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When a solid body is subjected to intense thermal  actions nonuniformly distributed over its surface, h is ob-  
served to break up by mechan ica l  e jec t ion  of pieces of ma te r i a l  from the s u r f a c e - s o - c a l l e d  spalling [1, 2]. As a 
rule, spall ing usually occurs in solids with low thermal  conduct ivi ty  k, such as rocks [1]. This is ev ident ly  because 
the temperature stresses which arise as a result of nonuniform heating become concentrated owing to the low ther-  
mal  conductivi ty of the rock near the surface. 

To study the features of  the state of stress arising in massive solid bodies as a result of nonuniform surface 
heating,  le t  us consider the quasistatic axisymmetr ic  thermoelas t ic  problem for a ha l f - space  z -> 0, the boundary 
of which is free from stress: 

a z : -  " : r z=O for z = 0 .  

The temperature  field satisfies the Fourier heat  conduction equation, 
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with the following ini t ia l  and boundary conditions: 

0 : 0  for t : : O :  
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This assignment of the temperature  on the boundary corresponds to a dome-shaped distribution with a value T O on 
the axis of symmetry;  as the distribution parameter  X increases, the dome gets shallower and more spread out. 

Using the results in [3], we can write the solution of the temperature  problem (1), (2) in the form: 
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where J0(~, r) is a Bessel function of the first kind. 

The solution of the thermoelas t ic  problem [3] can be written in the form: 
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where in this case the axial stress o z and the harmonic function $ are 
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where E is Young's modulus, p is the shear modulus, u is Po[sson's ratio, and ~ is the coefficient of linear expansion. 

In (3) and (5) let us transform to a new variable of integration x = X ~ and introduce the dimensionless varia- 

bles ~=z]~,, p=r/~, t* 21/--~ __- : �9 Assuming that t* is small (which corresponds to finRe values of k and small 

times t), we can expand the functions containing this parameter in the well-known series 
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Integrating term by term we get the solution ha the form of an expansion ha a small parameter.  In particular, 
restricting ourselves to the first term, we get 
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Using (4) we easily get an expression for the residual components of the stress temor. 
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Using (6) and (7) we ca lcu la ted  the stress fields for a Poisson rat io  of v = 0.3. The graphs given below were 
constructed for the reduced stresses, 
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When t* = 0.1, the state of stress is as follows. At the surface of the ha l f - space  ~ = 0, the radia l  stress o r 
and the peripheral  stress o~0 are compressive for a l l  values of p (Fig. 1). As g increases, o r and o~0 also increase,  
and starting from a certain cross section become tensile (Figs. 2, 3). Simultaneously,  as g increases, ax i a l  stresses 
o z and tangent ia l  stresses r rz  develop,  which, beginning from a cer ta in  cross-section, become comparable  with the 

stresses o r and o r  (Figs. 4, 5). 

Figure 6 gives the values of the stresses at  the point g = 0.1, p = 0.6, versus t* ,  At this point o z and r r z  
are monotonic functions of t* ,  and for a l l  the values of t* studied, o z remains tensi le .  As t* increases, the radia l  
and peripheral  stresses reach their  maximum tensi le  values, and then rapidly fall  and become compressive.  Figure 7 
gives the values of the pr incipal  stresses, 

1 + V ( S r  __ Sz) ,  + Sl :: T [ S r  -t- S z 4S~] ,  

1 [Sr + sz--V(sr ' - -Sz) ' - t -4S~ ] $2= -~- 

at the point ~ = 0.1, p = 0.6, plotted versus t* .  

Going on to analyze  the possible fractures, we begin with the following model  of the rock. We shall consider 
it to be a homogeneous elast ic  body in which are variously oriented cracks. These are of such size that  they do not 
apprec iably  affect  the stress distribution. 

According to the theory of quastbritt le fracture, owing to the tensi le  stresses o z (see Fig. 4), fractures may  de-  
velop perpendicular  to the z axis in the neighborhood of the symmetry axis. Following [4], we write the condit ion 
of  propagation of a fracture in the form 

. ir?_• (r_) dr ___ K ~ / ~ - -  
o =7;  ' 

where K is the modulus of cohesion and R the radius of the fracture (crack).  
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Fig. 1 

Expanding o z (6) Ln the neighborhood of the symmetry  axis as a Taylor  series, 

we get, to the first order of smal l  quantit ies,  

(9) 

putting (9) into (8) and integrating, we get 

12V - E~ To R = K - I / R R _ "  (lO) 
(1 +~.)4 1 - - v  
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We shall take R/t = Vcr to be the ve loc i ty  of propagat ion of the crack.  Since the function f ( g )  = g / ( 1  + g)4 has 
a maximum at ~ = 1/3, from (10) we get  the condit ion of crack propagation in the form 

e~ roV-~u 
X ~ l.Ol 

Further fracture may  result from loss of s tabi l i ty  of individual  plates.  

Fissures may open at  some point not lying on the symmetry axis owing to the tensi le  force S, (see Fig. 7). 
The fissure wi l l  obviously be perpendicular  to the direct ion of ~ .  Further fracture may occur owing to the max i -  
mum tangent ia l  stress, which increases monotonica l ly  with t* (see Fig. 7, dashed line).  The orientat ion of the areas 
on which the maximum tangent ia l  stress acts at  the point g = 0.1, p = O.B is given by the following relat ions be-  
tween the pr incipal  stresses: 
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Fig. 8 

Sr  > S I > S ~  for 0..< t* < 0;06; 

Sx > S~ > S~. for 0 . 0 6 ~ g *  ~ 0,1. 

Figure 8 gives the max imum tangent ia l  stresses versus p for t* = 0.1 at the 
cross sections ~ = 0.1, ~ = 0.2, ~ = 0.3. The r e l a t ionbe tween the  principalstresses 

is 

Sl > S~ > S~ for ~ = 0 , 1 ;  

S ~ > S x  > S~ for ~ = 0 . 2 ;  0.3. 

In the cross sections ~ < 0.1, the maximum tangent ia l  stresses for t* = 0.1 are monotonical ly  decreasing functions 

of the radia l  coordinate p. 

For a given thermal  ac t ion (X being fixed) on the rock surface, the t ime  dependence of the formation of the 
state of stress at any fixed point inside the body depends essent ia l ly  on the thermal  diffusivity of the rock. This be-  

t*2X 2 
comes evident  if  we draw the t ime graphs in Figs. 6 and 7. From the formula t = 4k it follows that the state of 

stress corresponding to some fixed value of t* wil l  be a t ta ined for low thermal  conduct ivi ty  in a fairly short t ime .  

The number of open fissures thus rises, which favors further fracture. 

From the graphs we also infer that  the process of thermal  fracture is also di rect ly  influenced by the value  of 
Poisson's ratio v and by the combinat ion  of parameters  Et3T0. As these increase, the dimensional  values of  the 

stresses also increase. 
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