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The field equation derived in Part I (Griffith, Bull. Math. Biophysics, 25, 111-120, 1963a) 
is examined further. The stability of critical solutions is investigated and it is shown 
that, at least in certain cases, general solutions tend toward critical solutions. The 
relationship between the present field theory and a conventional matrix formulation is 
derived. 

1. Introduction. In  the first paper* (Griffith, 1963a) we derived a second- 
order, largely linear, field equation which was a continuous approximation to 
a discrete "neural net ."  In  the present paper we examine this equation further 
and ask some general questions about the stability of states of activity satisfy- 
ing this type of equation. We also investigate the relation between the dif- 
ferential equation and a discrete matrix formulation. 

In equation (I.17) we arrived at 

- - 4,,:(¢,). (1) 

Before continuing, we shall make certain further approximations with a view 
to simplifying this equation. First note that,  as remarked before (I, page 117), 
the velocity v of propagation of nervous excitation along a nerve fiber is so high 

* Henceforth referred to as I. 
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that  it will be natural to put  v = oo in equation (1). The remaining terms 
involving differential coefficients of ~b with respect to t derive from the fact tha t  
excitation arriving at past times is important  as well as that  arriving at  the 
present time. In  the more general formulation of the equation (see eq. (I.5)) 
there was a whole sequence of terms involving O"~b/Ot ~, but  in equation (1) only 
the  second-order terms are retained. Really there is no a priorl reason why 
we should break the expansion off at  any particular point; it is only familiarity 
with second-order differential equations which makes 02~b/~t 2 seem the natural  
termination. Therefore we shall first investigate the equation under the 
simplest possible assumption, namely tha t  we terminate with the term in O~b/Ot. 
This has the advantage that  the initial conditions imposed upon the state 
function ~b are just a specification of ~b at a given time but not also O~b/Ot. 

Equation (1) therefore becomes 

= + - ( 2 )  

where the constant 7 satisfies 

~, = 4 ~ I 1 ( ~ / / ~ ) .  (3) 

Thus the equation is completely determined when we give the values of fl and 7 
and the form of the function f. 

An order of magnitude estimate for fl for stellate cells in the visual cortex of 
eat may be obtained from data given by D. A. Sholl (1956, chapter 4) for the 
number N(a) of intersections of dendrites with a sphere having the perikaryon of 
the cell as center. From our connectivity function g(p) of equation (I.13) we 
deduce that  N(a) should be proportional in our model to 

n(a) = f ~  4~pgg(p) dp = f ~  4.~pe-~B~'dp = 16~fl-:(1 + ½fla) e-½Ba. (4) 

Fitting this form to Sholl's data  for the rate of decay of N(a) as a function of 
a gives fl - 10 a cm -1 (for his stellate cell graph on page 54, one finds fl = 
0.85 × 10 a cm-1). 

In  Par t  I, Figure 1, the curve of the source distribution f(~) against ~ is 
significantly compared with the straight line y = fl2~/16~. I t  is natural  to 
suppose, therefore, tha t  f ' (~) is of the same order of magnitude as fl9/16~. 
Combining this with the expression for ~, given in equation (3) shows that  the 
ratio 7/~fl 2 is of the same order of magnitude as 11. 11, however, is mlnus the 
first moment  of the collection function i(e) with respect to time and is therefore 
of the order of milliseconds. Hence 7 is of the order of 10 a em -2 see. This 
gives us our estimates of the orders of magnitude of fl and 7, while the possible 
forms of the function f(~) were discussed in the previous paper. 
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These estimates of 8 and 7 are not entirely fortuitous results of calculation 
but  are directly connected with straightforward physical features of the system. 
The coefficients of ~b and ~ are ¼82 and 7, respectively. Hence their ratio gives 
a characteristic time for the system. However, on account of the irrelevance 
of the velocity of propagation v, the only physically significant time is the mean 
delay involved in the collection function i(z), which is of the order of milli- 
seconds. Further, 8-1 - 10/~ is comparable with the distance over which the 
number of dendrites intersecting a sphere of center at a given cell drops by a 
factor of two. Finally note that  8 > 0, 7 > 0. 

Having arrived at a relatively simple field equation, we now pass on to 
consider a number of general questions about  the solutions of that  equation. 
First we consider some general criteria for stability of solutions. Also, it is 
desirable to show that  equation (2), our field equation, is still closely related to 
a matrix formulation for a finite neural net and we therefore give a general 
demonstration of the approximate t ruth of this fact. 

2. The Problem of the Stability of  Solutions. We remarked, alrea~ly, in Par t  I 
that  our equation of motion had the rather trivial solution ~b = c, where c is a 
constant, providing that  c satisfied 

{8 e = (5) 

I t  is natural to wonder whether general solutions would tend towards these 
steady solutions or not. I have not been able to give any general demonstra- 
tion of the truth or falsity of this proposition. There is, of course, no reason 
why general solutions of the equation should ever settle down to steady values 
and one may  quote for example the frequent occurrence of limit cycles in the 
solution of nonlinear differential equations (Leimanis and Minorsky, 1958). 
All we shah manage to show here is that, for a particularly simple form of 
source distribution f, all the solutions do tend to the steady solutions and that  
it is quite likely this is a special case of a more general result. 

Let  us make the assumption that  the source distribution satisfies 

f(~b) = f(c) + b(~b - c) (6) 

where b < f12/16~r2. Set X = ~b - c. The deviation of ~b from its value in the 
critical solution is then represented by X Furthermore the graph of  f(~b) 
against ~b crosses the graph of the function fl2~b/16,-r from above, as shown in 
Figure I(A). We now have as the equation for X: 

V2X = ~f12 X + ~2 - 4rrb X. (7) 
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The time variation of X is most conveniently investigated by  using Green's 
formula, in conjunction with equation (7). We find 

~x - f xv~xar f (vx)~d~ - - f x ~ dS 

= fx ~ dS- f x [ i ~ x + y ~ - ~ b x ]  dr (8) 
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Figure 1. Three source distributions referred to in tho text. The line through the origin 
is the function fl2~/16rt 

where the integrals are over the region occupied by  the neural material and its 
boundary.  Hence, on rearranging: 

f x d. f x Ox - f (Vx) d. - f (9, 
The differentiation in the surface integral is along an outward normal. We 
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now assume X = 0 on the boundary of the region of neural material, and then 
that  integral vanishes. Let us set 

A = .Ix2d~ (10) 

and then, using the fact that  the left hand side of equation (8) cannot be 
negative, we find 

+ - 4 b) t < 0. (11) 

This equation may be integrated to give the inequality 

A .<< C e - S t  ( 1 2 )  

where C is a positive constant, and 

e = 27-1(~fl 2 - 47rb). (13) 

The quanti ty  A is obviously non-negative and we have shown that  it tends to 
zero exponentially with time. This is not  an absolutely rigorous proof tha t  X 
itself tends to zero but  at least that  its variance does. Hence, in the mean, all 
solutions tend towards the solution ~b = c. This is why we called a point ~b = c 
a stable critical point. We already have estimates of the order of magnitude 
of the quantities fl and 7 occurring in equation (13) and, presumably, b would 
lie somewhere between 0°/0 and 90% of ~2/16~r. With this assumption the 
time constant ¢ = e -1 of equation (12) would satisfy the inequalities 2.10 -3 
< ¢ < 20.10 -3 seconds. 

I have not been able to find any satisfactory method of treating this problem, 
either for a general function f(~) with a single critical point, or for the ease of 
several critical points. I t  does seem rather likely, however, from the preceding 
analysis, tha t  solutions tend towards or away from critical points according 
as to whether they are stable or unstable, in the sense defined in equation 
(I.4), when there are several critical points. However, the boundary con- 
dition must  be imposed a little differently. This is because our previous 
boundary condition X = 0 on the boundary was the same as taking ~ equal to 
its value at the unique critical point. I f  there are several critical points, of 
course, one cannot do that. Here one might either consider an infinite region 
or, probably better, use periodic boundary conditions. In  the latter ease, for 
a centrosymmetrie region, the conditions relating to antipodal points Px and 
P2 may  be taken as 

~b(P1) = ~b(P~)' (~ )Pl  = - (~)P2" 

These are the natural  assumptions and ensure that  the surface integral in 
equation (9) vanishes. 
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There is one special case in which we can treat the problem of stability 
rigorously, even when we have several critical points. This is when, initially, 
V~ ~ 0 everywhere. We impose, for example, periodic boundary conditions 
and then will have V~ ~ 0 for all time. Hence ~ is a function of t only, and 
equation (2) reduces to 

= - ¼ f r ¢ .  ( 1 4 )  

Clearly ~ increases or decreases as a function of time according as to whether 
4~f(~) lies above or below ¼f12 in a diagram such as Figure 1. I t  follows im- 
mediately from this that  if ~ lies initially between two critical points c2 and Ca 
then it moves toward the stable one of the two. Similarly if it lies between 
- o o  and cl or between c~ and oo then it moves toward c 1 or c n respectively 
(assuming f to be bounded, both cl and c~ must be stable critical points). 

The time constant connected with such a motion is obviously of the same 
order of magnitude as the T of our investigation of the single critical point, 
earlier. The quantity • is comparable with the synaptic delay time, which is 
perhaps hardly surprising, showing that  motions satisfying equation (2) usually, 
and perhaps always, reach one of a small number of steady states in a very 
short time. The information content of a motion represented by ~ cannot be 
defined or computed until more is specified about the model. But  however 
this is done, one would expect the content to be related to A of equation (10) 
and to tend to zero with A. Accepting this view, we have shown that  in the 
case that  f(~) has only one critical point, information is fairly rapidly and 
completely destroyed in this model. Similarly when we have N stable critical 
points all information except log2~V bits would be destroyed. This is because 
there are just N distinct states in which the system can finish up and so the 
only permanent information is just the knowledge of which of these final 
states is achieved. 

This does not  provide evidence that  the model is good or bad for chunks of 
actual neural tissue but  as it appears to be quite a general result it does pose 
rather clearly the problem of how actual brains manage to retain even as much 
information as they do. Note, however, tha t  the retention that  we are 
discussing here has presumably nothing to do with memory in its ordinary 
long-term sense; it relates to retention during a single passage of excitation 
across or round the brain. I t  has sometimes been supposed, of course, that  
long-term memory is connected with circulating pulses but  this view is now in 
disrepute and does not seem very reasonable to this author. I t  if were true, 
however, the present analysis would be talking about the same type of 
situation. If, on the other hand, as now appears more likely, long-term 
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memory is connected with some form of permanent chemical or physical modi- 
fication of neurons, then the present analysis is totally unrelated to the problem 
of that  sort of memory. 

I t  is convenient to mention here that  while R. L. Beurle's (1957) model is 
based upon somewhat different premises, it corresponds in its general features 
to the present model with a functionf(~b) as in Figure I(B). That function has 
two stable critical points corresponding respectively to no firing (f(0) = 0) and 
to maximum firing. These two stable points are separated by  one unstable 
point. Most of Beurle's discussion relates to motion near the unstable critical 
point and the intrinsic instability there is a difficulty to him. We have not  
proved rigorously that  for such a function, in our model, all motions would 
tend to one of the two stable points but  we have indicated that  it is probable. 
Assuming this view to be correct, then the present model and Beurle's model 
behave in the same way. Beurle's model does not  include the effect of inhibi- 
tion and it has been shown elsewhere (Griffith, 1963b) that,  if one does include 
inhibition, one can get stable solutions having intermediate activity. Such a 
situation would correspond in our present model with a stable critical point 
different from one of these two limiting ones. A source distribution cor- 
responding to such a situation is drawn in Figure I(C). 

3. A Point Neuronal Singularity. We now consider a situation which might 
reasonably be supposed to correspond to having one single neuron. For  this 
we take the source density f to be zero everywhere except at  the origin, 
x = y = z = o, and seek a static, spherically-symmetric solution of  equation 
(2). Set 

p =  (v +y2+z2). 

Then ~b is a function of p only and equation (2) reduces to 

which has a solution 

1 d 2 
p = 

p~b = a e  ~4B~ + b e -~Bp 

Unless a is zero, this solution tends to co as r tends to oo, which is naturally 
physically unacceptable. Hence our boundary condition at  co forces a to be 
zero. Thus the solution corresponds to one neuron at the origin of  coordinates 
with its field of excitation decaying in proportion to 

p-1 e-½Bp 

as we should expect from the original mode of derivation of the equation. 
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4. Passage to a M a t r i x  Formula t ion .  One method of passing back from the 
continuous distribution to a discrete neural net  is to concentrate the sources of 
the field in n points. Let these be situated at rj where j runs from 1 to n. We 
take the field equations, assuming v = 0% in the rather general form: 

V2~b - ];fl2~b = Kf(~) 

(see equations (I.1) and (I.3)). Since the sources occur only at n discrete 
points, the function f($)  will be a sum of n 8 function contributions according to 

1 ( 4 )  - -  0 1 8 ( r  - r j )  

= - r j ) ,  

say. 
Here the n functions fj(t) represent the activity of the n sources at time t. The 
field equations are then satisfied ff we write 

~(r, t) = - 5 ~f j ( t ) [ r  - rjl-1 e-½Btr-rjt. (15) 

Although equation (15) gives the excitation at all points of space, in order to 
determine its influence upon the sources, we need only to know its value at the 
n points r I. In  other words, we need to know the quantities ~b~(t) = ~b(r~, t) 
from equation (15). These clearly satisfy the equation 

~b,(t) = ~_, A J j ( t ) ,  
J 

where the Atj are constanta satisfying 

Aij = A;i = K - ~ .  Jr, - rt[ -1 e-~Blr,-'A. 

This gives us a matrix formulation referring only to the source intensity and 
the level of excitation at the n points concerned. In  accordance with our 
original definition in equation (I.3), ~(rj, t) is obtained by integrating ~bj(t) over 
all past times, weighted by the function i(8). Thus, assuming we know the 
function i(e), we have derived a complete and serf-contained matrix formulation. 
This is of a conventional kind for a discrete neural net, with the exception tha t  
we have also an infinite "serf-excitation" contribution A . .  Such a difficulty 
would probably always appear with a field equation and would also arise in 
Beurle's model. 

The fact that  we get this serf-excitation term means that  our continuous 
model does not  exactly correspond to a satisfactory matrix model. However, 
the effect of t he  self-excitation in the continuous model is probably usually 
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relatively small. We can get some idea of its importance by noting tha t  ff we 
eliminate it  in the continuous model by not allowing any excitation from 
within a distance of $, such tha t  4s-~r88 is the mean volume per neuron, and then 
pass to the discrete model the term A~t disappears. Suppose now, for example, 
tha t  ~b = c everywhere. This means tha t  ~b at  a point, conveniently taken to be 
the origin, is a sum of the two parts 

P1 = f ( c )p  -1 e-  ~BJ'dr = c e-  ~4B6(1 + ½~8), 

P2 = c - P1. 

The quanti ty we are interested in is the ratio 

R = P 2 / ( P 1  + P2)  = 1 - e - a b e ( 1  + ½~) 

which depends just on the product Big. Let  us take, for example, the value 
fl -- 850 cm -1 mentioned earlier. The volume of a nerve cell, and hence 8, 
has considerable variation; if we refer to Figure 6, page 52 of Sholl (1956) we 
find tha t  ~ lies in the range ½ x 10-3--1.7 x 10 -3 cm with the majori ty of 
the values being somewhat nearer to the beginning of this range. For the 
lower of these values of $ we find R = 0.02 and for the upper one R = 0.16. 
This shows tha t  serf-excitation, which is inevitably implicit in the model, has 
probably usually fairly small influence (although ff one wished to apply the 
present model to a particular situation in which one actually knew the values 
of fl and ~ one would need to cheek this point). Of course, it is supposed tha t  
some nerve cells do have serf-excitatory connections, and therefore this feature 
of our model need not necessarily be regarded as physically objectionable, even 
in the case when R is relatively large. 
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