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R e g u l a r i t y  in  P a r a b o l i c  P h a s e  
T r a n s i t i o n  P r o b l e m s  

Sandro Salsa 

To a great unforgettable Master. 

ABSTRA CE We describe the main results obtained in a joint work with Athanasopoulos and Caffarelli 
on the regularity of viscosity solutions and of their free boundaries for a rather general class of parabolic 
phase transition problems. 

1. The Setting 

A rather satisfactory improvement has been made recently in the understanding of evolution 
free boundary problems with two phases. Three main factors are at the heart of this progress: 
general results on the boundary behavior in Lipschitz domains of positive solutions of the heat 
equation (such as backward Harnack inequality), a monotonicityformula for a couple of disjointly 
supported harmonic functions (see Section 3), and a geometrical characterization of the smoothness 
of the level sets of a solution (Sections 2 and 5). 

The use of boundary Harnack principles to prove regularity in free boundary problems origi- 
nated in the paper [2], concerning the obstacle problem. In a subsequent series of papers [9, 10, 11], 
Caffarelli developed a complete regularity theory for a general class of two phases of stationary prob- 
lems. The main strategy in [9, 10], based on some geometrical ideas at the heart of the regularity 
theory for minimal surfaces, turns out to be adaptable to the parabolic case: the major source of dif- 
ficulties is given by the competing double homogeneity of the heat equation and of the (hyperbolic) 
interface condition. Due to this reason, the regularity results in the parabolic case are, in general, 
weaker than the corresponding elliptic ones. 

The techniques and ideas explained in these pages have been applied in other relevant situations 
as well. We mention, in particular, the papers [6], on the regularity for the free boundary in the porous 
media equation, [19, 34], where problems arising in combustion theory are considered and [21], on 
the plasma confinement problem. 

Let us now introduce the class of free boundary problems with which we deal and establish a 
notion of viscosity solutions. Denote by BR the unit ball in R n, n > 1, centered at the origin and by 
CR the cylinder BR • ( - R  2, R2). We start by defining classical sub- and supersolutions. 
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By a classical subsolution (respectively, supersolution) in CR, we mean a continuous function 
v subcaloric (respectively, supercaloric) in f2+(v) = {v > 0 and in f2 - (v)  = {v < 0} such that: 

i)  v e cl(~q-(l))) 
ii) its zero level set F(v) (the free boundary) is a smooth surface 
iii) on F(v), IVo+I ~ 0 and 

or+ < G (v +, v~', v) (respectively _>) (1.1) v + -  

Vv + Here v = 
We require G to be Lipschitz continuous in all its arguments, strictly increasing and strictly 

decreasing with respect to its first and second argument, respectively. 

Def in i t i on .  A continuous function u in CR is a viscosity subsolution (respectively, supersolution) 
if for every subcylinder Q c CR and every classical supersolution (respectively, subsolution) v in 
Q, u < o (respectively u > u) on the parabolic boundary 

0 e Q of Q, implies u < v (respectively u < o) in Q. The function u is a viscosity solution if 
it is both a viscosity supersolution and a viscosity subsolution. [] 

We allow one of the two phases u + or u -  to vanish identically; then u is a solution of a one 
phase Stefan problem. It is easy to check that classical (sub, super) solutions are viscosity (sub, 
super) solutions. 

Perhaps the best known example of  evolution free boundary problems, the one  that actually 
motivated our work, is the Stefan problem, a simplified model describing the melt ing or the solidifi- 
cation of a material with a solid-liquid interphase (see [29, 32, 33]). In this case the general interface 
condition (1.1) takes the form 

v'+ + v:  (1.2) 

balancing the rate of  absorbed or released latent heat (per unit surface) with the heat  exchanged 
across the interface itself 

In [28, 30] it is shown that classical solutions exist locally in time, under suitable compatibility 
conditions on the data. 

On the other hand, the solid-liquid interface could develop discontinuities (see [19]) and 
therefore classical solutions are not expected to exist globally in time. 

What  one is able to construct for all times are weak solutions; that is, solutions in the sense of 
distributions to the equation (enthalpy formulation) 

Au e fl(u)t (1.3) 

with fl(u) = alu + - a2u- + �89 
Clearly, a classical solution is a weak solution and as usual one would like to show that a weak 

solution is as smooth and classical as possible. 
From another perspective, the question consists in a comparison between the two notions of  

solution (see [33] for a more physically oriented discussion). 
In principle, the enthalpy formulation (1.3) allows for the formation of  the so-called mushy 

regions, corresponding to very fine solid-liquid mixtures; in this case, the two phases a re  not separated 
by a sharp interface and F(u) could have positive Lebesgue measure. 

However, under suitable conditions (like the absence of a distributed heat source,  as in the 
present case, see [27]), mushy regions do not expand and in particular do not appear i f  initially F(u) 
is sharp. 

A first important regularity result is the continuity of a weak solution (see [13, 17]); then 
F(u) = 0{u > 0} fq CT becomes the weak free boundary. It is now possible to show that weak 
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solutions of the Stefan problem are viscosity solutions so that further regularity theory enters into 
the general framework. 

A regularity theory for the solution and its free boundary could be developed along the following 
lines. 

a) Suppose that the free boundary is (locally) a Lipschitz graph. Can we deduce further 
regularity for u and F(u)? 

For instance, is u Lipschitz continuous across F(u)? Is F(u)  a C 1'~ or at least a C l graph? 
An answer to these questions has its own interest, since many natural geometries and initial 

data provide solutions satisfying a) (see for instance [31]). 
b) Suppose F(u)  is not necessarily a graph (locally) but is "flat" in a suitable Lebesgue 

differentiability sense. Is F(u)  a smooth graph? 
The question is connected with asymptotic behaviors and finite time regularization: "flat" 

could mean "close" in L~-sense to a smooth asymptotic configuration. 
While our answer to the above questions could be considered rather satisfactory, the problem of 

studying the geometric measure properties of F(u)  and their relation with the "flatness" hypothesis 
in b) is still open. 

2. The Obstacle and the One Phase Stefan Problems 

We start the examination of question a) by first describing the results in [2] for the obstacle 
problem and in [8] for the one-phase Stefan problem. In these two simplified situations, the above- 
mentioned geometrical ideas and the role of comparison theorems of Harnack type can be clearly 
seen. 

In the paper [2], the authors take a local minimizer U of the energy integral (L > 0) 

J ( v ) =  fB  ( ~ l V v l 2 + ) ~ v ) d x  B r = { x E R n ,  I x I ~  r } 
2 

on K --- {v 6 HI, c, v >__ 0in B2, v - u ~ H01(B2)}. 
The set {U = 0} is called the coincidence set and F = a{U = 0} is the free boundary. It is 

known that U 6 CI'I(B2_~) and that AU = X in f2 + = {U > 0} (see [20]). 
Assume that, due for instance to global considerations, U is increasing in some direction, say 

el. Therefore, the free boundary is the graph of a function xx = f ( x 2  . . . . .  xn). Then, we have the 
following: 

T h e o r e m  1. 
In BI, f is Cl'a for  some O < ct < 1. 

What is remarkable from our point of view is that the result follows almost at once from 
a comparison theorem between harmonic functions vanishing on some part of the boundary of a 
Lipschitz domain. We briefly recall this result and afterward we sketch the proof of the theorem. 

T h e o r e m  2. [15, 17] 
Suppose f2 E R n is a bounded Lipschitz domain and u, v are positive harmonic functions in 

f2, vanishing on the surface disc A2R(Q) = B2R(Q) M af2, Q e af2. Then there exists a positive 
constant c = c(n, Lip(f2))  such that 

U(X) U (Ar )  c -  1 ~ u  (Ar) < < c (2.1) 
v ( A r )  - v(x)  - v (Ar )  

for  every x E qJr(Q) = Br(Q)  N f2, r < R ,  where Ar is a point in f2 with d i s t (Ar ,  af2) 

d i s t (Ar ,  Q) ~ r. 
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u(x) Moreover, ~ is H61der continuous in ~R (Q). 
The proof of Theorem 1 goes as follows. 
Using an argument of Alt [ i] based on maximum principle, it is possible to prove the existence 

of a cone (cone ofmonotonicity from now on) F(el,  0), with axis el and opening 0, such that if 
r 6 F(el,  0), then DrU > O. This implies that f is a Lipschitz function, with Lipschitz constant 
L < cot 0. Now, any directional derivative Dr U is harmonic in f2 + and vanishes on F. Applying 
the comparison Theorem 2 to u = D~ U and l) = De~ U it follows that the ratio D_Dr.E.U is H61der 

Del U 

continuous in (2 + N B2-~. The implicit function theorem then gives the H61der continuity of V f .  
Let us now consider the parabolic counterpart of the obstacle problem; that is, the one-phase 

Stefan problem in its integrated form. Here, the new unknown is w(x, t) = fd u(x,  t)ds (see [17]) 
and, in a local setting, w satisfies the following conditions: 

i) w(x, t) >_ 0 in CR = BR(xo) x (to -- R 2, to + R 2) with (xo, to) ~ O{w > 0}, the free 
boundary; 

ii) z ~ w - - w t = l i n C R A { w > 0 } .  
From [14] itis known that w ~ CIx'I(CR_E), W ~ C](CR-~), for any E > 0. 
As before, assume w is increasing along some spatial direction, say el, so that the free boundary 

is the graph of a function xl = f (x2 . . . . .  xn, t) = f (x t, t ). 
We ask if f is a C I,~ function for some or, in space and time. 
Adapting the argument of Alt, it is again possible to show that in CR-~ there is a space-time 

cone of monotonicity F(0, e l l  and therefore, f is Lipschitz in space and time. The difficulty here 
is that the parabolic comparison theorem is weaker than the elliptic one, as a consequence of the 
time-lag in Hamack inequality. In the present situation, the theorem could be stated as follows. 

Suppose f (0 ,  0) = 0 (that is (0, 0) 6 8{w > 0}) and introduce the parabolic boxes and discs, 
where L is the lipschitz constant of f ,  

d/r(O,O)= { ( x , t ) :  f ( x t ,  t) < x l  <4Lr ,  [x'[ < r ,  [ t l < r  2] 

At(0,0) = {(x,t)  : Xn = f ( x ' , t ) ,  Ix'l < r ,  It[ < r 2 ] .  

LII F 

A r 

Moreover, put 

A r = ( O ,  3Lr, r2) ,  

Theorem 3. [23] 

Ar = (O, 3Lr, O), A_A_A_A_~ = (O, 3Lr, - r 2 )  . 

Let u, l) be a positive solution of the heat equations (i.e., caloric functions) in gxt2R continuously 
vanishing on A2R. Then there exists C = C(u, L) such that 

u(x ,  t )  > c u (A2R)  
l)(x,  t )  - l) 

for every (x, t) ~ kOr, r < R.. 

(2.2) 

Unfortunately, Theorem 3 does not seem to imply the H61der continuity up to the boundary of 
U/l ) .  

The following lemma, however, allows one to overcome this difficulty. Let w satisfy i) and ii) 
above. 

L e m m a  1. 
There exists a constant C > O, depending only on u, L, Ilwllc2 ~, Ilwllc, t such that 

C- l  wx/'~,t) < [Vw(x, t)l _< C w~-'~,t) 
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for  every (x, t) ~ Ctr where Vto = (Vxto, wt). 

With this lemma at hand one can prove the following: 

T h e o r e m  4. 
Let to satisfy i) and ii) above. Suppose that Del to > O. Then, in CR/2, the free boundary is a 

graph of  a c l ' a  function for  some 0 < eL < 1. 

Let us sketch the proof of Theorem 4. 
The derivatives D t w ,  for r ~ F(0, el) are caloric functions in, say, O,'R/2(x0, to), vanishing 

on AR/2(x0, to). Then, in aPR/2(X0, to), by Theorem 3 applied to u = D~to, v = De, w, we have 

DTto(AR/2) Vto(AR/2) lcos~(V,~)  
D t t o ( x , t )  > C > C - -  

D ,toCx, t ) -  D,,to(:,,Ug- Ivto (, R/gl (2.3) 

where a(y__, z) denotes the angle between Vto(AR/2) and ~. 
Now, by Lemma  1 we have 

Ivto ( Rj2)I _< cv/ o (a j2)t. 

On the other hand, by the monotonicity of  to along r and Harnack inequality we have 

From the above estimates we can write 

D~to(x, y) 
> C cos a(_V_, ~) -:  8(r )  

Del to(x, t) - 

or  

Dv(t)(u) > 0 v( r )  = ~ - $(z)el �9 (2.4) 

When r varies on 0F(0,  el) ,  v(r )  describes a new family of directions that contains a larger 
cone F(02, e2) with ~ - 02 </z( -~  - 0), /x < 1. 

Starting now with the cone F(02, e2) in the domain ~PR/4(XO, to) and iterating the preceding 
process, we obtain a sequence of cones Fk = Fk(Ok, ek) such that 

a) in qJ2-k-~ (X0, to) to is increasing along all directions in Fk 
b) [ek+I -- ek[ <_ Clx k 
c) ~ - 0k+~ ___ ~(~ - ok) 
It follows that ek --~ e ~ ,  f is differentiable at (xo, to) and ecr is the normal vector to the 

tangent plane. 
The geometric decay c) determines the C a modulus of continuity of V f .  

3.  L i p s c h i t z - F r e e  B o u n d a r i e s  I: R e g u l a r i t y  o f  V i scos i ty  
S o l u t i o n s  

In this section we take up question a) of  the introduction and in particular the regularity of  
a viscosity solution with Lipschitz-free boundary. This requires a preliminary investigation on the 
behavior of a caloric function near its zero-level set. Therefore, the key tools are once again Harnack 
inequality and the comparison Theorem 3. However, due to the lack of regularity of  u, it is impossible 
to bypass the time-lag weakness of Theorem 3 using something like Lemma 1. The right way to 
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recover an elliptic version of the theorem seems to be use of a control of the oscillation of the solution 
away from the zero level set in order to obtain a backward Harnack inequality as in the following 
theorem, in which f = f ( x  I, t) is a Lipschitz function (in space and time), with Lipschitz constant 
L, and f (0 ,  0) = 0. We also use the notations of Section 2. We remark that the theorem also holds 
if f is Lipschitz with respect to the parabolic distance. 

T h e o r e m  5. 
Let u be a caloric function in qJ2, vanishing on A2, with u(A~) = m > 0 and M = supu. 

Then there exists a constant C, depending only on n, L and -~ra such that 

d x t  for  all (x, t) E qJl and for  all p, 0 < p < ~ (dx,t = dis t  ((x, t), A2). 

Backward Harnack inequalities were first introduced by Fabes et al. in the paper [22] for 
solutions vanishing on the lateral part of a cylinder (e.g., the Green's function), to parabolic equations 
in divergence form, with time independent coefficients. Extensions to non-cylindrical domains and 
to non-divergence form equations can be found in [23] and in [26], respectively. Finally, extensions 
to time dependent operators are due to Fabes et al. in [24, 25]. 

We list some of the consequences of Theorem 5 in the following corollary. 

Corol lary 1. 
Let u be as in Theorem 5. Then, in qJl, 
i) there exists a cone of  monotonicity F(O, el) in space and time; 

m ii) there exists a constant C = C(n, L, -~) such that 

~ , t  c u ( x ,  t) C_ lu ) < ]Vx,tu(x,t)] < ~ ; 
x,t - - dx.t 

iii) there exists b = b(n, L, -~ ) such that, for  each t fixed in ( - 3 ,  3), the functions 

113 + ~ u q -  U l + b  l l ) -  ~ U - -  U l + b  

are, respectively, sub- and superharmonic. 

In particular, the consequence iii) says that for t fixed, u is "almost" a harmonic function. This, 
in turn, implies the possibility to use the following monotonicityformula of [3]. 

T h e o r e m  6. 
Let w l, w2 be continuous subharmonic functions in the unit ball B1 such that w t (0) = w2 (0) = 

0 and WlW2 = 0 in BI. Then (p, tr are radial coordinates in R n) 

= r - 4  f IVwll 2 pdpdcr f_  IVw2l 2 pdpda  (3.1) g(r) 
,I B r , l lJr 

is an increasing function of  r. Moreover, if w = Wl + wE, for  r <_ �89 we have 

g(r) <_ C ( n ) l l w l l 4 o o ( B l )  . (3.2) 

A parabolic version of this formula has been proved recently by Caffarelli [12] for the heat 
equation and extended by Caffarelli and Kenig [16] to general equations with Dini-continuous coef- 
ficients. 

This formula is the key tool in proving the Lipschitz continuity of the solution of our free 
boundary problem, since it gives a control of the behavior at the origin of the gradients of wl and 

W2. 
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Indeed, if u is a viscosity solution with Lipschitz-free boundary, we can apply formula (3.1) 
to wl = u + + (u+) l+b and w2 = u -  + ( u - )  l+b and conclude that, at any fixed level of time, for 
small r 

r -2n fa  [Vu+[2dx fo IVu-12dx < C (3.3) 
+ (u)flBr - (u)f3Br 

where C depends on the usual quantities. 
It is then possible to prove the following result. 

Theorem 7. 
Let u be a viscosity solution to a free boundary problem in C2. If  F(u) is Lipschitz in some 

direction v, then u is Lipschitz continuous in CI. 

Clearly, the Lipschitz regularity of u is optimal, given the jump of the gradients across F(u). 
Here is a sketch of the proof. Let (x0, to) E f2 + (u) at distance d (small) from the free boundary. 

Suppose that the (n + 1)-dimensional  ball Ba(xo, to) touches F(u) at (0, 0) and set u(xo) = Mh. 
Notice that cd < h < d. We want to show that M is controlled from above. 

Using a barrier function and maximum principle, it is not hard to prove that i n  B�89 u -  = 

h -o lx  i- + o(Ixl), with oe > 0, and u+(h,x ' ,O) > cMh for Ix'l _< ~ .  

Therefore, if e is any segment from F(u) to xl = h we have 

fe( W+)x, dxl > cMh . 

Integrating in x '  and using H61der inequality we get 

h-" IVu+12dx >__ C M  2 . 
d B  bh 

Similarly we obtain 

h . f. I v u - l Z  d x  >_ z . 

From the monotonicity formula we deduce M2ot z < c and therefore if M is large, then (~ is small. 
Consider now the function 

~ ( x , t )  = -~Xl q- fl+t q- x21--Cl t 2 -t- tlxl 2 - -C2  I;I 2 -  

where fl+ is chosen such that 

10 , - ~ - - , e l  < < 3 , - ~ - , e l  �9 (3.4) 

Choosing cl,c2 large enough, the function 

9 
= - 

is a classical subsolution in a small cylinder B8 x (0, to) such that ~b < u on its parabolic boundary. 
Therefore, q~ < u in the whole cylinder. 

~+ (o,o) Now, i fM is very large, from (3.4) ~ becomes very large (~ is small). Hence, F(@) and 

F(u) must cross each other which is a contradiction. 
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Define 
w+(x,  t) = (1 + Mt)hxo+l,t(x) in Dxo+l,t 
w+(x, t) = 0 otherwise.  

Observe now that D~, 0, the complement of  Dx,o, can be obtained from Dx,o by a rotation R. 
As before, define 

to-(x, t) = - ( 1  + Mt)hxo+l,-t(Rx) in D x o + l , - t  
w - ( x ,  t) = 0 otherwise. 

For E small and M large, the two functions w + and w -  turn out to be, respectively, supersolution 
and subsolution of the one-phase Stefan problem in BE x [0, r sharing the same initial data and 
the same initial free boundary. Let u now be the solution of the two-phase Stefan problem in the 
cylinder BE x [0, E] with initial and lateral data satisfying 

tO-- < U  < W  + . 

Then, the free boundary of u is contained in the set 

D)q~+l,-t N D x o + l , + t  

and therefore, it has a corner singularity at the origin for t E [0, E]. 
The counterexample brings out the main source of difficulty in studying this kind of problem: 

the duality between the parabolicity of  heat diffusion and the hyperbolicity of the free boundary 
relation. Indeed, Vv, u + and u v are invariant under hyperbolic dilations of the graph of u in Rn+l; 

u(Xx,Xt) while the heat equation is invariant under the that is, under the transformation u ~ x , 

u(Xx'x2t) A closer look reveals that two main factors seem to prevent parabolic dilation u > x 
immediate smoothing: 

i) the simultaneous vanishing of the heat fluxes from both sides of  the free boundary, and 
ii) the size of the Lipshitz constant. 
Therefore, a regularity theory can be developed only under additional conditions, able to 

prevent i) and/or ii) above. The next section is devoted to the examination of i). 

5. Lipsehitz-Free Boundary III. A Nondegenerate Case 

The counterexample of Section 4 shows that one cannot expect Lipschitz-free boundary to 
regularize instantaneously. On the other hand, we have seen two kinds of conditions that can be 
imposed to recover regularity. Here we treat the first one; that is, a nondegeneracy condition which 
prevents simultaneous vanishing of the two fluxes from both sides of the free boundary. In this 
case, one can prove that viscosity solutions are actually classical ones. More precisely we have the 
following: 

Theorem 9. [6] 
Let u be a viscosity solution of a free boundary problem in C2 such that F(u) is given by the 

graph of a Lipschitz function xl = f (x t, t) with Lipschitz constant L. Assume that (0, O) ~ F(u), 
that M = suPc 2 u, u(el, _3)  = 1, and that 

i) G = G(a, b, v) is Lipschitz in all its arguments with Lipschitz constant LG and, for some 
positive c* 

DaG >_ c* DbG < -c* ; 

ii) (nondegeneracy condition) there exists mo > 0 such that if (xo, to) is a regular point for F(u) 
then, for any small r, 

f8 >-- " 
luldx mo rn+l 

r (xo) 
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Then, the following conclusions hold: 
There exist positive constants Cl, c2, depending only on n, L, M, La,c*,mo, such that, 
1) In C I, F ( u ) is a C 1 graph in space and time, and for  every (xl, x p, t),(yl, yt, s) E F ( u ) 

4 
Ix7'H (x' , t)-  v'H (y',t)l <_ Cl (-loglx'-  y'l) -~ 

I D t f  ( x ' , t )  - D t f  (x', s)] < Cl( - log l t  - sl)-~ ; 

2) u ~ C1((2 +) Cl C l ( ~  - )  and on F(u)  N Cl 

Uv+ >C2 > 0  

Therefore, u is a classical solution. 

We already said that the general strategy to attack the problem is the same as in [9], for the 
elliptic cae. In particular the starting point is the existence of a cone of monotonicity F(O, el) in 
space and time, such that, in a neighborhood of F(u) ,  D~u > 0 for every r ~ F(O, el).  This follows 
from Corollary 1. 

The second step consists in improving the opening of the cone away from F(u) .  
The third one is to carry this improvement to the free boundary, in a smaller cylinder, decreasing 

in this way the Lipschitz constant of f .  
Finally, an appropriate rescaling and iteration of the above steps gives the result. 
Let us go back to Step 2. In enlarging the cone away from F(u)  one realizes that the derivatives 

of u along purely spatial directions behave differently from those involving a time component. This 
different behavior will of course result in a different opening speed between the spatial section of 
the cone l"X(el, 0i ~) and the space-time section Ft(vl,  0[), where vl belongs to the plane spanned 
by el,et. 

The improvement of the cone F x (el, 0F) away from F(u) can be done in parabolic homogeneity 

as in Theorem 4, using the backward Harnack inequality. This means that in a cylinder, say B I (2 el) x 

( - ~ - ,  i~), D~u > 0 for every r ~ r'x(~l, 0~) with 

g 
- < b < 1 ( 5 . 1 )  
8 -  

where we call 8 = -} - 0 x the defect angle in space. 
It turns out that parabolic homogeneity is not enough here; hence, one has to refine the calcu- 

lations to achieve the gain in a hyperbolically scaling cylinder. 
~r _ 0 t is The cylinder that can be obtained is of the form B, (2el) x ( - I '  I ), where/z = 

the defect angle in time. 
We only mention that at this point one has to take care of a delicate question. The nondegeneracy 

condition ii) in the statement of Theorem 9 assures in a weak sense that, at regular points of F(u),  
the heat fluxes from both sides of the free boundary are not simultaneously vanishing. However, 
there is no information about which of the two is not zero. On the other hand, at each step of the 
iteration process, one needs this information. One way to bypass the problem is to improve the 
cone of monotonicity also from the negative side of F(u),  making sure that in both sides there is a 
common enlarged cone, which we still denote by I'X(~l, 0F). 

The enlargement in time requires new ideas. Observe first of all that the monotonicity of u 
along the directions in I "t (vl, 0~) amounts to the existance of real c, A, B, such that 0 < B - A < c/z 
and 

Dtu+ ( Dtu- ~ 
A < - - ~  < B  

- -  D e l  u + D e l  u -  ] - -  
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almost everywhere on F(u)  and everywhere else in C2. TO enlarge the opening is equivalent to 
lowering B or increasing A. 

The following lemma gives a simultaneous improvement in time of I "t (vl, 0~) on both sides 
of the free boundary. We set 

ct+ = Delu el ,O t~- = Delu - e l , 0  . 

L e m m a  2. 
Suppose G(t~+, ct_, el)  _> _ . 4 . ~  (respectively, G(ot+, ct_, el) _< A+__._BB2 " Then, there exist 

positive C, c such that if8 is small and ~ < clz 3, then 

Dtu 
- ~  < B - C I z  

De1 u - 

(respectively, Vtu 8 - ~ q u  >- A + Clz) in B~ (+__~el) x ( - I ' - u ) "  

From Lemma 2, the enlargement of the monotonicity cone away from and in both sides of the 
free boundary is obtained. 

We now come to Step 3: the improvement of the Lipschitz constant up to the free boundary. 
Since in Lemma 2 we require the defect angle to be much smaller in space than in time, essentially we 
have to prove first regularity in space and then in time. In both cases the idea is to use a perturbation 
argument introduced by Caffarelli in [9], based on the construction of a family of subsolutions, able 
to measure the opening of the cone of monotonicity and to carry the interior enlargement to the free 
boundary. 

The key lemma in the present case is the following. 

L e m m a  3. 
Let u be a caloric function in a domain D C R n + l  and suppose that lutl <_ IVxul in D. 

Assume 4~ is a C 2 function such that 1 < #p < 2 and, for  some small positive constant cl, c2, and 
c3 > 1, satisfies 

mr  - c 2 l V r  

in a compactly contained subdomain D' o f  D. 
Then the function 

vr t) = 

IVr 2 
0 ut > 0 (5.2) 

sup u 
BC,(x.t) (x,t) 

is subcaloric in {v 4, > 0} fq D ~ and in {v 4, < 0} N D ~. 

Define now 

and construct in D the perturbation family 4~,, 0 _< 77 < 1, satisfying (5.2) and also the following 
conditions, for suitable small positive numbers h, k: 

i) 1 < r  < l + r / h  

ii) r > 1 + rlhk in B�89 x ( - 5 '  "~) 

iii) Co = 1 outside B,  x ( - 7  T, T) 

iv) IVr < Crlh. 
and put (p = (x, t),q = (y, s)) Let u be our viscosity solution; choose T = 

vr  = sup u (q - eel)  �9 
B~r n (p) sin 01 (P) 
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We ask for every ~ > 0 and every 17, 0 < 17 < 1, 
1) isvr < u ?  
2) is re ,  a subsolution of the free boundary problem? 
The answer to both question is yes if we add to vr a correction term that takes into account 

the enlargement of  the cone of monotonicity from both sides of  F(u) away from it. This term 
can be chosen of  the form W + - W - ,  where W + is the caloric measure in f2+(u) of  the set 
OBl (-t-3 el) x ( - T ,  T) multiplied by u(+ 3 el, 0). 

The correction term produces a shift in the speed of the free boundary of  the new family of  
perturbations fie, = vo, + W + - W -  that can be controlled by means of the nondegeneracy condition 
ii) of  Theorem 9. Indeed, here is the only point in which this condition has to be used�9 

Using the family fie,, the answer to questions 1) and 2) above is positive and, therefore, thanks 

to property ii) of  q~n, we conclude that in the cylinder B t x ~ 8-I  ( - -  2/ . t l ,  2 7 1 )  , U is increasing along the 

directions in a spatial cone FX(e2, 0~) and in a space-time cone F t (v2, 0~). 
~r x ~ - 0~, The defect angles in space and time of the new cones, that is 32 = ~ - 02 , /1,2 ~--- "~" 

satisfy the relations 

~2 = 31 - -  C ' ' 's 
/Zl 

/1,2 = /Zl  - -  C31 �9 

Iteration of the whole procedure gives that in a sequence of contracting cylinders B2-k x 
( - v ~ . . ,  a , x t 2-~k) u is increasing along all directions in a sequence of  cones Fx(ek, O~ ) and Ft(vk, 0~) 
where the respective defect angles satisfy the recurrence relations 

with ~k << / z3- 

ak+l = ak - c ---~-~ (5�9 
/zk 

I~k+l = I.*~ -- CSk (5�9 

From (5.3) and (5.4) it easily follows the asymptotic behavior 

Cl (17) C2 (17) 

3k"~ k~-O Izk " 1 k~-O 

for any small 0 > 0. 
These asymptotic behaviors correspond exactly to the modulus of continuity of  IV'xf [ and 

D t f  in Theorem 10. 
To prove the other assertions of the theorem, notice that for each time level to ~ ( - 1 ,  1), 

f2+(u) fq {t = to} is a Liapunov-Dini domain. Since ut is bounded, the results of Widman [34] apply 
and therefore Vx u + are continuous up to the free boundary at each level of  time. Finally, using the 
free boundary condition the proof is easily completed�9 

Notice that the size of  the contracting cylinders reveal very well the underl~ing double homo- 
geneity of  the problem The proper scaling at each step, x ~ 2-kx ,  t ~ 2 -k  ,~,~. t, is intermediate 
between parabolic and hyperbolic scaling. This produces the logarithmic modulus of  contmmty of  
v.,f .  

6. Flatness and Finite Time Regularization 

In this section we examine the other factor that seems to prevent immediate smoothing, namely 
the (large) size of the Lipschitz constant of  the free boundary. 
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A first result that can be proved is the following. 

T h e o r e m  10. [7] 
Let u be a viscosity solution satisfying the hypotheses o f  Theorem 9 except for  the non- 

degeneracy condition ii). 
I f  the Lipschitz constant in space o f f  is small enough, then the same conclusions o f  Theorem 9 

hold. 

Therefore, if the (Lipschitz) free boundary isflat  enough in space, an intantaneous regulariza- 
tion takes place. 

As an immediate application, consider the counterexample of  Section 4. When time increases, 
the corner at the origin widens until it reaches a critical angle beyond which the free boundary starts 
regularizing. Of course, the two functions w +, w_ are no longer supersolution and subsolution, 
respectively. 

The main point in the proof of Theorem 10 is to exploit the flatness of F(u)  to recover a sort 
of  non-degeneracy. This can be done by controlling the behavior of  superharmonic functions near 
regular points of  their zero level set, in the situation described below, that one encounters at each 
step in the iteration process. Let Fk := Fk (Ok, vk) be a sequence of spatial cones and D the domain 

{(x ' ,x~  E R " :  Ix'l < 2, g (x')  < Xn < 2} 

with g a Lipschitz function. 
Suppose that 0 ~ F := {xn = g(x')} and that 

7r _ c a > 0, k>> 1, and Irk - vk+ll < ?(8~ - ~+1)  a) 8k := ~ --Ok < (k+k)l+a, 
b) there exist ko such that, for k < ko, 

F k n [ B2-k (O) \ BE-k-i (0) 

and a ball B2-4k o tangent from inside to F at 0, with inward normal Vko, such that l~kt~ A B2-4k o C 
D N Fko. 

Then the following lemma holds. 

L e m m a  4. 
Let { Fk } and D be as above and w be a positive superharmonic function, continuous in l) and 

vanishing on F. Then there exists a constant C = C(n, a, k) such that, near 0 

w(x )  > Cwo < x, vko > 

where wo = denotes the minimum o f  w on the set l) A {xn = 2}. 

Following now the strategy in Theorem 9, one constructs the family of  perturbations ~ .  
Thanks to Lemma 4, these functions are subsolutions but only for fixed E > 0. 

As a consequence, it is impossible to carry to the free boundary the full interior cone enlarge- 
ment. What it is possible to prove near the free boundary is that along all the directions r in (space 
and space-time) larger cones, u is only E-monotone; that is, 

u(p  + X~) - u(p)  > O )~ > E . 

On the other hand, E-monotonicity implies full monotonicity V7 away from the free boundary, 
so that it is possible to improve E-monotonicity itself, i.e., decreasing E, at the price of  giving up 
a small portion of the enlarged cone. This improvement, just as in [10], requires a new family of  
subsolutions. 

To achieve the result, one performs a double iteration procedure which consists at each step of 
a cone enlargement and of an ~-monotonicity improvement in a sequence of contracting cylinders 
with the previous intermediate homogeneity. 
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The result in Theorem 10 does not really give complete information about the question of  the 
finite time regularization, due to the starting hypothesis of Lipschitz continuity of  the free boundary. 

For instance, if as time goes to infinity we have convergence to a nice and regular stationary 
configuration, it could be interesting to know if, after a finite time, the solution becomes a classical 
one, regardless of its initial data. 

A rather satisfactory answer can be obtained without asking F(u)  to be a graph and only 
assuming u to be 6-monotone along all directions r belonging to a space cone F x (e, Ox) with large 
enough opening and to a space-time cone F t (v, Or) containing the direction e (to avoid infinit speed 
of  the free boundary). 

Leaving unchanged the other conditions, we reach the same conclusion o f  Theorem 10. 
The 6-monotonicity hypothesis turns out to be quite natural in studying the above question. 

Indeed, it is easy to see that a function u is ~-monotone along the directions of  a suitable cone as 
soon as it comes close in L cr sense to a strictly increasing function in space with small oscillations 
in time. This is exactly what happens when a nice asymptotic configuration occurs. 

We give a couple of  applications to the two-phase Stefan problem. For the first one notice that 
uniform limits as t --+ cx~ of  solutions of the two-phase Stefan problem are Harmonic functions. 

T h e o r e m  11. 
Suppose u is a viscosity solution o f  a two-phase Stefan problem in the cylinder B! x (0, oo) 

converging in Llo~176 fOr t --+ ~ to a harmonic function uoo. Assume that at a point xo E F(uoo), 

IVoo(x0)l # O. 
Then there exists a neighborhood V of  xo and T* > 0 such that in V x (T*, cx~), F(u)  is a 

C t graph and u is a classical solution. 

T* depends clearly on a bound from below of IV~(x0)l in V. 
In the second application, we deal with solutions close to traveling waves; that is, global 

solutions of the form 

uo(x, t) = (A + 1)(e t-x" - 1) + - A (e t-x" - 1)-  . 

T h e o r e m  12. 
Let u be a global solution to the Stefan problem. Suppose there exists a compactly supported 

and smooth function q~ such that 

uo(x, O) - ~(x) <_ u(x, O) <_ uo(x, O) + ~ (x ) .  

Then, afler a finite time T*, depending on uo, qb, the free boundary o f  u is a smooth graph 

xn = g ( x ' , t )  

For the proofs of the results in this section see [7]. 
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