily 
investigated. 

The spectral method 

Suppose that spatial derivatives in the above equations are approximated by a 
treatment similar to that discussed in the seiche problem, then the resulting set of 
ordinary differential equations may be written in the matrix notation as 
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dM 
dt ~ [AIM + T (t) 
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where the vector, M, now represents the unknown free surface displacements and 
current components at each nodal point; the vector, T, the wind stress and pressure 
gradients at each node, and the matrix, A, the matrix of coefficients or stiffness 
matrix which includes implicitly the factors, f, g, h and the parameterization of 
bottom friction, The precise form of these matrices need not be of concern at the 
moment. 
The solution of the above matrix differential equation may be written formally as 

t 
M (t) = [X (t)] M (0) + S [X ( t -  t')] T (t') dt' 

0 

where X (t) is a combination of eigenvalues and eigenvectors of the matrix, A, and 
M (0) is the initial state (Franklin [2]). 
If we consider a simpler problem of a lake initially at rest which responds to a 
suddenly turned on wind stress of unit magnitude, it may readily be shown from 
the above general solution when the convolution integral is evaluated that the step 
function response may be written in the form 

t/(t)= SS + ~.' Wj {Cj} e i~Jt 
J 

where we have retained only the free surface displacement. SS is the steady-state 
solution and the second term on the right hand side is the weighted sum of the 
eigenvectors, Cj, oscillating with their characteristic frequencies, aj. In principle, the 
limit, n', in the summation is the total number of eigenvectors contained in the 
coefficient matrix, A. However, a significant saving in computational effort may be 
effected if only the most important low order normal modes are used since it has al- 
ready been observed in section 2 of this report that, in practice, only a small number 
of the possible free oscillations are excited in Lake Constance. Therefore, for the 
purposes of this calculation, we replace the limit, n', by 11, the number of seiches 
calculated (m). 
The problem remains of determining the unknown weighting coefficients, Wj, for 
each mode. Since the lake is initially at rest 

-ss= wjq. 
j~! 

Also, the zero initial flow conditions yield 

Ot t~o Ot 2 t = o  

with the consequence that 
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and 

i t W j a j q = O  
J 

-~w~.~q=0 
} 

If each nodal point is considered, there are, in general, many more equations than 
unknown weights in the case when only a few eigenvectors comprise the 
approximate solution. As a result, the weighting coefficients were found from the 
above conditions and by minimizing the square of the free surface deviation at 
each node in the lake. The method is the standard method of treating over- 
determined equations. 
It may be noted that the general solution consists of a convolution integral form. 
Thus, in an analogous manner, we may write our general solution as a convolution 
of the time history of the wind stress and the barometric pressure gradient forcing 
with the approximate response function of the lake. Denoting the unit step function 
response of the lake to longitudinal wind stress as r/~ X, the transverse wind unit 
stress response as ~/ty and similarly, for the unit pressure gradient responses resolved 
in the longitudinal and transverse directions, respectively, we may write the free 
surface displacement at any nodal point as 

t t 
P dt/,x ~,t>~ ~ ~ _  ~_ t,>, ,t,> ~t,+ _~ ~ ,t_ t,> ~ ,<> dt' 

0 0 
t t 

t') 0Pa + I ~ " t > 5 ' < > ~ +  I ~ ' ~  '<> ~'' "> dt -~y 
0 0 

(see Hildebrand [5]). 
Since the wind and pressure forcing function are usually not continuous functions 
but are known only at discrete intervals of time, the convolution in the discrete form 
is simply a digital filter of the form 

The upper limit in the expression, m, is specified at the point where the response 
becomes vanishingly small. 
Up to this point no mention has been made of the determination of the steady-state 
solution, SS. In order to obtain this solution, we first decompose the steady free 
surface into a contribution from the wind stress alone. We resort to the solutions 
obtained by Welander [17] for the steady-state linearized equations of three- 
dimensional flow for the components of vertically integrated transport, U and V, as 
follows 
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1 Cry) + ~ / -  d17 + 

Here, C, D, E and F are functions of the depth, the rotation rate and the vertical 
eddy viscosity as given by Welander [17]. 
The determination of the free surface distribution under a steady wind stress is 
most conveniently handled by the Galerkin formulation, whereby the vertically 
integrated equation of continuity is multiplied by a weighting function W (x, y) and 
is integrated over the lake surface area to yield 

Ifw(~176 d ~,"~'x ~ y )  dxdy=O. 

In this formulation, the weighting function, W, is identified with the Lagrangian 
interpolation function mentioned in section 2 in the seiche model. 
After applying the Green's theorem on the plane, we have 

~W(V.  d n ) -  f f ( U  OW +V OW~ dxdy=0  

where d"n and ~ denote the vector of the line element directed normal to the bound- 
ary and the transport vector, respectively. 
The line integral is zero in the case of Lake Constance when we ignore the con- 
tribution to the free surface due to fiver flow through. After eliminating the trans- 
ports through Welander's solution the results may be expressed as 

I f  gh ( E ~ x  - F ~ )  TxW dxdy + I f  gh (F ~ x  + E ~ y )  ~yW dxdy 

ow ,ow 
= - I I [ C z x -  D ry] ~--~dxdy ~ - ~  dxdy. 

When the integrations are performed in exactly the same fashion as in the case of 
seiche calculations element by element and the successive contributions added 
together a set of algebraic equations results of the matrix form 

[Alt/ffiB 

which has been solved by standard methods. Here A is a square coefficient matrix 
and the vector B contains the forcing function.Theoretical water level set-up for the 
two components of wind stress are presented in figures 9 and 10. The associated 
dreulation patterns are given in Hollan and Hamblin [7]. 
The other part of the steady-state solution stemming from the pressure gradient field 
is simply the water level distribution arising from the inverted barometer effect. 
For the purpose of the calculation, 1 era of water was taken as equivalent to 1 mb 
of pressure. 
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LAKE CONSTANCE 
LONGITt,~INAL WiND SET-UP 
AIVPLITUDE mm KI.OMETRES 

? ? ,'P ,'p 
Figure 9. Water level set-up in era for an eddy viscosity of 100 cm2/s and wind stress of 1.0 dynes/era 2 

along the longitudinal axis of Lake Constance. 

LAKE CONSTANCE 
TRANSVERSE WIND SET-UP 
AiVI~.IT!,.~ mm K ~ T R E S  

Figure 10. Water level set.up in cm for an eddy viscosity of 100 cmZ/s along the transverse axis of 
Lake Constance for unit wind stress, cgs. 

3.2 Frictional effects 

Before the weighting coefficient may be calculated, it is necessary to quantify the 
influence of  friction. First, a number  of numerical experiments of  the effect of  
vertical eddy viscosity on the free surface demonstrated that the maximum set-up 
between the two ends of the lake is changed by only 10% by two orders of  
magnitude change in eddy viscosity which is in agreement with Welander's [17] 
results. For the purposes of  the calculation of  the wind-driven steady-state solution, 
a value of  vertical eddy viscosity of  100 cm2/s was adopted for the reason that it 
agrees with conventional specification o f  this parameter  in lakes. 
In the case of  the seiches, the influence of  friction is less well known since the 
theory at the present stage of  development does not include the effect of  friction. 
However, it has been established from observations that the factor, Q, in the 
expression for the damping of  seiches 
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o-t 
4 - -  

e 2Q 

(where o- is the inviscid frequency) varies from 40 to 50 for the fundamental longi- 
tudinal seiche of Lake Constance. Hollan [6] measured a Q of 45 from the seiche 
of 20 November 1972, while Forel [1] observed a case of  probably 120 oscil- 
lations before the ultimate disappearance of the event, but that generally ap- 
proximately 50 occurred. Therefore, we have adopted a Q of 40 in the calculation 
of the free surface response functions required by the spectral method on the basis 
of field observations. 
In summary, the derivation of ingredients required in the convolution integral, 
equation (1), has been outlined. At the beginning of the computations, it is assumed 
that all water levels and currents are zero. 

3.3 Preparation of the data 

The network of 10 water level gauges, 5 barometric pressure stations and 16 
wind measurement points established during the period of study have been describ- 
ed by Miihleisen and Fischer [9]. The sites of the observational stations used for 
the evaluation are included in figure 11. A number of episodes of pronounced seiche 
activity were selected on the basis of the availability of atmosphere records. 
Readings of wind speed, wind direction and barometric pressure were scaled 
manually from analogue recordings at intervals of one quarter of an hour. Wind 
stress, 3, was computed from the measured shoreline wind velocity, V, using the 
aerodynamic drag formula with a drag coefficient, CD, according to the expression 

r----PaireD ] V ] V  (2) 

where Pair is the density of air. The specification of the drag coefficient will be 
discussed shortly. 
Wind stress components resolved along the longitudinal axis (300 ~ were then com- 
bined from two or more locations to form a lake-wide average. Similarly, the 
lake-wide averaged transverse wind stress was computed. Finally, averages at 
7.5-minute intervals were obtained by linear interpolation between the 15- and 
10-minute readings. The wind stations used in this calculation were considered to be 
representative of the over-lake wind field due to their favourable exposure at 
Lindau, Unteruhldingen and Romanshorn. 
Barometric pressure readings were similarly scaled at either 15-minute intervals, 
10-minute or 7.5-minute intervals depending on chart resolutions. To remove 
systematic variations between pressure stations, the average station pressure over 
the entire period of interest was removed from each series before the pressure 
gradients were calculated. As in the case of the wind stress field pressure gradients 
were obtained in the same longitudinal and transverse directions. Finally, gradients 
at 7.5-minute intervals were obtained by linear interpolation in time when 
necessary. Episodes varied in length for 24 to 48 hours depending on the duration 
of the storm and the availability of the data. 
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Figure 11. Bathymetry of Lake Constance and location of place names and observational stations 
used in the text and for evaluation. (Depths in meters, FR ~ Friedrichshafen, HD= Hard, HG ~ Hagnau, 
KJ = Konstanz-Jakobsbad, KS = Konstanz-Staad, LA = Langenargen, LI = Lindau, LU = Ludwigshafen, 

RH = Romanshorn, RO z Rorschach, WE = Weissenau, H B = Hoyerberg.) 

3.4 Results 

In  all l0  cases studied, water level observat ions were avai lable at the 2 pr incipal  
stations along the longi tudinal  axis of  the lake, Ludwigshafen and  Lindau .  Pre- 
dictions at these 2 stations were scaled by means  of the factor, C D, in equa t ion  (2) 
to bring the predicted ampl i tudes  of  the water level f luctuat ions into general  
agreement  with observed water  levels. The  apparen t  drag coefficients inferred by 
this method  are listed in table 3. 
Because of  the l imitat ions of  space, results from only 5 of the l0  storms studied are 
displayed. In  figure 12, one typical case from the years 1967 and  1973 is presented 

Table 3. Observed peak wind speeds (m/s) and directions (deg from N), inferred drag coefficients, 
and ratio of pressure gradient contribution to wind contribution for the water level at Ludwigshafen 
and for ten examples of seiche generation, Lake Constance. 

Episode Ratio pressure/ CD x 103 Wind Wind 
wind at Ludwigs- direction speed 
hafen 

18-19 June 1967 0.8 2 275 23 
25-27 June 1967 1.2 6 290 9 
21-23 July 1967 4.0 8 300 6 
2- 3 August 1967 0.2 8 300 10 

23-24 August 1967 0.2 6 180 8 
27-29 June 1973 0.8 8 270 8 
15-16 July 1973 1 4 280 13 
9- l0 September 1973 0.25 1.5 240 17 

16-18 October 1973 0.2 2 270 18 
14-15 December 1973 0.5 2 280 20 
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Figure 12. Predicted ( . . . .  ) and observed ( ) water levels at Ludwigshafen and at Lindau for 
a) 9-10 September 1973, b) 23-24 August 1967. 

for the 2 principal stations while in figure 13, one example of a wind forced seiche 
and one example of a pressure forced seiche is depicted. Estimates of the relative 
contributions of wind and pressure forcing are given in table 3 by episode. 
For about one-half of the cases studied, water level data were also available at 
locations other than at the ends of the lake. One example of the character of 
the seiches and the predicted response at transverse stations is provided in figure 14. 

3.5 Discussion 

Provided that the drag coefficient in equation (2) is adjusted from s t o r m  to  storm, 
it is possible to predict water level fluctuations which are in reasonable agreement 
with the observations. At the onset of a storm, the agreement is usually best. 
Following this period, the predictions degrade for two reasons. After about 6 
oscillations of the fundamental seiche, the predictions appear to be out of phase with 
the station data. Since the theoretical period of the fundamental seiche is 4% less 
than the observed after a number of periods of  oscillation, the accumulated error 
accounts for this discrepancy. Secondly, the predicted amphtudes decay slightly 
more rapidly than the observed amplitudes. This suggests that our chosen value of 
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the factor, Q, parameterizing the damping effect, is somewhat low. It was felt that 
this difference in Q is too small to warrant recalculation of the ten episodes. 
Examination of figure 12 reveals that the amplitudes of the seiches at Ludwigshafea 
are predicted to be greater than those at Lindau and that the water level fluctua- 
flops are out of phase between the ends of the lake. These findings are in agree- 
meat with the observations. 
At fin'st sight, it may appear unreasonable to vary the drag coefficients by a factor 
of 4 or more from occasion to occasion. However, it may be recalled that the wind 
measurements were obtained from shore based stations. We postulate that the varia- 
tion of the apparent drag coefficient embodies the square of the land-lake wind ratio 
and the true drag coefficient itself remains constant with a fixed value of 2 • 10 -3. 
For example, a drag coefficient of 8 • 10 -3 implies an over-lake to land wind ratio 
of 2 providing that a conventional drag coefficient for high wind cases is assumed 
[16]. Studies of these ratios in the Great Lakes [13] yield wind ratios as high as 3 for 
low wind speeds and unstable atmospheric conditions, but are generally dose to 2 
for winds less than 8 m/s. They find also that the wind ratio approaches unity for 
high wind speed. Similarly, in Lake Constance, we remark in table 3 that wind 
ratios (drag coefficients) are lower under high peak wind conditions. Unfortunately, 
we do not have access to data required to estimate the effect of atmospheric 
stability for these cases but, nonetheless, classify the data into three groups; 1. peak 
wind of less than 10 m/s and wind ratios of 2.0; 2. peak wind over 15 m/s and wind 
ratio of 1.0; and 3. an intermediate class lying between the other two classes. Direct 
measurements of the wind ratios on the lake are rare. However, we may compare 
our findings with those of Mfihleisen [11] who obtained wind ratios of 2 on three 
occasions. 
The close agreement of the mathematically modelled seiching activity with the 
natural events establishes with certainty the meteorological causes of seiches in Lake 
Constance. From data presented in table 3 and in figure 13 on the separate con- 
tributions to the overall water level response from the barometric pressure field and 
from the wind stress field, it appears that wind forcing on the whole is more 
influential than is the pressure gradient. On the other hand, since Lake Constance 
is a relatively deep lake, barometric pressure influence may not be neglected and, 
at times, provides the dominant of generation of sciches. Examination of table 3 
reveals that, in general, wind generation of seichcs prevails during the spring and 
fall but that during the summer pressure effects play a predominant role. 
Up to this point, we have considered primarily the generation of the fundamental 
mode of oscillation as exemplified by the response at stations located at the distal 
points of the lake. At locations in proximity to the node of the fundamental seichc, 
higher order normal modes are frequently observed. The predictions at these points 
shown on figure 14 agree less well with observations than do the results at the ends 
of the lake. It is not known whether or not these discrepancies arise from the poorer 
temporal resolution of the forcing fields relative to the period of the higher normal 
modes. In order to generate seiches of periods from 10 to 20 minutes, we require 
data of resolution superior to 15 minutes intervals. An additional source of un- 
certainty is the neglect in the modeling procedure of spatial variation of the wind 
and pressure fields. Due to the paucity of meteorological data further refinement 
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is not warranted at this time. An investigation of this problem of the contribution 
to the generation of seiches by spatial variation of the forcing field is conducted in 
Appendix I. 
The analysis of Appendix I indicates that the spatial variation of  the forcing field 
has a substantial influence on the excitation of seiches. Except for the deviations 
in the response caused by the irregular two-dimensional bathymetry, the results of 
the simple one-dimensional model are valid for the two-dimensional case of genera- 
tion. The comparison of the response in the case of spatially varying forcing with 
the case of linearly interpolated uniform forcing yields the following results. If 
the speed of travel, v, of the assumed idealized disturbances is smaller than 0.5 c, 
where c=31.32 m/s is the mean phase speed of long waves in Lake Constance, 
a considerable increase of the response is associated with the interpolated forcing. 
For fast disturbances, v> 0.5 c, the differences become smaller and vanish for very 
high speeds of travel. Thus the approximation o f  the spatial variation of the 
forcing fields applied in the two-dimensional calculations is only satisfactory in the 
range of high speeds of propagation. The analysis shows moreover, that the spatial 
variation of the driving forces generally cannot account for an alternative explana- 
tion of the large drag coefficients found by the comparison of predicted and 
observed generation of seiches. 

4. Conclusions 

It has been established that the problem of surface seiches in Lake Constance is 
amenable to modem hydrodynamical modeling techniques. These methods which 
treat the actual lake geometry and measured meteorological inputs in a realistic 
fashion are sufficiently accurate to allow certain conclusions to be drawn about such 
effects as the earth's rotation, friction, and the ratio of land winds to over-lake 
winds. 
Because the seiches of Lake Constance occur in highly regular trains of oscillations, 
the periods may be estimated very accurately. Consistent underestimation of the 
observed periods by a few percent is thought to be due to the neglect of frictional 
and non-linear effects in the mathematical model of seiches. On the other hand, 
uncertainties as great as 5 minutes exist between stations so that the influence of 
the phase propogation of the seiche cannot be assessed. For example, we were not 
able to establish the predicted counterclockwise rotation of the fundamental mode. 
It is recommended for future studies of seiches that water level data with an absolute 
timing accuracy of 1 minute be recorded and that such statistical methods as 
spectral analysis be adopted. 
Higher order seiches are less frequently observed in Lake Constance except perhaps 
at Romanshorn, Friedrichshafen, and the Bay of Konstanz where a remarkable 
co-oscillation exists with the eighth order seiche. At this location, our calculations 
confh'm one of the earliest recorded observations of  seiches by Schulthaiss [15]. 
The generation of seiches by wind stress and barometric pressure gradients has been 
established by the validation of l0 case histories of the excitation of seiches by field 
data. Winds are evidently more influential than pressure, but pressure effects may 
not be safely neglected on the whole. Predictions conform well to observations at 
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the ends of the lake but to a lesser degree at other points. It is recommended that 
more detailed measurements of the meteorological inputs both in time and space 
be taken to resolve these discrepancies. 
An interpretation of the relatively high drag coefficient inferred in the study as 
the product of a conventional drag coefficient times the square of the lake-land wind 
ratio is consistent with the published studies of both these quantities in other 
lakes. Thus, the behaviour of the winds over the lake may be inferred. During the 
light winds, the wind field over the lake is twice as strong as that on the shoreline 
while for very strong winds, the difference vanishes. At this time, however, 
insufficient information exists on the spatial variation of forcing fields over Lake 
Constance to arrive at a satisfactory explanation. 
In most instances, seiches are generated by rather sudden or impulsive changes in 
the strength and direction of the meteorological forcing field. Maximum seiche am- 
plitudes are established after a few oscillations which are subsequently followed by 
a gradually decaying train of waves. Damping rates of seiches inferred from the 
model predictions agree closely with those obtained by simple visual inspection of 
the recordings. Frictional effects are evidently relatively weak as the fundamental 
seiche has an e-folding time of 13 periods. 

Appendix I 

In the two-dimensional model discussed thus far, the seiches are excited by a 
uniform spatial distribution of the external forces which are, in turn, only roughly 
approximated by linear interpolation between the observed data from a few stations 
on the shore. Since sufficient information does not exist on the real spatial distribu- 
tion of wind stress and pressure disturbances over the lake, we may investigate this 
effect by means of idealized disturbances in a simple rectangular model of Lake 
Constance. According to Rossby [ 14], the radius ofdeformation, r-- c/f, with the Cori- 
otis parameter fand c= ~ / g H ,  the phase speed of long waves, amounts to 291 km for 
the latitude and the mean depth of the lake. Since the greatest horizontal scale, the 
length of the lake is half a magnitude smaller than r, we may neglect for the present 
purpose the earth's rotation and the cross-lake components of motion. For a one- 
dimensional lake, the response of the normal modes to wind and pressure distur- 
bances may be modeled by the following two systems of equations: 

02~o Or/ z 02~, dr/ (3) 
Otdx = g ~ x  p H  ' H-~-x2 = 'at ' 

d~0 Pa O2p == dr/ 
bt ~ gp/+ P .... , H-~-x2 --~-. (4) 

The displacement of the free surface is !/, ~0 represents the velocity potential and 
z and Pa the wind stress along the lake and the air pressure, respectively. The 
remaining quantities are the acceleration of the earth, g, the water depth, H, and 
the density of the water, p. The influence of  friction is omitted, since it causes 
only a gradual exponential decay of the amplitudes and a small change in 
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the eigenperiods, which is unimportant here. The system (3) has been used in the 
same context by Rao [12], whereas the equations (4) are dealt with by Krauss [8]. 
It may be noted by the way, that the latter book contains a single differential 
equation for pressure-induced changes of the sea surface on p. 121, which are 
governed by the second derivative of Pa with respect to x. The corresponding 
solution is incomplete, because it does not contain the effect of spatially linear 
and constant pressure changes. The correct result is obtained, when the fundamental 
equations (4) are treated directly. 
To solve for a rectangular lake, ~/and ~ may be expanded in terms of the normal 
modes of the basin, 

COSXmX 

r/=~ ~g~ ~/m(t)CoS:gmX, gO ~= ~. ~m(t)COSXm x, (5) 

with 

m 7t o- m 

• 'L c 

where o" m is the eigenfrequency of the m th mode and L--62 km is the length of the 
lake. For the depth, the mean value of 100 m is assumed. 
Using equations (5) and the orthogonality properties of the normal modes 

L 
~cOSXmXcoSxnxdx= ~ 0 for m ~ n  
0 L/2 for m-~n 

the following inhomogeneous ordinary differential equations may be derived from 
equations (3) and (4) 

2Xm d2t/m + O2m V/m= | r  sin:~m x dx , 
dt 2 (6) 

d2v/m + a2m t/m=~ 2HxZm 
--  J Pa cOSxm x dx. (7) dt 2 Lp 

0 

If the initial conditions, dv/m/dtz/]m-----0 at t z0 ,  are imposed and f(t) denotes the 
inhomogeneous terms in the equations (6) and (7), respectively, the solution reads 

t 

1 I f(t') sino m ( t -  t') dt'. v/m (t) ffi Om 
0 

(8) 
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A simple method of studying the effects of various spatial distributions of the 
generating forces is to consider the residual energy remaining in the oscillation once 
the disturbance has passed over the lake. This means that equation (8) has only to 
be evaluated for times, t, greater than the duration, T, of the disturbance over 
the lake. 
In consideration of the pressure gradient forcing, a progressing front is assumed 
while for wind stress forcing a stress band is assumed "since, in many instances of 
seiche activity, the forcing may be idealized by this type of excitation. For 
comparison, the response is determined from the interpolated distribution of forces 
when only the records of the assumed disturbances at 2 stations on the shore are 
known. 
The transient region of the pressure front is defined by half a period of a sine 
function thus allowing for a steep or smooth type of front as the wave length, I, of 
the pressure change is varied. In addition, this front is allowed to travel at a constant 
speed, v, from west to east over the lake. The interpolated case is defined by linear 
interpolation between pressures at two locations along the length of the lake, d I and 
d 2. The complete definition of the 2 cases is listed and illustrated in table 4. 
Similarly, the wind disturbance is defined in the same way. The stress band and the 
corresponding interpolated eases are given in table 5. The two types of forcing show 
considerable differences which are displayed in the table 5 by diagrams. 
Solutions for t/m are obtained by straightforward integrations. First, the Fourier 
coefficients for r and Pa have to be determined from equations (6) and (7). 
Then the convolution integral (8) has to be solved using these coefficients. The 
solution for t~T,  the transition time of a disturbance, may be arranged into the 
form, 

t/m (t) ~ t/0.m �9 sintr m ( t -  Ore) 

wherein the amplitude, r/0.m, Contains the response of the normal mode in question 
and O m is a constant which is generally different for each mode. 
It is convenient to discuss the response in terms of the total energy per unit surface 
area for a standing wave, which is given by equation (9) 

1 2 
Em~- -~- gpr/o,m. (9) 

1. Pressure gradient response 

For the case of the pressure front, the residual energy contained in mode m is 

1 4Aq  X2 . /mr t vq  \ 
Em~- ~ -  ( m  7t (1 _ q~ ~ -  m2v2 q2) ] c o s Z ~ - - ~ )  

x } sin2 ( ~ - q )  , meven 

/oos ( q) (lOa) 
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Table 4. Definition of the temporal and spatial dependence of the pressure front and its corresponding 
distribution obtained by linear interpolation between two distant points on the shore. 
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Table 5. Definition of  the temporal and spatial dependence of  the wind stress band and its corresponding 
distribution obtained by linear interpolation between two distant points on the shore, 
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In (10a) the ratios, v= l/(2 L) of the front width to the basin length, L, and q~=c/v 
the speed of wave propagation to the speed of travel of the front, are introduced. 
When v=-c and v = m v c  (10a) does not hold. By expanding numerator and the 
denominator in the neighbourhood of these arguments in a Taylor series, we obtain 
the following, for v = c 

Em= gp (1 -- m 2 V2) 2 cOS2 for all m (10b) 

and for v = m v c  

I m 
A 2 v 2 

g p (1 - m 2 V2) 2 

�9 / ' ~ 7 [  
sln 2 ~ - v )  ) m even 

2 cos (-~-v) , modd  

(lOc) 

In the case of the interpolated pressure disturbance, the result for v ~ m v c  will 
be for all m, 

1 ( 8AL 2 .  2 mrr 
Era-- ~ "  \ m  2 7r2d (1 - m2 v2 q2)) s m (TL- (d  I+ de)) 

. /mzr  d ~ / m z r d q  
xs inZ~--~-L)  c ~  2L ) (1 la) 

with d - - d 2 - d l  
and for v-- m v c for all m. 

1 / '2AL ~2 mtr mzr 
Em=~p_~mTnd] s in2( .~_L__(d l+d2) )s in2(Td)  . 2 / r r  d \  sm E-)" ( l ib)  

Since the two-dimensional theory was primarily concerned with the excitation of the 
fundamental mode, it is sufficient to compare the residual energies for m~- 1. For 
this purpose, equations (10) and (11) are evaluated in the range from 0 .5~q~  14, 
for A==I mb and for v--0.01. This means that the front consists of a pressure 
reduction of 2 mb in 620 m and is progressing with a speed in the range from 
2.24 m/s~v<62.6  m/s. In order to exhibit the influence of different positions of 
the stations, dl and d2, 3 cases are considered. 

1. Lindau-Ludwigshafen with d2--56 km and all=6 krn, respectively, designated 
by LILU; 
2. Rorschach-Konstanz with d2-=46 km and dl = 16 km, respectively, designated 
by ROKN; 
3. Lindau-Friedrichshafen with d e ~ 57 km and dl ~ 38 kin, respectively, designated 
by LIFR. 
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The response of  the fundamental  mode due to a pressure front is displayed in 
figure 15 in terms of  the total energy per unit area and of  the amplitude, ~/i, 
according to equation (9). 
Contrary to the interpolated cases, the response to the frontal  forcing diminishes 
generally as the speed of  travel, v, decreases. At the lowest value, v - 2 . 2 4  m/s, 
the reduction amounts  to two orders of  magnitude in energy and about  one order 
in amplitude, whereas the response to the front prevails for fast speeds o f  travel 
(see, for example,  at q = l  or v~31 .32  m/s), but  does not exceed 2.2 cm in 
amplitude. 
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Figure 15. Response curves in terms of the energy, E, and of the amplitude, ql, excited in the 
fundamental mode as function of the ratio of the gravitational wave speed, c, to the speed of travel 

of the pressure front, v. The labelled curves are explained in the text. The pressure front has a steepness 
of 2 rob/620 m. 

The lobe-like nature of  the response curves arises from the quenching effect o f  the 
oscillations. It  is evident from inspection of  the sine and cosine functions in equa- 
tions (10) and (11) that the front excites the fundamental  mode most effectively 
when the duration of  each element of  the front over the lake, T0~ L/v,  is a multiple 
of  the fundamental  period, T l = 2 L / c ,  and that the oscillation is destroyed or 
quenched when the passage of elements takes an odd multiple n of  half  the 
fundamental  period except for n = 1. 
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For the interpolated cases, the peaks of the last sine function in (1 la) occur at odd 
multiples of L/d and zeros at even multiples. According to this relation, the lobes 
become wider as the distance, d, between the stations decreases. This is clearly 
evident in the 3 cases shown in figure 15. 
The principal difference between the response due to the front and that due to the 
interpolated cases becomes apparent when d approaches L. In this case, the oscilla- 
tion is fully excited by the frontal disturbance, when that of the interpolated case 
is quenched. 
With the help of the diagrams in table 4, the difference may be physically explained. 
Since the water surface follows immediately the pressure disturbance, it is obvious 
that the interpolated case for d ~  L is most effective, when it lasts for an odd 
multiple of Tl/2 and has no effect for all whole multiples of Tl. 
The response to the front may be explained only in a rough outline, because the 
convolution integral in the solution ~/i (t) according to equation (8) is more com- 
plicated. Greatest response will occur when the front is crossing the parts near the 
ends of the lake, where the greatest elevation of the oscillation takes place, in such a 
phase, when the directly forced displacement coincides with the vertical motion of 
the wave. At the western end where the front enters the lake, the water always fol- 
lows in the same direction, as the pressure change requires it. A corresponding 
coincidence at the eastern end is, for example, only possible for T0--Tl. Then the 
surface is just rising by the induced oscillation, when the front is crossing and 
enforces the same direction of displacement. If T o amounts to whole multiples of 
Tl, the same conditions at the eastern end are met, but the central part of the basin 
contributes to a greater extent which reduces the response. 
The first cosine factor in (10a) represents a modulation due to the time difference 
At between the transition time T=-To+l/(2v) of the pressure disturbance and the 
duration, To, of its elements over the lake. Because of the narrow front (t/2 =~ 620 m) 
the speed of propagation of the disturbance must be very low in order to 
disclose the modulation. Since the range of evaluation with respect to q is not 
large enough, a detailed explanation is given in the context of the wind cases 
discussed below, for which longer disturbances are assumed and the influence of 
this modulation effect becomes more pronounced. For example, in figure 17, the 
complete modulation appears for the case of the longest wind disturbance. 
A second evaluation of the pressure cases for a frontal width of 6.2 km (v-- 0.1) does 
not yield substantial differences. The less steep front influences the response only 
for low transition speeds, v, as a consequence of the shorter modulation. 
For example, the residual energy of the secondary maximum at q-- 14 amounts to 
4ffA of the corresponding value in the case of v-~ 0.01. An evaluation of  the solution 
in the range 0. I < v ~ 1 is presented by Miihleisen and Kurth [10]. 

2. Wind stress response 

For the residual energy of the normal modes, the following expressions are obtained 
for excitation by the assumed wind disturbances. The response for the case of the 
wind stress band reads (v # c) 
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For v = c the formula is valid, 
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(12a) 

(12b) 

In the interpolated case, we have 
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where 

(13) 

and d ffi d 2 -  dl, 

valid for all m. 
The wind stress, F, is determined by the wind speed V in the x-direction at I0 m 
height above the surface according to equation (2) with a drag coefficient CD= 
1.2X 10 -3. For a wind of 103 cm/s, the stress is approximately 1.5 g/(cms2). This 
value characterizes a moderately strong stress band and is used for the evaluation 
of two examples with different band widths; 11 ==6.2 km and l 2 =~ 12.4 km cor- 
responding to Pl -~- ll/L~-0.1 and v2~=0.2. The examples are treated in a similar 
manner to the pressure-induced responses. The complete definitions of the assumed 
wind disturbances are listed in table 5. In the interpolated case, three combinations 
of the stations, d~ and d2, are used in order to show the influence of different 
positions on the response. The following cases are selected. 

1. Lindau-Unteruhldingen with d2 = 56 km and d 1 ffi 16 km, respectively, designated 
by LIUN; 
2. Langenargen-Unteruhldingen with d2~44 km and d l=  16 km, respectively, 
designated by LAUN; 
3. Langenargen-Lindau with d i =44 km and d2--60 kin, respectively, designated 
by LALI. 

The results for the response of the fundamental mode for v = 0.1 are displayed by 
the diagram in figure 16 while (hose for v ffi 0.2 are illustrated in figure 17. 
At first sight, the general decay of the response to the stress bands with decreasing 
speed of travel and the low amount of energy excited in the range 0 < q ~  14 is 
striking. The highestpeaks for the assumed wind field correspond to th=0.8 cm. 
If we examine the second factor in the brackets in the expressions (12) and (13), 
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Figure 16. Response curves in terms of  the energy, E, and of the ampfitude, 71, excited in the 
fundamental mode as a function of the ratio of the gravitational wave speed, c, to the speed of travel 

of the wind stress band, v, for a wind stress band of width 6.2 kin. All curves are for a wind speed 
in the stress band of 10 m/s. Labolled curves are explained in the text. 
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Figure 17. Response curves in terms of  the energy, E, and o f  the amplitude, z h ,  excited in the 
fundamental mode as a function of  the ratio o f  the gravitational wave speed, c. to the speed of  
the stress band, v. All curves are for a wind speed of  10 m/s in the stress. The response for a wind 
stress band o f  width 12.4 km is depicted by the heavy line, whereas the response for a wind stress 

band o f  width 49.6 km (vffi 0.8) is displayed by the light line. Labelled curves are explained in the text. 
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the dependency on the ratio L/I-I shows that more energy has to be supplied 
by the wind in a deep lake to excite a given amplitude than in a shallow lake. If 
we compare the peaks in figures 16 and 17 for the two stress bands in the range 
0 < q ~ 3 ,  it is obvious that the residual energy has increased by doubling the 
width of the stress band. The increase of the response in the same range of q is 
about one order of magnitude in energy, if the width is approaching the length 
of the lake. A corresponding case for v=0.8 is included in figure 17. According to 
the quadratic relation (2) between wind stress and" wind speed the magnitude of the 
response is governed by the latter quantity. Since the assumed value, V= 10 m/s, is 
rather moderate and since the wind over the lake is known to be stronger than on 
the shore [11], a considerable increase of the residual energy has to be expected. 
A more detailed discussion of the influence of spatial variation in the wind stress 
forces contained in the solutions (12) and (13) is warranted. If we compare the 
mean effect of the interpolation in both examples in figures 16 and 17, there is only 
agreement for fast disturbances in the range q< 0.5, which is physically reasonable. 
For q> 1.5 the differences become striking. At q-- 14 the response to the interpolat- 
ed wind field is more than four orders of magnitude higher in energy than in the 
case of the propagating stress band. The width of the lobes in the interpolated 
cases depends in the same way on the distance, d, between the 2 stations as in the 
interpolated pressure cases. But the peaks are located at even multiples of Lid 
because of the cosine function in the last factor of equation (13) for m=~ 1. The 
corresponding secondary minima occur a t  odd multiples of L/d and are greater 
than zero, which means that the modes of odd order are not fully quenched. 
As to the lobes in the cases of the stress band the extrema are distributed in the 
same way as in the case of the pressure front, because the governing factor in 
equations (10a) and (12a), the last cosine function, is the same. Thus the pre- 
viously given explanation of the maximum response and the quenching of the 
fundamental mode in terms of the travel time, To, of elements of the disturbance 
across the lake remains valid for the cases of the assumed wind stress bands. 
As mentioned in the discussion of the pressure-induced response, the modulation of 
the lobes is more pronounced due to the larger band width, I. The expression, v q/2, 
in the argument of the modulation factor in equations (12a) and (13) may be inter- 
preted as the ratio QAt of the time difference At between the transition time T and 
T O to the fundamental period, Tl. This becomes evident when T and To are rear- 
ranged into the form T = T l ( l + v ) q / 2  and T0=~Tlq/2 with the use of Tl , f2L/c .  
In terms of QAt, the zeros of the modulation are given by QAt = 1,2,3 ... and the 
maxima by Qat ffi 1//2, 3/2, 5//2 ... Thus, the first zero of this type appears for the 
case v=0.2 in figure 17 at q=, 10. The modulation of the response to the broad 
wind stress band (vffi~0.8) included in figure 17 shows zeros at q=2.5 and greater 
values in steps of Aq= 2.5 as it corresponds to the greater ratio v for that case. 
The physical reason for the modulation may be attributed to the finite length of the 
disturbance. The successive action of the front may be characterized by the delay, 
At, between the incidence of the front and the rear part of the disturbance. The con- 
tribution of this effect to the convolution integral (8) for rh results in the modulation 
as a secondary lobe-type structure imposed on the principal lobes. With respect to 
the assumed stress bands the modulation causes maximum response for At equal 
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to odd multiples of half the fundamental period and zero response for whole mul- 
tiples of the period. The corresponding values of q result from the relation At = 
Tt v q/2. 
If the response of a higher mode is considered instead of the fundamental, d t 
has to be used in the form A t = T  m. m vq/2 where Tm=2L/(mc).  Then the 
argument of the modulation factors in the cases of the pressure front and the wind 
stress band reads ~rzlt/T m. This form shows that the above interpretation applies 
generally, if the corresponding eigenperiod, Tin, is introduced as reference period. 
Finally, it may be pointed out that there is a different process of excitation in the pres- 
sure gradient case. It is evident in the next to last cosine factors in equations (10a) and 
(1 la) that maximum energies are generated for At equal to integer multiples of T m 
which is contrary to the wind cases. The different function of the modulation in the as- 
sumed pressure and wind disturbances becomes apparent when the variation in the 
response to a disturbance is considered as its width tends to zero. In the case of the 
pressure front, the disturbance is transformed into a step function and a finite value 
of the response is maintained by the zero argument in the cosine as expected. On 
the other hand, the wind disturbance vanishes when the width of the stress band 
goes to zero. Then no response is possible which is verified by the corresponding sine 
function in the expressions (12) and (13). 
Summarizing the discussion it has to be noted that more energy is transmitted 
to the normal modes in the case of fast propagating wind stress bands than by a 
pressure jump travelling with the same speed, when the horizontal scale of the 
disturbance is extended. The mean magnitude of the pressure-induced oscillation 
depends primarily on the amount of the pressure jump. Therefore, the generation 
of seiches by wind is evidently more sensitive to the spatial distribution of the 
disturbance. 

Summary 

Predictions of several numerical hydrodynamical models of seiches, water level 
set-up, and the generation of seiches and set-up by barometric pressure gradients 
and surface winds are compared to water levels on Lake Constance recorded at 
I0 stations over a period of 8 years. Solutions for two-dimensional gravitational 
seiches are obtained from an expression minimizing the total energy. Of the lowest 
eleven modes, the periods of the first several modes have been identified in the 
records. An interesting resonance of the Bay of Konstanz with the eighth and tenth 
modes has been established. 
A simple prediction scheme for the generation of seiches involves the convolution 
of horizontal averages of the measured wind stress and barometric pressure gradient 
components with the computed response functions for the individual stations. Corn- 
par/son of computed seiches at the ends of the lake agree favourably with the field 
readings for ten episodes of seiching activity. Wind stress forcing is generally more 
important than pressure gradient generation especially in the spring and fall, but 
pressure effects may not be neglected. The frictional damping of seiches is evidently 
weak with an e-folding time slightly larger than 13 oscillations of the fundamental 
seiches. 
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In certain episodes, unexpectedly large drag coefficients may be explained by an 
acceleration of the wind field from the shore to the open lake. The inferred ratio 
of over-lake to land-based winds is two for peak wind speeds less than 10 m/s 
and approaches unity for winds larger than 15 m/s. Unfortunately, the field data are 
insufficiently detailed to prove this result at the present time. 

ZUSAMMENFASSUNG 

Mit Hilfe hydrodynamischer, numerischer Modelle werden die Seiches des Bodensee-Obersees und 
deren Fa'zeugung dutch Luftdruckverinderungen und Windeinwirkung for verschiedene Schwingungs- 
f~lle ans dem Zeitraum 1966 bis 1973 berechnet, dim dutch Beobachtungsergebnisse yon 10 Pegelsta- 
tionen belegt sind. Die zweidimensionale Form und die Perioden der Seiches werden dutch ein 
Variationsverfahren for die Energie freier Schwingungen des Sees erhalten. Von insgesamt elf berechne- 
ten Ordnungen der Seiches werden mehrere yon niedriger Ordnung durch die Beobachtungsergebnisse 
verifiziert. Filr die Konstanzer Bucht wurde eine Resonanz mit der achten und zehnten Eigen- 
schwingung festgestellt. 
Die Entstehung der Seiches wird mit einem einfachen Vorhersageveffahren untersucht, des auf der 
Faltung horizontal interpolierter beobachteter Windschubspannungen und Luftdruckgradienten mit 
den fOr die einzelnen Beobachtungsstationen berechneten Response-Funktionen beruht. Der Vergleich 
der berechneten Seiches mit den an den See-Enden beobachteten Schwankungen ans zeim verschie- 
denen Schwingungsflllen ergibt mine gute Obereinstimmung. Die Erzeugung dutch Windeinwirkung ist 
im allgerneinen s~rker ausgebildet, besonders im Frtthjahr und Herbst; die Anregung dutch Luftdruck- 
schwankungen kann jedoch nicht vernachlassigt werden. Eine Abschatzung anhand dcr Beobachtun- 
gen zeigt ausserdern, dass die Schwingungen verhalmismassig schwach ged~impft sind. Ffir die Grund- 
schwingun8 mit der berechneten Periode von 53,4 Minuten ergibt sich eine Abklingzeit auf I/e der 
Anfangsamplitude yon etwa 13 Perioden. 
In einigen der zum Vergleich herangezogenen Schwingungsf~lle miissen unerwartet hohe Schubspan- 
nungskoeffizienten angenommen werden, um Beobac'htung und Rechnung in Deckung zu bringen. Die 
Ursachen hierfor sind in der Zunahme der Windgeschwindigkeit fiber dem freien See zu suchen. 
Es ergibt sich, dass die Windgeschwindigkeit auf dem freien See doppelt so gross ist wie am Ufer, 
wenn Spitzengeschwindigkeiten yon I0 m/s nicht Qberschritten werden. Des Verhaltnis ist eins fOr 
Spitzenwindgeschwindigkeiten gr6sser als 15 m/s. Das verfogbare Datenmaterial reicht nicht aus, um 
dieses Ergebnis dutch Beobachtungen zu belegen. 

R~SUMf~ 

Les prtvisions de plusieurs modules num~riques hydrodynamiques de seiches, les monttes du niveau 
d'eau dues au vent, la formation de seiches, les mont6es de niveau par gradients de pression baro- 
m~trique et les vents de surface sont compar6s aux niveaux d'eau du lac de Constance relev~s dans 
10 stations, sur une p~riode de 8 ans. Les solutions aux seiches gravitationneUes ~ deux dimensions 
sont obtenues au moyen d'une expression r~duisant r(~nergie total au minimum. Des onze modes les plus 
bas, les ptriodes des quelques premiers modes ont 6t6 inscrites dans des relevts. Darts le cas de la baie 
de Constance, on a dttermin~ une rtsonance int~ressante avec le huitieme et le dixi~me mode. 
Un systtme simple de pr~vision de la formation de seiches comprend la convolution des moyennes 
horizontales des efforts du vent mesurts et des 616ments de gradients de pression barom~trique avec 
les activitts de r~ponse calcul~es pour chaque station. La comparaison des seiches calcul~es aux 
extr~mitts du lae s'accordent favorablement avec les relev~s sur le terrain pour dix ~pisodes d'activit~ 
cr6ant une seiche. La force d'entrainement, exerc6e par le vent est g~n~ralement plus importante que 
la formation du gradient de pression, surtout au printemps et en automne, mais on ne peut pas 
n6gliger les effets de la pression. L'amortissement des seiches par frottement est 6videmment pen pro- 
none6, et la dur6e d'enroulement est l~g6rement plus longue que celle de la seiche type qui comprend 
13 osc/llations. 
Au cours de eertains ~pisodes, on obtient des coefficients de r6sistance soudainement plus importants 
et qu'on pourrait expliquer par l'acc~16ration du champ du vent, du rivage au lac expos~ au vent. 
La diff6rence entre les taux de vitesse du vent de terre et du vent passant au-dessns du lac est de 
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deux pour des vitesses de vent maximale de moins de 10 m~tres ~t la seconde et s'approche de l'unit~ 
dans le cas de vents dont la vitesse est de plus de 15 m~tres a la seconde. Les donn~es obtenues sur 
place ne sont pas assez dttailltes pour justifier ce r~ul tat  par des observations. 
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