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Dedicated to the memory of our dear friend, Gene Fabes

1. Introduction

Functions of bounded mean oscillation were defined by John and Nirenberg in [7] by the
condition

. 1
IlfHBMo(Rd)=Sgplng(Q)Llf—CI <00 (L)

where Q are cubes and X stands for Lebesgue measure. As is well known, given a cube Q, the best
choice for c is the median value of f on Q, but the mean value

Q'_A(Q)/f

is good enough. The main theorem on these functions states that the L! condition, (1.1), implies an
exponential decay of their distribution functions:

Theorem 1. [7]
If f € BMO(RY), thenforallt > 0

c{d)t

AMxeQl|f ) - fol >t} <20 (Q)e MTEmo(x))

This implies that for 1 < p < co the condition
1
supinf( ! /If c|”>; <0 (1.2)
0 ¢ \AMDJg '
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is equivalent to (1.1). It follows from Theorem 2 that (1.2) is equivalent to (1.1) for 0 < p < oo.
Moreover, the weaker condition

it (g5 |17 Pl”)% (13)
sup inf { —— - < 0 .
0 PR\ (Q) Jg
where P are polynomials of degree at most k, P € P, any k, also turns out to be equivalent to (1.1).

All these definitions assume a certain local integrability of the functions. Very soon after the
definition of BM O (R?), John, in [6], gave a characterization of BM O (R?) which does not assume
any local integrability.

We denote ( n )

AMENQ
Ao (E) = ——n=l
0 X(©Q)

Definition 1.

Let 0 <5 < 1 and let f be a measurable function. We define

”f"BMos(Rd) = sgp (Cug; (}ggkg {If —c| >t} < s)) . O (1.4)

Thus, y > ||f||BM0_‘(Rd) iff for each cube Q there exists ¢ = ¢ (Q) so that
ollf —cl>vyl<s.
Theorem 2. [6]
If0 <s < 1, then BMO, (RY) = BMO (RY).

It is easy to see that no result holds for s > %

The case s = % is considerably harder.

Theorem 3. [9]
BMO,; (RY) = BMO (R?).
2

It was pointed out in [§8] that "f”BMox(Rd) = supg infc (f — o)*2 (s) where £*2 is the

left-continuous! non-increasing rearrangement of f with respect to Ag. This connects (1.4) with

the Real Interpolation Theory.
Another way of considering (1.4) is its expression in the language of Orlicz spaces. We define

0 i 1
‘M“):{l i; Zfl

inf{t /¢s <'—{-')de < 1}
inf {t Ao {If] > 1} <5}
AOR

Of course ¢; is not a Young function. In particular, we do not have even a quasi-triangle inequality:
Take f = X[O,i-]’ g = X[l"i.l]’ Q = [O, 1] Then

giving us

"f"Ldt.v(Q)

I llLescgy = gllLes(gy =0

n the literature £* usually stands for the right-continuous non-increasing rearrangement,
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but
If+gllesgy=1-

We will see, however, that for 0 < s < %, if f+ g € Py, then

I f + glipss gy < c(k.d,s) ("f||L¢.c(Q) + ”g”m:(Q)) (1.5)

and for0 < s < 1if f — g € Px, then

| 1 lzoe oy — lgllzoncgy | <l dis) If = glloecgy - (1.6)

In this paper we generalize the John-Stromberg result in the spirit of (1.3). We say that
f e BMOk(RY)if

1V paro (rey = sgppeigf_l (f - P)*2(s) <00

and we prove that for0 < 5 < %

BMO (RY) [Piet = BMO) (R?) . (17

This implies the characterizations (1.1), (1.2), and (1.3). It turns out that this characterization fails
fors = %, unless, of course, k = 1.

The characterization (1.7) for some s > 0 also follows from Theorem 3.2 in [10]. The approach
in [10] is more general than in the present work; the authors consider a space of approximating
functions which satisfies a certain set of axioms. The space Py_ satisfies these axioms, and hence
(1.7) follows. However, the axiomatic setup does not yield the critical value of 5. In particular the
proof of Theorem 3.2 is given for constants and so it does not make it clear that there is a difference
between k = 1, where the resultholds for0 < s < %, and k > 1 where the result holds for0 < 5 < %
and this range is maximal.

‘We also consider similar characterizations of dyadic BM O. Interestingly, in the dyadic case
the critical value for s depends on the dimension of the space.

The main tool we use is the theory of Local Polynomial Approximation. We refer the reader

to [1, 2, 3] for an exposition of this theory.

2. BMO and Local Polynomial Approximation

We begin by proving (1.5) and (1.6). The key to these results is the following important
theorem:

Theorem 4. [4]
Let EC Qand A (E) > 0. If P € Py, then

L\
fggw(xn <b(k,d) (1—(5> sup |P ()] @.1)

Remark 1.
In the rest of the article, b (k, d) will be the constant appearing in (2.1). All other constants
in the article may have different values at different occurrences.
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Remark 2,

The Brudnyi-Ganzburg theorem is more general: they consider convex sets instead of cubes,
and give the best possible constant in this context. d
Theorem 5.

If P € Py, then

P*2(s)
P~2(0) <b(k,d) inf ——>=t .
0) = bk, d) inf TET (22)

Proof. Foranye >0
Ao [|P| > p~@ (s)+£] <s.

Let
A= {xe Q‘ IP (x)| SP*'Q(S)+£}

so that Ag (A) > 1 — 5 and thus

L@\
sup [P (x)| =< b(k,d) (—) sup | P (x)|
re0 X(A)) ien
pe
< bl Ot
(1=
and since ¢ > O is arbitrary, the proof is complete. O

Corollary 1. .
If PPy thenforQ<s <1

1Pllgoocgy < cCk,d, ) 1Pl o5 gy -

Remark 3.
Inequality (2.2) is sharp: take P (x) = (1 — x)* on [0,1]. P*2(0) =1, P*2 (s) = P(s) =
(1 -9k O

Remark 4.
A precise inequality connecting P* (o) and P* (t) for polynomials on a convex set was given
by Ganzburg in [5].2 O

Theorem 6.
IfP &Py thenforO<s <1

(F+P ) < 20+ (-"1(—%‘%1’*'9 O

Proof. Since

Apllf+PI>1t}<Ag {lfl+suglP(y)I >t}
ye

we have

inf {t |Ag{If+ P>t} <s} < inf[t

)»Q{If|+sup|P()’)!>t} <S]
yeQ

2The notation in [5] may be misleading: * stands for the non-decreasing rearrangement there.
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iﬂ[thlUl>t—<wPW(W0] ]
yeQ

= inf{t|ag(lfl>1}<s}+ (sup |P (y)I)
yeg

i

and we have
(f+P)2e) <= 2+ (SUP |P (y)|>
yeQ
b
< e+ 2t 2&d proy . O
(1 -5
Corollary 2.
If0 <s <1, P, Py € Py and f is a measurable function, then
b( d)
‘ If- Pl"[,ér(Q)“”f P2"Lo>r(Q) | =< )k P — PZIIL¢r(Q)
Proof. From the previous theorem
*0 +0 bk, d) e
g+P—-P) "~ ()<g (S)+( — )k(PZ"'Pl) .
Taking g = f — P, we have
b(k,d
If = Piligssoy = IIf = Pallpescgy < a— )k |1 — Pallpec oy - |

The previous theorem is, of course, equivalent to (1.6).
Theorem 7.
Ifk >0, P € Py and f is a measurable function on a Q, then for0 < s < %
bk, d
pee (o) < ~ & D
(1-2s)
Ifk = Q the inequality holds for 0 < s < %
Proof. Consider the case k > 0. From P = (f + P) + (—f) it follows that

[F+P 2w+ 2]

P2 2s) < [(f + P2 )+ f2 )]

so that, using (2.2), we have

P*2 (25)
P20 k, d) ———=
O = blkd T
bk d .
= SS[F P e+ ree)].

The proof for k = 0 is clear. (N
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This enables us to prove (1.5):

Corollary 3.
Ifk>0,0<s<%,andf+g=P€Pk,then
b (k, d)
Hf+8lliss(gy < BT (I1FlLee gy + gl Lo gy) -

Ifk = O the inequality holds for 0 < s < %

Proof. From the previous theorem,

”f+g"L¢s(Q) = IIP|IL¢.\'(Q)
P2 (s)
P*2(0)
bk, d)
(1—2s)
bk, d)
(1 —2s5)k

1A

IA

(2= P2+ 2]

(gl oy + 1 e ) -

The proof for k = 0 is clear. 0

Remark 5.
Let us see that the inequality

P2(s) bk d) [(f + PY"2 ) + f0 ()]

does not hold for % <s<l
Let0 <e <1 —5. Wetakeon [0, 1]

_ ) —=x if 0=Zx<s+e
f(x)—{ 0 if s+e<xx<l

and P (x) = x so that

i
o

f+P)2(s)
ee) =
but
P2()=1-s. [

Although L% is not an Orlicz space we use the standard notation of Local Approximation
Theory:

Definition 2.
Given a measurable function f we define

& (s Do) = Pelgf_l If — Pllgecoy - O

Theorem 8.
Let f be a measurable function.
ForO<s < % and for every cube Q there exists a constant cg so that

ELf; Qo = | f —coll Lo gy -
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Ifk>1land0 <s < % then for every cube Q there exists a polynomial Pg € Py so that
& (f; Qros = "f - PQ"L&r(Q) .

Proof. Let us consider the case k > 1. Since

bk, d)
I I f = Pillzos gy — U f — PallLescgy ‘ =< W”ﬁ = Pallpecco)

b(k,d)

B 121 — P2l L)

we have that
Fp(P)=1f—- P“L%(Q)
is continuous on (P-1, Il zeo(g)). The set
Afi={P e Peot| If = Plipoo) S & (F: Qpos + 1}

is closed in (Px—1, ll-llLoe ()
IE§f — Palliescgy < & (fs @) o + 1 and limposeo [| P ~ Pllpoo(g) = O, then

b(k,d)
N f = Plleescgy < If — Pallpescoy + _(-ITS_)T'T 1P — Pulls: ()
bk, d)
< Nf = Pallgs(gy + ———=7 IP = Pallzo0

I1F = Pallzo oy + =t IP = Palzeie)

and so
W= Pllissioy & (fs Qe + 1.

Since

b (k,d)

Pl oo < — — Pl 60y + | s
Pl Q) a- 2s)k"l (“f ‘Ld’ Q) |f“L¢ (Q))
b (k,d)
—— & (s . + 1+ .
2o (e (f3 Q1o I fliLes )
we have that Ay is a compact set in (Pk—1, ||| Lo(p)) 2nd 50 Fr has a minimum value on the set.
The proof for & = | is elementary.
Definition 3.
Given a function f on a cube Q we will denote by Pg i s (f) a polynomial in Py of best

approximation in L% (Q) for f. We will write Pg when f .k, s are clear from the context. a
Theorem 9.

IfT € Pyand0 <5 < 1, then forallm

b(k,d
En (f+T; Qs < Em (f; Qpae + a—‘——))zsm T; Qs -

Proof. We can assume m < k.

By Theorem 6
En(f+T; Q) pos Em ((f — Pom—1s (N)) + (T = Pom—-15(T)): Q) 1,

[(f ~ Pom-15 () + (T = Pom-1.s (D) | s g

bk, d)
u (f — Pom-ts (f)) “L¢s(Q) + m “T = Pom—1s (T)“L%(Q)
bk, d)

Em (T, . -
T (T; Q)pe O

IA

A

= 8m (f; Q)L¢.\' +



528 Y. Sagher and P. Shvartsman

Lemma 1.
Let0 <5 < % Given a cube Q and a measurable function f, if

—

N

r(0aQ) < 7; A (Q) .
then

b? (k,d) 45!
(1 —s5) (1 =251

1Po ~ Por|| ooy < (& (F: O1a oy + & (£ Q) iog) -

Ifs = %, then given & > 0 there exists § = 8 (Q, &, f) so that for every Q' which satisfies

A (QAaQ) <& (Q)

we have

—col| <& (f; & (f; 0 .
lco —cor| <& (f Q)L¢%(Q)+ 1(F Q)L¢%(Q)+£

Proof. Letusdenote
1

S =s4+ 2 ;S
We have
b (k,d)

b? (k, d)

= s -zl ("f‘PQwag) + "f‘PQ'"L%(Q))
b? (k, d)

8 [(L = s1) (1 = 25! ("f‘PQ|lL¢.v(Q)+ "f_PQ’"mn(Q))
b? (k,d)

= 0 =spd =25 (& (F: Drec + 1 = Porllon ) -

But forany € > 0

Mre@||f @)~ Py )| > & (fi Q) s +¢)

< AMxeQ'||F ) - Po )| > & (f: Q)0 +e}+2(Q\Q)
< sh(Q@)+1r(0\Q)
< s @ +A(QN\Q)+A(Q\Q)
< <s+ 1 ~s);t(Q)
= 2
= 512 (Q)
so that
If- PQ’HL"-"l(Q) SE&(f Q) e e
and hence:

"f - PQ’ ll}_&\'l ) =< gk (f; Q’)L#’x .
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Therefore:
b* (k, d) ) A
IPe=rolimio) = g o (8 D10 + (£ @) 100)
b? (k, d) 4¢~1

[(1-5)@-29)1" (gk (f: Drsie + & (f: Q/)L"’-'(Q)) ’

Let us consider the case k =1, s = %
Given ¢ > 0 we choose § > 0 so that

1
5<§“AQ{|f—CQ| > & (f; Q)Lo% +s} )
Then
_ ! << —_ ’ + —_
co-eg| < Nf=coly  +lF=cel
— . , —
= & (f,Q)Ld’% +“f CQ“L%(Q') .

Butif A (QAQ’) < 8A(Q), we have

l{XGQ' |f(x)—CQ|>51(f:Q)L¢% +8]

IA

A{x € Ql |f () —cg| > &1 (f; Q);% +s] +1(Q"\0)

1
< M) Q) +A (@"\0)

1 ’
< 5>~(Q’)+%>~(Q\Q’)—SA(Q)+A(Q\Q)
1
< EA(Q’)—«SA(Q)Jrl(Q'AQ)
1 !
< ‘Z‘X(Q)

which implies
If _CQ“L'#%(Q,) <& Q)L¢% +e

and

—cpr : £ - Q' . d
lcg —corl =& (f Q)L¢%(Q)+ 1(f Q)L¢%(Q)+s

Theorem 10.
Let Qo C Q1 and A (Q1) < 32 (Qo)-
Ifk>1and0 <s < %, then

1Poo = Poy |l feogg,y < € (ko . 5) o & fi O

Ifk=1wehavefor0<s5%

lcgo —coi| <6 wp_ E1(f; Q)pox -
1

QoS 0C
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Proof. Let

y> sup & (f; Q)pe
Q0C oSO

and suppose that
185153 (k, d)

(-9 =251
Let us prove that if (2.3) holds, then there is a cube 02, Qo C Q2 C Q; so that fori = 0,1,

" Pg, — Pg, "Loo(Ql) > (2.3)

185153 (k, d)

| Po, ~ Py, "L°°(Ql) > (-5 (- 23)]/(_1)’ . (2.4)
We define
18103 (k, d
¥~ aicoco {)“(Q) \"PQ ~Parlimon =275 —(Zs);"“‘ Y ]
Let Qo € Q™ C Q) be such that
| Pom — Pg, "L°°(Ql) = 180 d)k_l Y (2.5)
(A =s5)(1-25)]

and such that
lim A(Q™) =a.

m-—>00

We can assume that the sequence of centers of Q™ converges, and define é to be the cube centered
at the limit point with A (Q) = a. Clearly,

lim A (Q"AQ) =0.
n—»0oQ
There are two cases:
1. If

- 185=153 (k, d)
Lo@) ~ [(1=s)(1 —25)]*! i’

“ Pg - Pg, || 2.6)

for all Q which satisfy

»(QAQ) < 72

~

“2(9)

we have
262 (k, d) 4¢—!

(@) S -na-2F1 "

|75 — P

We take 0 so that 0 C Q” and
~ t-s5
A(QM\Q) < 2TA(Q) )
Since .
A(QN) > (Q) =«

we have that
18513 (k, d)

||L°°(Q1) > 2[(1 —5)(1 =25 s

| Por — Pg,
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We also have

k—1
”PQA—PauLle) = bkD (%) ﬂPQA_PEIIL“‘(E) @7
s 000 (3) -7l g
b (k,d) 6"~}

(-9 -2901"

so that, using (2.3), (2.6), and (2.7) we have:

7o~ Paliey = 1700~ Pilimiy = [P0~ P2l oy

- ”PQ" - PE"L“’(QI)
185~1p3 (k, d)
(= -2 1"

and in this case we take Q0 = Q”.

If
185=13 (k. d)

o) “[=9) =201

|72 7
we take Q7 = é If 1
A (QAQY) < 5—;—’A(Q2>

then

A

3 k—1
b (k, d) (5> 1Po — Po,} eooyy 2.8)

23 (k, d) 6k~!
(-9 -20F 1"

“ Pg - Po, “Lw(gl)

If m is sufficiently large so that

1 _
M08 02) < 1 2 (02)

then, using (2.3), (2.5), and (2.8) we have:

"PQx - Pg, "Loc(Ql) =z I\Pczl - PQ()“LOO(QI) - “ Pg, — Pgn “LOO(Ql)
~{Pom — Poy | 1o,
185103 (&, d)
(-9 a-29F"
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Proving that (2.3) implies (2.4).
Define fori = 0,1,2:

Ai={xe Qi| |[F )= Pg ()| < v}

and let us estimate A (4; (] 4;).
Ifx e A; ﬂAj, then
|Po; (x) — Pg; ()] < 2y

so that
"PQI - PQ/ "Lw(AinAj) =< 2}/ .

From (2.4) and the Brudnyi-Ganzburg Theorem

185=153 (k, d) -
(-9 1-291"

" Pg, — Py, "LOO(Ql)

k—1
A(Q1)
oo (ifiag) 1o el

k-1
A Q1)
oo (i) >

IA

1A

and so fork > 1,

1
bk, d)[(1-s)(1 =2} ]FT 1
Ao, (Ai ﬂAJ') < [ 1813 (k, d) ji < 18"

Of course

(40l 42)\a1 € o1\a

so that
A(Ag)+ A(Ay) = A((AOUAz)\A1)+A(A1ﬂA0)
+A(AoﬂA2)+A<A;ﬂA2)

1
K(Ql\A1)+gl(Q1)

1
(s+ E)A(Ql) .

IA

A

We also have
A(Ao) > (1 —5)A(Qo)

and similarly

A(A2) > (1-9)r(Q2)
> (1=95A(Qo) -

Therefore,

l .
21 =5)A(Qo) < (5+6))\-(Ql) ,
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ie.,

(s+ %)

2(1-y)
2

< EA(QI)

A(Qo) < A (QD

a contradiction. This shows that the original hypothesis, (2.3), fails, proving

185163 (k, d)
(-5 -29F 1"

" Pg, — Pg, "Loo(Ql) =

Since y > supg,cocg, & (f; @)1 is arbitrary, the theorem for k > 1 is proved.
The proof for k = 1 is clear. O

The following result is in [2]. For the convenience of the reader we include a proof.

Theorem 11.
Let Q be a cube in R¢ with side length ro. If P € Pr_1and m < k, then

En (P Qe Sck,d)rg Y 3P| gy -

la|=m

Proof. Let xg be the center of Q. Forany y € RY,

98P (x 8P xQ
PO = ) ————ﬂ(, (yoxgf+ Y —7(,——)@_@)'5
1Blsm—1 ’ m<|Bl<k—1 ’
3PP (xg
= Pp1+ Z —_‘;(!_)‘(y—‘xg)ﬂ
m<|pl<k~1
so that
Em (P Qe = P = Pu-tllzeo(g)
"
= > B 197 P| oo gy -

m<|Bl<k—1

Let us write 8 = « + & where |«| = m. By Markov’s inequality

19°P gy = 13° (8 P)l o g

< C(k,d)fém "aaP"L“’(Q) .
Thus,
Em(P; Q)L < Z ’ZHM |9° (3 P) ||L°°(Q)

0<|5|<k—m—1&|e|=m

ct,d)ry Y [3%Pluigy - O

la|=m

IA
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Theorem 12.
Let f be a measurable function and let Qo C Q1, m <k and0 < s < 5. Then there exists a
chain of cubes

Qo=0%cQlc...cofco

3 i . 3 i+l
(5) (00 =4 () = (5) A (Qo)

im

t /T .
Em (f = Porks () Q0) s <cerd, )Y (5) &(f:0))
i=0

so that

and

L% ’

Proof. Let £ be an integer such that
(g)‘ LA ( )
2 /\(Qo)
Q=0c0'c..c0'=0

+(@+)=3+(2)

Let us denote P; = P i ks (f) sothat Py = Pg, ks (f). By Theorem 9,

and let us construct

sothatfori =0,...,£—-2

-1
En (f — Pt Q)pes = Em (f —Po+ ) (Pi— Py1); Qo>
L¢\

i=0

bk,d
En (f — Po; Q)0 + ()k)l (Z(P Pi+1)?Q0)

=
( L¢s
But
Emn(f —Po; Q0)ss = IIf — Pollzes(gy
and
-1 -1
Em (Z(Pi - Piy1); Qo> < &n <Z(P.~ = Piy1); Qo>
i=0 L#s i=0 Loo
< Y Em(Pi— Pirt; Q0o
-1
=< C(k, d)rgoz Z !laa (Pl —Pi+l)"LOO(Q0)
i=0 |a|=m
-1
s cld)rg ) D 0% (Bi— P oo i) -

i=0 |aj=m
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From Markov’s inequality,
[8% (P = P ] oo vy = € e ) rF0 1P = Pl o i)
and from Theorem 10,

”Pl - Pi+1”Loo(ai+l) =< C(kvd’s) ~ Sup~ 1£k (f, Q)Ld’.\' .
QicQcoit

We choose Qf, 0 <i < £ — 1so that
éi c Qi-l-l c §i+l

and

s & (i Qe 26 (5 0)
gicocgi+! L&

Thus:

En(f — Po;i Q0) e S Em(f = Po; Q0)pes +c(kd,5)rih

£~1
Z Z "3a (P - Pi+l)"Loo('§i+\)

i=0 jaj=m

E (f: Qo)pos +ck,d,s)rp,
-1

2 1P = Pl iy
i=0

=1 m
Ec(fi Qo) +ckod,s) Y <LQ—> 2 (f ; Qi)Lds.v

i=0

IA

A

"Qi+1

-1 L

£ (f; Qo) +cend, ) (;)7 &(re), . O

i=0

A

Definition 4.
We say that

f € BMO* (R“)
“f”BMOf(Rd) = S‘épgk (f: Qo <00. O

Clearly, BM Of (R‘l) is a space of equivalence classes of functions mod (Pk—1).
We are now able to prove an extension of Theorem 2.

Theorem 13,
For0<s < %andk> 1

BMO (R") /Py = BMO} (R“) . 2.9)
Proof. From the previous theorem it follows that if @ C Q’, then

E(f = Pories ()3 Q) o S ckodi ) If ppok(rey - (2.10)
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To show that this implies BM O (R?) /Px_; = BM OF (R¥) we need to show thatif f € BM 0¥ (R?)
then there exists a polynomial P € Py sothat f — P € BMO (R“).
We follow in outline an idea of Brudnyi.

Let 0 = [-2/,2/]" and let P = Py, (f). Then
. 00
&1 (f - Pgi @), = ¢l di) If lgasot (i) -

Let us prove that { H Pyi || L (g" ] is bounded:

We denote by cgo (f — Ppi) a constant of best approximation in L% (Q%) to f — Pyi. Let
us denote

'ﬁQi=PQi+CQ()(f—PQi) .

Then
5 b (k, d)
" PQi " Lo Q") < a——__—;)k—_l " PQi " Lo (")
b? (k, d) 5
S TTha (1710 oy + 17 = Pt v )
b% (k,d)

BEGEDR :—23')]"“1 (”f“”"(Qo) +é (f - Pgii Qo)m)

< c(k,d,s) (“f”L%(Q“) + ”f"BMo_(.‘(R"))

so that { || Pyi " Loo( QO)} is bounded. This implies that the family of coefficients of the polynomials

PQ. is bounded. Therefore there exists a subsequence, {PQ.,. } and a polynomial P so that for any
cube QO

lim uPQ.,, ~ P ooy =0-
Let Q be an arbitrary cube, we can find Q' so that 9 € Q'». By (2.10)

51(f—FQin§Q)L¢, = gl(f_PQin;Q)Ld’x

= ol d, ) If Nl pyor(ray
so that
E(f =P Qs = & (f~Pon+ (Pgin = P): Q)4
< & (f—Poini Q) + (—lb—_(fs’)%r& (Poin = P; Q) s,
< c(kd,s) (ufnmof(k,,) + &1 (Pgin — P; Q)L.,,)
< c(k,d,s) ("f"BMof(Rd) + [ Pgin — P"L""(Q))
and so

If = Pllsmo(riy = ¢k d. )N Fllgmok ey -

The converse inequality is clear. (I
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Remark 6.
Ifs > % and k > 1, then BMO}c (R“) # BMO (Rd) /’Pk_l. Any choice of Py # P, below
gives a counter example. Let A be a measurable set and

fla P € Pr-y
f |Ac = Py € Py

i

then for s > %— we have
||f|lBMos(Rd) =0
and if f is continuous, then also
“f"BMO"l (R’/) =0. O
2
Let us see that Theorem 13 implies that for 0 < p < oo condition (1.3) characterizes f €
BMO (R?) [Pi-1.
We denote by [ f] the equivalence class of f (modPi—1). Condition (1.3) can be written

Slép Mf]"u(g{d),g) <0C.
By Chebycheff’s inequality we have for0 < s <1
‘l' *
sups? [£12 (s) < sup I fUllLp(gang) -
Q g
This implies

1l smorcrey = sgp[f]*%)

A

57 sup ILF1lr (@ ano)

which, by Theorem 13, implies that for 0 < 5 < % and k > 1

A

Ifhemocraypy = ckdi)UfUppmor(rey
< et d 9 Ufir(oung) -

The converse for 1 < p < oo is well known and implies the converse in the case 0 < p < 1.

3. Local Polynomial Approximation and Dyadic BMO

Leta = (ai, ..., 0q) € {(£1)?}. We denote
RS = [xeRd|signxj=aj} :

Since each dyadic cube is contained in an RY it makes sense to consider dyadic BM O (Rg) rather
than dyadic BM O (R?). Since the theory does not depend on the choice of e, we carry it out in
R{ | .- In this section functions are defined on R{,,...1 and O stands for a dyadic cube in
d .
Ry 1€
OQ={x|k2" <xj<(kj+1)27" 1< j<d}
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where k; € Z; and n € Z. We denote by cg = cg s (f) a constant of best approximation for f in
L% (Q). We denote by DBM O the dyadic version of BMO.

Definition 5.
Let 0 < 5 < 1 and let f be a measurable function. We define

£ Upsumot = sup & (£ Q)re

and write DBM O; for DBM O/, O
We will show:

Theorem 14.
IfO<s < 1—+‘2-,, then DBMO; = DBMO.

We will prove this by showing:

Theorem 15.
Let f e DBMO;, 0 <5 < l—+‘2—,,. Then for all Q and t > O we have

¢(d)
Ao {|f - col = 1} < 24e” Tosaar

Theorem 16.
Let @ C Q" and x(Q) = 274X (Q"). If

1
<
S“1+24

then
lco —cor| <& (F: Qs +E1(F: @) 1o - (3.1)

Proof. Assume that (3.1) does not hold. Let £ > 0 be such that
lco = con| > ELCF @) roe +E1 (F3 Q) Loy + 26
We have

ro{|f —col > E1(fi Qo +6) <5
Aon{|f —con| > E1 (5 Q") o 8} <.

We define:

A [xe Q| |f&) —co| & Qper +}
AN = {xe QM |[f @) —con| & (f:1 Q") s +} -

Clearly, A € Q"\ A" and therefore

A(4) = A(@M\AY)
< sx(Q").

But

LAY > (1-5A(Q)
= (1-927%(g")
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so that
1-s52"4%<s,
ie.,
1
STIF A
so that (3.1) holds when s < 1+12 . O

We define a maximal function corresponding to best approximation in L% :
Definition 6.
MIf()= sup &(fi Qe . O
{QlxeQ}

Thus, || fllpsmo, = | ME f|| -
The following lemma, which has some independent interest, will be used in a version of the

Calder6n-Zygmund Lemma which we prove below.

Lemma 2.

Let f be a measurable function and 0 < s < 1. Let A be a set with the following property:
forall x € A there exist arbitrarily small cubes Q so that x € Q andcg = cg  (f) € [a, b). Then
ata.e. x € A we have f (x) € [a, b].

Proof. Let us assume that
AxeAlf(x)>b}>0.

Then for some § > 0 we have that
AMxeA| f(x)>b+8}>0

from which follows that there exists 1 < j so that

1 E)
f(x)—<b+(j+§)6)‘5§}>0.

Let xq be a point of density of this set. Let Q be such that cg € [a, b}, x0 € @, and Q is sufficiently

small so that )
roflr-(o+(1+3)1)

which proves €] (f; Q)¢ < 552- But

Mf{lf—col <& (fi Qre}>1-5

so that since cg < b we must have & (f; Q)¢ > 4, a contradiction. O

A[XGA

5—2—] > max {s, | — s}

The next lemma, with minor differences, is proved in [9].

Lemma 3.
(Calderon-Zygmund Lemma for best approximants) Let 0 < s < T+17’ §>0,8>0Igis
a measurable function defined on Q so that

Mg <8

for some y € Q, and
|eg| <6,

then there exists a family {Q j} of (dyadic) subcubes of Q so that:
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1. Q; are non-overlapping.

2. Thereexists y € Q; so that Mfg () <8B.
3.
§<leg;|<é6+28. (3.2)
4. |lg(x)|<dae on
o\|{reolMtew>slU[Ua
J

Proof.  We bisect each side of Q to get 2¢ dyadic cubes. Let Q' be a cube in this generation.
Then:

1. IfMfg(x) > Bforallx € Q' weleaveit. The unionofthesecubes willbe {x € O |M¥g (x) > 8}.

2. If for some y € Q' we have M*g (y) < B and if lch| > §, then we select Q’ into our
sequence {Q;}. From Theorem 16,

I(:Q - cQ/! < 2Mfg () <£28.
But from the hypothesis,
leg| <8
so that
and we have
§<leg|<s+28.

3. Finally, if for some y € Q' we have Mfg (y) < Band |ch| < §, we continue to divide Q’.
Observe that in this case f on Q' has the same properties as on Q so that the argument
above repeats verbatim, yielding { Q;} .

The cubes Q; do not overlap and é < |cQj| <d+2p. Let

xeo\|[xeolmiew>sUlUe
j

Then there are arbitrarily small cubes Q so that x € Q and |cg| < &. By Lemma 2 this implies that
lg| < & a.e. in this set. O

Theorem 17.
Let f be a measurable function defined in R* and let Q be a cube, 0 < s < H-%z Then for
allt,y > 0

)‘Q{If_CQ|>t}524e—ﬂ§£+)‘Q{Mff>}’}- (3.3)

Proof. The proof follows the ideas of Strémberg’s proof [9].
If

QE{Mff>y},
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then the theorem holds trivially. We can assume therefore that there exists y € Q so that M¥ f (y) <
y. We apply the Calder6n-Zygmund Lemma to g := f —co (f) with 8 = y and § = 2y, gettinga
sequence of cubes {Q;}. We have

cg; (&) = ¢, (f) —co (f)
so that from (3.2)

2y < g (@)
= lcg, (f) —cg ()
< 2y +2y =4y.

From here on we write cg for cg (f). Let

A = [reQ||fm—col <7}
B = [xeQi||fx)—cql=v}.

Clearly,
A Q\ (U B,-> .

Also, of course, if i # j then

A(B,-ﬂB,-):O

so that
Y hp(B) = Ag(Q\A)
= ro{|f —col>7}
< r|lr—col > Mir )
< ¥s.

For each i there exists y € Q; so that Mf f () < y and so that repeating the argument above we
have

rg {|f—col > v} ss.

Therefore,
AB) =1 -5A(Q)
and so
1
Xi:l(Qi) < T ,ZA(Bi)
s
< 1 A(Q)
-5
< 270 .
Let
Iy = 4ky

and recall that |cg, — cg| < 1.
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Since Mfg = Mf f, from the Calderén-Zygmund decomposition, for almost every x in

0\ [[x eo|mtsr >y} (LJJ Q,-)] =0\ [{x colmtr@>v}U (ijgj)]

we have

|lf ) —co|l=lg@)l <.

If we ignore sets of measure 0 below we have:

{xe Q] |f(x)—cQ|>tk}§{x€Q

mif >y U (LJJ Q,-)

and so also

{reglIf 0 —col>u)
< [er]Mff(x)>y}U(U{er,-| |f<x>—cQ!>rk}) :

J
Consider Q; :
{xe 0| |f @) —col| > n]}
{xe 0| [f)~col+]co—co| >u}
{x e 0;] |f(x)—'CQj|+4)/>tk}
(e Qi |[f ) —cq| > i1}

in In

and hence

{15 &) =col > ]}
c {er|Mff(x)>y]U(U{erj| |f(x)——CQj|>tk_1}) .

J

We repeat the process. We consider only cubes Q; which contain a point y = yg so that M_f fy =<
y. The other Q; we can reject from the union since they are contained in [x €0 IM;r fx)>y }
We get

{re0illf ) —cgf > b1}

mir >y U (U [ € Gt | £ 0 = ey, | > 12 ])

N

{er

Jk=1

so that

{XEQl lf(x)—CQl >tk}

Mif(x)>y ] U (U [x € Qj je-i ’ ‘f(X) —CQ,,,k_l| > tg-2 ])

JrJk=1

c [xeo
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and

IA

Z Z A (ijjk—l)

J k1

2 Z)\ (2))

274y () .

IA

Repeat the procedure k times and get

(xe 0] 1 ) -col > )

c [reolmtse>v]
U N U . {x € Qjjimtocit ‘ ‘f(x) — €Ot (f)‘ > 0}
Sy Jk—14eees 1
< [x € Q‘Mff(x) > V}U U Qi

Jodk=1seeeid1

Therefore,

Mxe 0] |f(x)—ch>tk}5/\[xeQ‘Mff(x)>y}+2“de(Q).

If
e <t <l
we have /
k> — -1
4y
and
roflf —col >t} = Ao{lf —col > u}
< AQ[Mff>y]+2"“’
< AQ{Mff>y}+2‘le—dYﬂ
where dlogd
c(d) = Zg .

Of course if t < t1, (3.3) holds trivially. O

Let f e DBMO;,0 <5 < 1—:27 Let us take y = | fll paaro, SO that

AQ[Mff>y}=0

and then for all Q and ¢ > 0 we have

____ctd)
Ao {If(X) —-CQI > t} <24, 7 03;40,

proving Theorem 15, and hence, also Theorem 14.

Example 1.  Let us see that

Ifllpsmo <c(s,d) I flippmos
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fails when
1

TV

Define
Lif % €Uoooemew ([0.22741]"\[0,227]%)
fx)=
0 if ¥ €Usoumeso ([0,227]"\[0,2271]%) .

We claim that if s > 177, then €; (f; Q)1 = O for all dyadic cubes.

Clearly f is a constant on any dyadic cube which is not of the form [0, 2/ ]d. IfQ =
[0, 22'""'1](1, then

MreQlf(x) =1} = ) (=DF20@m+i-id

k=0
2d
= A _
(@ 7
so that
1
rollf =1 >0) = —— .
olIf = 11> 0l = s
Similarly, if Q = [0, 22"]" then
A 0) = .
o lIf1> 0= ==

Clearly, we have, for s > I—;Lﬂ',
"f"DBMOJ = O
and

I flpemo = T52d

Observe that this example also shows that Theorem 16 fails when s > T-TIEV For cubes of the form
[0,2/ ]d we have

leg —con| =1
whereas

gl (fr Q)Ld’: =“-::l (f, QA)L,#_\. =0.

We consider now the dyadic version of BM O%.
O TR A TS SEEON WE CORIEE RO O A
inRq 1y

We will prove:

ForO0 <s < lel,andk>l

DBMO [Py = DBMOY.
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Theorem 18.
Let Qo C Q1 and A(Qo) = 274A(Q1), 0 < 5 < ﬁlzg and k > 1. If f is a measurable
function, then

k-1
2(1
" PQo - PQI “LW(Ql) = (m) bk, d) (gk f; QO)Lm + & (f; Ql)Lm) .

Proof. Let
Yi > & (f; Qi)pos
i =0,1andlet
y=n+v.
Suppose that
od k~1
| Py —Po, "L°°(Ql) > (m) bk,d)y . (3.4)
Define

Ai={xe 0| |f ) =Py, 0| =¥}

and let us estimate A (Ag [ A1)
Since

"PQO - PQI“LOO(AGDA‘) =vy

from the Brudnyi-Ganzburg Theorem

k—1
2d
(m) bk,d)y < [Py = Poil g

k—1
A(Q))
et (i) 1P~ alim(unoy

k=1
A (Q1)
be.d) (____A A ml)>

1A

IA

andsofork > 1,
1~s(24+1)

Ag, (AomAl) < T

Therefore,

i

A(A0) = A(4o\AD+2 (4o 41)

1—s(2¢+1

< A(QI\AI)‘*‘——%——J}»(QI)
1—s(2¢+1

< <S+—s—(i§—)>)~(Q1)

1—s

2d

A(Qy) -

On the other hand we also have

A (Qo\Ao) < 54 (Qo)



546 Y. Sagher and P. Shvartsman

so that
=52 (Qo) < A(Ap)
1—
< @)
ie.,

X (Qo) < 27A(Q1)
a contradiction. This shows that the original hypothesis, (3.4), fails, proving

k—1
2d
" Py, — Py, "L°°(Q1) = (m) bk,d)y.
Since y > (Ek (f; Qo)rss + & (f3 Q1)) is arbitrary, the theorem is proved. O
Theorem 19.
Let Qo C O, m <kand0<s < H%z Let

0o=0%cQ'c...cot=0

be such that . .
Qo) =27 (0) .

We then have

[4
En (F = Poris ()i Q0) o S c ki d, )Y 2776 (f: Q')

L ’
i=0

Proof. Let P; = Pyi; ; (f)sothat Pr = Pg, ks (f). By Theorem 9,

-1
- (f— Po+ ) (P = Piy1); Qo)
L%

i=0

Em (f — Pt; Qo) o

IA

bk,d
Em (f — Po; Qo)pss + = ( )k)l (Z(Pz Piy1); Qo)

L%s
But

Emn(f —Po; Q)pes < WS = Polipes oy
&k (f; Qo) e

and by Theorem 11

-1
m (Z(P,- - Piy1); Qo)
i=0

1A

-1
m (Z (Pi = Piy1); Qo)
Lés i=0 Lo
-1

D &m (Pi = Piy1; Qo)poe

i=0

c(k,d) rgu Z Z "aa (P — P""'l)"L""(Qo)

i=0 |a|=m
-1

cle,d)rp, 2= > 8% (P = P fmgivy -

i=0 ja|=m

IA

IA

IA
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From Markov’s inequality,
18 (P = Pien)] oo i1y < € G )l 1P = Pitillon(givty
and from Theorem 18,
. _ P ) . i . i+l
12 = Piatlmginny S ¢ (6, d,) (& (£:07) , +& (£:07) ) -
Thus:

£—1
En (f = Poi; Q0) s < Em(f — Poi Qo)poe +c(k,dos)rg, D" )

i=0 laj=m
"3a (P — Pi+1)|| Lo(Qi+1)
-1
E(f3 Qolpes + ¢ (k,d, ) rgy D r ol 1P = Pistllpeo givty
i=0

IA

IA

E (f; Qo)pos +c(k,d,5) ,Z: (erQ'::l )m (&c (f; Qi)Lm

+a(rie*),)

& (f; Q0)pos +c (k. d,s) e)ilz'i"‘ (& (s: 27)
i=0

re(re™),)

4
Ee(fi Qoo +c e dos) Y 27 mE(f:07) . O

L¥s
i=0

IA

L#s

IA

Theorem 20.
For0 <s < 1—4_157

DBMO [Py = DBMOY .
Proof. In the proof of Theorem 13 replace the cubes [—2/; 2! ]d by the dyadic cubes [0, 2']. The
rest of the proof holds without change. O
Let us see an example which shows that the last theorem is sharp in the case of d = 1.
Example 2. Let 1
f (x) = min { '3 } .

Let us show that ”f"DBMOZl = 0 although clearly, || fllpgmosp, #0-

3
Let us see: If

leQ=@rﬂm+nrﬁ

k > 0 and we denote L = (k2"' 1) then either -i_—- <41 3 or AL "(L) 3,

If n <0, then % € Q implies k = 0 in which case %_—,—,2
If n > 0, then

1
k27" < 3 <k+1D27"
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implies
3k <2" <3k+3

so that either 2" = 3k + 1, or 2" = 3k + 2 which correspond to '5(.1;,) = % and )i(f;) = %
1

On each interval which contains 3 we subtract from f the polynomial (i.e., x or %) which
agrees with f on at least % of the interval. This proves || fll pgp02 = 0. Since f is not a linear

function | flipgmosp, # 0.
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