THERMAL ROCK BREAKING

L. S. Dudoladov UDC 622.83

When a solid body is subjected to intense thermal actions nonuniformly distributed over its surface, it is ob-
served to break up by mechanical ejection of pieces of material from the surface—so-called spalling [1, 2], As a
rule, spalling usually occurs in solids with low thermal conductivity k, such as rocks [1]. This is evidently because
the temperature stresses which arise as a result of nonuniform heating become concentrated owing to the low ther-
mal conductivity of the rock near the surface,

To study the features of the state of stress arising in massive solid bodies as a result of nonuniform surface
heating, let us consider the quasistatic axisymmetric thermoelastic problem for a half-space z = 0, the boundary
of which is free from stress;
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The temperature field satisfies the Fourier heat conduction equation,
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This assignment of the temperature on the boundary corresponds to a dome-shaped distribution with a value T, on
the axis of symmetry; as the distribution parameter ) increases, the dome gets shallower and more spread out.

Using the results in [3], we can write the solution of the temperature problem (1), (2) in the form:
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where J4(&, 1) is a Bessel function of the first kind.
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The solution of the thermoelastic problem [3] can be written in the form;
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where in this case the axial stress o, and the harmonic function y are
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where E is Young's modulus, p is the shear modulus, v is Poisson’s ratio, and 8 is the coefficient of linear expansion.

In (3) and (5) let us transform to a new variable of integration x = \ ¢ and introduce the dimensionless varia-

bles t=z/A, p=r/A, t*=21/ :t +  Assuming that t* is small (which corresponds to finite values of A and small

times t), we can expand the functions containing this parameter in the well-known series
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Integrating term by term we get the solution in the form of an expansion in a small parameter. In particular,
restricting ourselves to the first term, we get
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Using (4) we easily get an expression for the residual components of the stress tensor.
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Using (6) and (7) we calculated the stress fields for a Poisson ratio of v = 0.3. The graphs given below were
constructed for the reduced stresses,
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When t* = 0.1, the state of stress is as follows. At the surface of the half-space ¢ = 0, the radial stress oy
and the peripheral stress o @ 218 compressive for all values of p (Fig. 1). As ¢ increases, o and o @ also increase,
and starting from a certain cross section become tensile (Figs. 2, 3). Simultaneously, as ¢ increases, axial stresses
o5 and tangential stresses T, develop, which, beginning from a certain cross-section, become comparable with the

stresses oy and o, (Figs. 4, 5).

Figure 6 gives the values of the stresses at the point £ = 0.1, p = 0.6, versus t*. At this point 64 and Trz
are monotonic functions of t*, and for all the values of t* studied, o, remains tensile. As t+ increases, the radial
and peripheral stresses reach their maximum tensile values, and then rapidly fall and become compressive. Figure 7
gives the values of the principal stresses,

Sy == _;_[Sr + S +V(Sr_ S + 483]’

S, = ;—[s, + S =V (S —Sp4as ]

at the point ¢ = 0.1, p = 0.6, plotted versus t#*.

Going on to analyze the possible fractures, we begin with the following model of the rock. We shall consider
it to be a homogeneous elastic body in which are variously oriented cracks. These are of such size that they do not
appreciably affect the stress distribution.

According to the theory of quasibrittle fracture, owing to the tensile stresses o, (see Fig. 4), fractures may de-
velop perpendicular to the z axis in the neighborhood of the symmetry axis. Following [4], we write the condition

of propagation of a fracture in the form
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where K is the modulus of cohesion and R the radius of the fracture (crack).

Expanding o, (6) in the neighborhood of the symmetry axis as a Taylor series,
g 1 we get, to the first order of small quantities,

8\\ (1—-vs, 12Vet - ¢ ©
§ EBTo  y7 (+0¢

S Putting (9) into (8) and integrating, we get
2 \\
- 1'2]/7; £ EﬁTOR-—-K‘/"‘RT' (10)
0 7 Yy )\VT A +0 11— - 9

196



2 2
dy a7 0 G 7
- - 2t —
P42 /7 =42
-4 -4
/o=0’6‘ \/0:0,6'
-5 -6
/0_0 /0:0
-8 -8
-10 ~10
Fig. 2 Fig. 3
5,107 s’
) - 2
7Y — RE 05
: s
ovad
0 ~2
o5 N =0,6
\/'0=/,; J b
-2 ~4
=/ -6
Fig. 4 Fig. 5
s-0? — 5-1°.
S /
s 3 S, 7

- . N\
) ) \

Fig. 6 Fig. 1

we shall take R/t = v, to be the velocity of propagation of the crack. Since the function f(g) = ¢ /(1 + £)* has
a maximum at ¢ = 1/3, from (10) we get the condition of crack propagation in the form
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- Further fracture may result from loss of stability of individual plates.

& < 1.01

Fissures may open at some point not lying on the symmetry axis owing to the tensile force Sy (see Fig. 7).
The fissure will obviously be perpendicular to the direction of 'Sal Further fracture may occur owing to the maxi-
mum tangential stress, which increases monotonically with t» (see Fig. 7, dashed line). The orientation of the areas
on which the maximum tangential stress acts at the point £ = 0.1, p = 0.6 is given by the following relations be-
tween the principal stresses:
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In the cross sections ¢ < 0.1, the maximum tangential stresses for t# = 0.1 are monotonically decreasing functions
of the radial coordinate p.
For a given thermal action (\ being fixed) on the rock swface, the time dependence of the formation of the
state of stress at any fixed point inside the body depends essentially on the thermal diffusivity of the rock. This be-
‘ .2y 2

comes evident if we draw the time graphs in Figs. 6 and 7. From the formula t = it follows that the state of

stress corresponding to some fixed value of t* will be attained for low thermal conductivity in a fairly short time.
The number of open fissures thus rises, which favors further fracture.

From the graphs we also infer that the process of thermal fracture is also directly influenced by the value of
Poisson's ratio v and by the combination of parameters EBTg As these increase, the dimensional values of the
stresses also increase.

LITERATURE CITED

1. . D. Bergman, "Thermal fracture of rocks by plasma drills and some aspects of the behavior of the rocks,”
Author's Abstract of Dissertation, Novosibirsk (1968).

2. Yu. A. Buevich and M. I. Yakushin, "Some features of thermal loading of decomposing materials,” PMTF,
No. 1 (1968).

3. L. S. Dudoladov, "On temperature stresses in an elastic half space,” Fiz.-Tekh. Probl. Razrabotki Polezn.
Iskop., No. 1 (1968).

4. G. L. Barenblatt, "On equilibrium fissures formed during brittle fracture: general concepts and hypotheses;
axisymmetric fissures,” PMM, 23, No. 3 (1959).

198



