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C h a r a c t e r i z a t i o n  o f  BMO 

Y Sagher and P Shvartsman 

Dedicated to the memory of our dear friend, Gene Fabes 

1. Introduction 

Functions of  bounded mean oscillation were defined by John and Nirenberg in [7] by the 
condition 

IlfllsMO(Ra) = supinf  1 fQ a c ~ . (a )  I f -  cl < c~ (1.1) 

where Q are cubes and ~. stands for Lebesgue measure. As is well known, given a cube Q, the best 
choice for c is the median value of  f on Q, but the mean value 

fQ :=  • (Q--'--'S f 

is good enough. The main theorem on these functions states that the L l condition, (1.1), implies an 
exponential decay of  their distribution functions: 

Theorem 1. [7] 
If f E BMO (Rd), then for all t > 0 

c(d)t 

{x ~ a l l Y  <x) - fQI > t } <_ 2~ (Q)e I'/UBM~ 
This implies that for 1 < p < c~ the condition 

1 

supinf(-~Q) f Q l f  clP) -~ - < o o  ( 1 . 2 )  
Q c 
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is equivalent to (1.1). It follows from Theorem 2 that (1.2) is equivalent to (1.1) for 0 < p < c~. 
Moreover, the weaker condition 

1 

sup inf I f  PI p ~ - < o o  ( 1 . 3 )  
Q P ~ k  

where P are polynomials of  degree at most k, P ~ 79k, any k, also turns out to be equivalent to (1.1). 
All these definitions assume a certain local integrability of the functions. Very soon after the 

definition of  BM 0 (Ra), John, in 16], gave a characterization of BM 0 (R a) which does not assume 
any local integrability. 

We denote 
x(EAQ) xQ (E) = X(Q) 

Definition 1. 
Let 0 < s < 1 and let f be a measurable function. We define 

' , f l l n M o , ( R d ) = s u p ( i n f ( i n f ; ~ Q { l f  - - c ] > t } < s ) )  . [] (1.4, 
�9 Q \cER \t>O 

Thus, y > IIflIBgo,(Ra) i fffor  each cube Q there exists c = c (Q) so that 

~-Q { [ f - c l  > y} < s .  

Theorem 2. [6] 
If  O < s < l, then B M Os ( Rd) = B M O ( Rd). 

It is easy to see that no result holds for s > �89 

The case s = �89 is considerably harder. 

Theorem 3. [9] 
BMOI  (R d) = B M O  (Rd). 

It was pointed out in [8] that Ilfllsgo,(Ra) = supQ infc ( f  - c) *'o (s) where f*,Q is the 

left-continuous I non-increasing rearrangement of  f with respect to ~.Q. This connects (1.4) with 
the Real Interpolation Theory. 

Another way of  considering (1.4) is its expression in the language of  Orlicz spaces. We define 

giving us 

dps(U)= I 0 i f  u <  1 
1 i f  u > l  1 

I l f  IIL*.~(Q) = in f { t [ f4~ , ( l -~)dXQ<l]  

= inf  {t [L o {If[  > t} < s } 

= f * ' Q ( s ) .  

Of course ~bs is not a Young function. In particular, we do not have even a quasi-triangle inequality: 
Take : = g = Q = co, 11. Then 

IIflIL*,(Q) = IIglIL*,(Q) = 0 

1 In the literature f* usually stands for the right-continuous non-increasing rearrangement. 
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but 

II f + g II L*., (Q) = 1 .  

We will see, however, that for 0 < s < �89 if f + g 6 79k, then 

IIf  + gllL**(O) --< c (k, d, s) (IIflIL*.,(Q) + llgllLo,(O)) (1.5)  

and for 0 < s < 1 if f - g ~ 7~k, then 

] IIflIL*.,.(Q) --tlgllL*.,(a) [ -< c ( k , d , s ) I I f  --glIL*,(Q) �9 (1.6) 

In this paper we generalize the John-StrSmberg result in the spirit of  (1.3). 
f e BMO~ (R d) if 

IIflIBMo~(Rd) := sup inf ( f  -- P)*'Q (s) < cx~ 
�9 Q P ~7:'k-1 

We say that 

and we prove that for 0 < s < �89 

This implies the characterizations (1.1), (1.2), and (1.3). It turns out that this characterization fails 
for s = 1, unless, of  course, k = 1. 

The characterization (1.7) for some s > 0 also follows from Theorem 3.2 in [ 10]. The approach 
in [10] is more general than in the present work; the authors consider a space of approximating 
functions which satisfies a certain set of axioms. The space 7~k_ l satisfies these axioms, and hence 
(1.7) follows. However, the axiomatic setup does not yield the critical value of s. In particular the 
proof of  Theorem 3.2 is given for constants and so it does not make it clear that there is a difference 
between k = 1, where the result holds for 0 < s < �89 and k > 1 where the result holds for 0 < s < �89 
and this range is maximal. 

We also consider similar characterizations of dyadic BMO. Interestingly, in the dyadic case 
the critical value for s depends on the dimension of the space. 

The main tool we use is the theory of Local Polynomial Approximation. We refer the reader 
to [1, 2, 3] for an exposition of this theory. 

2. BMO and Local Polynomial Approximation 

We begin by proving (1.5) and (1.6). The key to these results is the following important 
theorem: 

Theorem 4. [41 
Let E C Q and ), (E) > O. I f  P ~ 79k, then 

(X (Q),~k sup IP (x)l �9 sup IP (x)l < b(k ,d)  \ - ~ - ~ ]  
x~Q xEE 

(2.1) 

Remark 1. 
In the rest of the article, b (k, d) will be the constant appearing in (2.1). All other constants 

in the article may have different values at different occurrences. [] 
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Remark  2 .  

The Brudnyi-Ganzburg theorem is more general: they consider convex sets instead of cubes, 
and give the best possible constant in this context. [] 

Theorem 5 .  

If  P ~ 79k, then 

P r o o f .  For a n y e > O  

Let 

P*'Q (0) < b (k, d) inf P*' Q (s) 
- 0 < s < t  (1  - s )  k " 

~-Q {IP[ > P*'Q(s)-l-e} < s .  

A = {x ~ Q I IP (x)I <__ P*'Q (s) + e } 

so that ~.Q (A) > I - s and thus 

(2.2) 

sup IP ( x ) l  
x~Q 

( L  (Q) ~k sup [P (x)l 
< b (k, d) \ - ~ - - ~ ]  xEA 

P*'Q (s) + e 
< b(k ,d )  
- ( 1  - s) k 

and since e > 0 is arbitrary, the proof is complete. 

Corollary 1. 
If P ~ 79t, then for O < s < 1 

[] 

IIPIIL~<Q) ~ c (k, d, s) IIPIIL*,<Q) �9 

Remark  3. 
Inequality(2.2) is sharp: take P (x) = (1 - x )  k on [0, 1]. P*'Q (0) = 1, P* 'Q (s) = P (s) = 

(1  - s )  k.  [ ]  

Remark  4. 
A precise inequality connecting P* (tr) and P* (r)forpolynomials on a convex set was given 

by Ganzburg in [5]. 2 []  

Theorem 6. 
If P ~ 7~k, then for O < s < I 

b (k, d) 
( f  q- P)*'Q (s) < f*'Q (s) + ~11 ~-~l: P*'Q (s) . 

P r o o f .  Since 

we have 

2The notation in [5] may be misleading: * stands for the non-decreasing rearrangement there. 
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= i n f { t  ) ~ Q { l f l > t - ( s u p l P ( y ) l ) } k y E O  < s }  

= inf {t I~Q :lfl > tt <s  1 +  (sup IP (Y)I~ 
\yEQ / 

(f+P)*'O(s) < f*'Q(s)+(suplP(y)l) 

t, (k, d) p,,  Q (s) [] 
< f*,O (s) + (1 - s) -------~ 

Corol lary 2. 
I f  O < s < 1, P1, P2 E 79k and f is a measurable function, then 

b (k, d) 
I IIf - PIIIL*.,(Q) - - I I f  -- P211L*.,(0) I --< ~ 7 ~  Ilet -- P211L~,(Q) �9 

Proof .  From the previous theorem 

b (k, d) 
(g + P2 -- P1) *'O ($) -< g*.O (s) + ~1 ~ - ~ k  (/~ -- P I )  *'Q (s) . 

Taking g = f - P2 we have 

b (k, d) 
llf - PIIIL*.,(Q) -- llf -- &IIL*.,'(Q) < llPt - PzIIL*,fQ) - (1 - s) k 

The previous theorem is, of course, equivalent to (1.6). 

T h e o r e m  7. 
1 I f  k > O, P ~ 791: and f is a measurable function on a Q, then for  0 < s < : 

b(k,a) [ ( :  + P)*.~(s)+ :,.O.(s)] 
p*,e  (0) < (I -- 2s) - - - - - - ~  

1 I f  k = 0 the inequality holds for 0 < s < ~. 

P r o o f .  Consider the case k > O. From P = ( f  + P)  + ( - f )  it follows that 

(2~) _< I(: + p)*'~ is) + :",Q (s)] p*,O 
I.. ..I 

P*'Q (2s) 
< b ( k , d )  

(1 - 2s) k 

-< (lb(~'~)- 2,: [(: + P)*'~ (') + :',~ (s)] 

so that, using (2.2), we have 

p.,O (o) 

[] 

525 

The proof for k = 0 is clear. [ ]  
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This enables us to prove (1.5): 

Corol lary  3. 
I f k  > O, O < s < �89 and f + g = P E 79k, then 

b ( k , d )  (IIflIL*,, + IIglILe~(Q)) Ilf  + gllL*s(Q) < (1 -- 2s) k (Q) " 

1 l f  k = 0 the inequality holds for  0 < s < ~. 

P r o o f .  From the previous theorem, 

IIf +glILes(Q) = IIPIILe.,(Q) 

= P*'Q(s)  

< p*.O(O) 

b ( k , d )  
- 

< (1 - - - i '~  k 

b (k, d) 
- (1 --~'~k (IIglIL*,(Q) + ]IfIIL~,(Q)) �9 

The proof for k = 0 is clear. [ ]  

R e m a r k  5. 
Let us see that the inequality 

P*'Q (s) <_ b (k, d) [ ( f  + P)*'Q (s) + f* 'Q (s)] 

does not hold for  I < s < 1. 
LetO < e < 1 - s .  We take on [0,1] 

and P (x) = x so that 

but 

[ • X  i f  
f (x) = { 

0 i f  t 

O < x < s + e  
s + e < x < l  

( f  + P)*'Q (s) = 0 

f*'Q (s) = t 

/ , , . o  (s) = 1 - s .  [ ]  

Although L ~'.' is not an Orlicz space we use the standard notation of Local Approximation 
Theory: 

Def in i t ion  2. 
Given a measurable function f we define 

gk ( f ;  Q)L~sCQ ) ---- inf 
P~'Pk-l 

Theorem 8. 
Let f be a measurable function. 
For 0 < s < 1 and for  every cube Q there exists a constant C Q so that 

Zl ( f ;  Q)LCs = [ I f  - CQ[IL~.,<Q) �9 

[If - PIIL~.,(Q) �9 [ ]  
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f fk  > 1 and O < s < �89 then for every cube Q there exists a polynomial PQ ~ ~k-I so that 

~k ( f ;  Q)L~, = I 1 :  - Poll  ,<o> �9 

P r o o f .  Let us consider the case k > 1. Since 

[ [If - PIIIL*,,.(Q) - -  [If - P21IL~.,(Q) [ 

we have that 

b (k, d) 
< (1 - s )  k-1 lIP1 - P2UL*,(Q) 

b (k, d) 
< (1 - s )  k-1 lIP1 - P2IIL=(Q) 

Ff (P) := [ if  - PIIL*~(Q) 

is continuous on (79k_i, ]].IIL~(Q)). The set 

Af  := {P 6 7~k_l I [If - PIIL*,(o) -< & ( f ;  a ) r* ,  + 1 } 

is closed in (79k_ 1, II. II L~ (Q)): 
If Uf - P~llt.*~(O) <__ Ek ( f ;  Q)L~, + 1 and lim.~oo liP. - PIIt:(Q) = 0, then 

b (k, d) 
[If --  P]{L~s(Q) ~ [If -- Pnl[L*s(O) + (?.--;)"k'--I liP -- PnllL*,,'(O) 

b (k, d) 
_< IIf - P.IIr+.,(Q) + (1 - s )  k-l  lip - P~IIL~O(Q) 

and so 

Since 

I I f -  PIIt:,(Q) <- Ck ( f ;  Q)Le.; + I. 

b (k, d) 
IIPIIL~ ~ (1 ~ 2 - - ~  - l  ( l l f - -  PILL*,(0) + Ilfllc*,'(Q)) 

b (k, d) 
< (1 ~- - '2 -~  -1  (s ( f ;  Q)Le., + 1 + IlfllL*.,(O)) 

we have that Af  is a compact set in (7:'k-l, II.IILo~(Q)) and so Fy has a minimum value on the set. 
The proof for k = 1 is elementary. [ ]  

Definition 3. 
Given a function f on a cube Q we will denote by PQ.k,s ( f )  a polynomial in 79~ of best 

approximation in L ~.' (Q)for f .  We will write PO when f ,k,  s are clear from the context. [] 

Theorem 9. 
l f  T ~ 79k and O < s < 1, then for all m 

8m (f  + T; Q)Lr <gm ( f ;  Q)Lr + 

P r o o f .  We can assume m < k. 
By Theorem 6 

b (k, d) 

(1 - s) ~ 
Em (T; Q)Lr �9 

gm ( f  + T; Q)L*, = E.. ((: - (:)) + (r - <r)). 

- 

b(k, d) [i T _ PQ,m-l,s (T)IIL,.,(O) -< II(:- + 

b (k, d) : 
= e~  f f ;  Q)L*., + ( i  - - s ~  ~ (r;  Q)L~., �9 [ ]  
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L e m m a  1.  

Let 0 < s < 1. Given a cube Q and a measurable function f ,  i f  

1 ~ - - s  
~. ( Q A Q ' )  _< - - ~ 3 .  (Q) , 

then 

b2(k'd)4k-I (Ek(f;Q)L,~.(4)..I_Ck(f;Q,)L~.,(Q)). 
II 74 - ~4.11,~<4> -< [(1 - s )  (1 - 2s)] k - I  

I f  s = �89 then given ~ > 0 there exists 3 = 8 (Q, ~, f )  so that for every Q' which satisfies 

m ! l ( Q  Q )  <_SL(Q) 

we have 

t c 4 - c 4 , l < _ g l ( f ; Q )  r + g l ( f ; Q ' )  ~, 
L ~ (Q) t ~ (4) 

P r o o f .  Let us denote 

We have 

1 
sl = s +  ~ - - s  

2 

+ z .  

l iP4-  e4'll~<4> 
b (k, d) 

( { - - - ~ 1 ~ ' _  1 IIPQ- P4'II,:.<Q> 

b z (k, d) 
- t<x-,S(S--~s,)a k-' ( l l f -  P411:,,<4) + I l f -  e4'11:,,<4)) 

b 2 (k, d) 
- t<~- s~d- - i s , ) :  -1 (11:- P411~,,<4> + I l f -  PQ'II,:.,<4>) 

b2 <~.,i) (~<fzQ)~.,. + llf- 1'4' II :., <4>) �9 
= [(1-s~-~=2sl)Y -~ 

But for any t > 0 

{~ ~ Q llf <x>- P~, <x>l > E~ (f; Q%. + ~ } 

~{x~Q'llf<x>-~'Q,<x>l>E~(f:Q%, +~} +X(Q\Q') 
< s~, (Q') + ~, (Q,,Q') 
< s t  fQ) + t ( Q ' \ Q )  + I ( Q \ Q ' )  

= s ~ .  (Q)  

so that 

and hence: 

flY - PQ'II:,,<Q> ~ ~ (f: Q%. +~ 

II: - PQ' II,,., <o> -< E~ (:; Q')~o,. 
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Therefore: 

II Po - Po' II ~oo<~ 
< [(1 - S l )  (1 - 2sl)] k-I 

< [(1 -~b2(k'd)4k-l~-(] --"~s)] k-I ($k(f;Q)L~'(Q)+Ek(f;Q')L~"(Q)) 

! 

Let us consider the case k = 1, s = 5. 
Given e > 0 we choose 8 > 0 so that 

1 XQ{if_cQ I >Cl(f; Q)r + e } .  
~ < 2 - -  LI 

Then 

ICQ - CQ,] IIf--cQ'll ~, +Uf-cQII ~, 
L :(Q') L ~[(Q') 

cl (:: o'),:�89 + 1t:- cotl, ~Q,~ 

m ! But if3. (Q Q ) < 8). (Q), we have 

3"{ x ~ Q r  I f ( x ) - - C Q [ > g l ( f ; Q )  ~t.~ + e }  

< L { x E Q [  ' f(x)-cQ[>C'l(f;Q)L~:'~t + e l + ~ . ( Q ' \ Q )  

1 
< -L (Q) - 83. (Q) q- 3. (Q'\Q) 

2 
1 !)~ 

< -~(e')+ (e\e'l-8~<e)+~(e'\e) 
- 2 2 

I 
< ~ L ( Q ' ) - 8 ) , ( Q ) + ) . ( Q ' A Q )  

1 < - x ( e ' )  
- 2 

which implies 

and 

,, ,.llf-cQllJ�89 ~ E~(f; Q) ~ +~ 
(Q') L 

Ico - CQ, I < El ( f ;  Q)Le�89 + g l  ( f ;  Q') *, 
L ~ (Q) 

Theorem 10. 
Let Qo c Q1 andL(a l )  < 3).(ao). 
If k >  l and O < s < l, then 

+ e .  [] 

IIPoo  - Po, IIL~Q,) < c ( k , d , s )  sup G(f;  Q)L*, �9 
QoC_QC_QI 

l If k = t we have for 0 < s < 

ICQo - CQ~ I < 6 sup C1 ( f ;  Q)L~ �9 
QoC.Q<:=QI 
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Proof. Let 

and suppose that 

~' > sup '~k ( f ;  Q)Lr 
QoC_Q~QI 

18k-lb 3 (k, d) 
[Iz'Q,,- z'Ql II~<Q,> > 6 y (2.3) 

[(1 - s )  (1 - 2s)] k-I  " 

Let us prove that if (2.3) holds, then there is a cube Q2, Qo c Q2 c Ql so that for i = 0,1, 

18 k -  I b 3 (k, d)  
IleQ=- PQ, IIL~<Q,> > 2 [(1 - s)  (1 - 2s)]  k-I  Y " (2.4) 

We define 

sup 
QoC_QC_QI 

{)~ (Q) IIPQ - PQ,,IIL~<Q~ < 2 18~-lb 3 (k, d) 
- [(1 - s) (1 - 2s)] k-1 Y } " 

Let Qo c Qm C Q l be such that 

18 k -  ! b 3 (k, d)  
IIPQ- - eoollL~<o,) < 2 (2.5) 

- [(1 - s) (I - 2s)] k-l  y 

and such that 
lim ~. (Qm) = u .  

m - - ~ o o  

We can assume that the se..quence of  centers of Qm converges, and define ~) to be the cube centered 
at the limit point with ~. (Q) = or. Clearly, 

lim ~.(QmAQ_.)=O. 
m - - ~ o o  

There are two cases: 

1. If  

p~, _ L~176 18k-lb 3 (k, d)  
PQo < 2 y (2.6) 

- [(1 - s )  (1 - 2s)] k- l  

for all Q which satisfy 

we have 

1 
~ S  

~.(QA~)) < 2 2  ~'(Q) 

P'Q - PQ L~ ( ~  < 2b 2 (k, d) 4 k-I  

- [(1 - s) (1 - 2s)] k-I  y " 

We take Q^ so that ~9 C Q^ and 

1 

~ (Q^\fi)< --T-~ (o). 

Since 

we have that 

~(Q^) > ~(~)=,~ 

18k-lb 3 (k, d) 
IIPQ,, - PQolI,.~Q,> > 2 

[(1 - s )  (I - 2s)] k-1 y " 
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We also have 

. 

pQ,,, -- p'~ LOO(Ql) - \ x ( Q ) ]  

b 3 (k, d) 6 k-I  
< 2 
- [(I - s) (1 - 2s)] k-I  ?' 

so that, using (2.3), (2.6), and (2.7) we have: 

18 / - lb  3 (k, d) 
> 2 

[(1 - s)  (1 - 2 s ) l  k-~ • 

and in this case we take Q2 = Q^. 

If  

> 2  P~ - P~2o L~(QI) [(1 -- s) (1 -- 2s)] k-I  Y 

we take Q2 = Lg. If 

then 

1 ~ - - s  
X (QAQ2)  < - - - ~ 3 .  (Q2) 

(2.7) 

IleQ - eQ~ IIL~o. 
2b 3 (k, d) 6 k-  1 

-< [(1 2 s) (1 - 2s)] k-~ v .  

If  m is sufficiently large so that 

1 ~ - s  
k ( Q m A Q 2  ) < 2 (Q2) 

then, using (2.3), (2.5), and (2.8) we have: 

(2.8) 

IIPQ, - PQ211L~<QI> 

> 

l i eo , -  eQ,,ll.=~o,~- II Po,,- Po" liL~<o,~ 

18k-lb 3 (k, d) 
2 

[(1 s) (1 - 2s)] k-I  Y " 
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Proving that (2.3) implies (2.4). 

Define for i = 0,1,2: 

Ai = {x E Qi I If (x ) -  PQ, (x) I _< • } 

and let us estimate 3- (Ai ~ Aj). 
I f x  ~ Ai N Aj, then 

so that 

[PQ, (x) - PQj (x)[ < 2y 

IIPa,- PQJ II L~(Ai NAy ) <2},. 

From (2.4) and the Brudnyi-Ganzburg Theorem 

18 k- I b 3 (k, d) 
2 

[(1 - s) (1 - 2s)] k-I y < IIPQ,- PQ~II~<Q,> 
k - I  

< b(k,d) \3-(AI-A-Aj)J 

k - I  
< b(k,e)( !~e,) 
-- 3-(AiAAj)J  

[IPQ,- PQJ IIL~(A, A Aj) 

2y 

and so for k > 1, 

1 

Fb (k, d) [(I - s) (I - 2s)] k-I 1 ~ I 
3-Q, (Ai~-~Aj) < L -~--:r < 1-~ 

Of course 

so that 

( A o U A 2 ) \ A  I c_ QI\AI 

3- (Ao) -+- 3. (A2) = 3-((AoUA2)\AO+3-(&nAo ) 
+ 3- (Ao n A2 ) + 3-(A, NA2) 

1 
< 3- (QI \AI )  + ~3 . ( a l )  

< ( s  + 6 )  3-(QI) �9 

We also have 

and similarly 

3- (Ao) > (1 - s)3- (Qo) 

3-(A2) > ( 1 - s )  3-(Q2) 

> ( 1 - s )  X(Qo) .  

Therefore, 
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i.e., 

~- (Q0) < 
2(1 - s )  
2 

< - L  (QI)  
- 3 

a contradiction. This shows that the original hypothesis, (2.3), fails, proving 

1 8 k - l b  3 (k, d)  
I IPQo-  PQIIIL~(QI) <_ 6 

[(1 -- s) (1 - 2s)] k-I  
y �9 

Since y > suPQoC_QC_Q] E k ( f ;  Q)L4,s is arbitrary, the theorem for k > 1 is proved. 
The proof for k = 1 is clear. [ ]  

The following result is in [2]. For the convenience of the reader we include a proof. 

T h e o r e m  11. 
Let Q be a cube in R d with side length rQ. I f  P ~ 79k - 1 and m < k, then 

Cm (P; Q)L ~ ~ c ( k , d ) r ~  ~ Ila~PIl~=<+. 
lul=m 

Proo f i  Let XQ be the center of Q. For any y ~ R d, 

P (y) = ~ a s P (xQ) 
fl! (y -- XQ) s A- ~_~ 

ISl_<m-I m_<lSl<k-I 

= Pm-I "4- ~ aS P (XQ) (y __ XQ)S 

m~lSl<_k-I 

0 s P (XQ) (y _ XQ~S] 

so that 

Sm (P;  Q)L ~ lIP - Pm-tlIL~(Q) 

s E ~! tlaSPII,.=<+ 
m<_.lSl<k-I 

Let us write fl = a + S where I~1 : m. By Markov's inequality 

IlaSPIIL=+> = Ila'(a"e)llL=+> 
< c(k ,d )r~ .  I~1110"PII~<Q> 

Thus, 

8rn (P;  Q)L~ 
O___lgl<k-m-l&lul=m 

<- c(k'd>r"d ~2 IIO"PIIL~+~. [] 
l a I=m 
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Theorem 12. 
Let f be a measurable function and let Qo c QI, m < k and O < s < 1. Then there exists a 

chain of  cubes 
Qo= QOc_ Q1 c_. . .c_  QlC_ Q1 

so that 

and 

P r o o f .  

r ( f -- PQ,,k,s ( f ) ;  QO) L,, < c (k, d, s) Z 
i=0 

Let s be an integer such that 

Z(Oo) <_~(o ' )  <_ Z(Qo) 

Ck ( f ;  Qi)L~.,. 

l - I  ~- ( Q I )  < 

< ~- (Qo) - 

and let us construct  

so that for i = 0 . . . . .  s - 2 

Qo = D ~ c ~ '  c . . .  c ~ ' =  Q, 

Let us denote Pi = P'~i.k,s ( f )  so that Pe = Pot,k,s ( f ) .  By Theorem 9, 

'fro ( f  -- Pe; QO)L~'., 
s ) 

= E,,, f - e o + ~ ] , ( P ~ - e ~ + l ) ; a o  
i =0 L~.~' 

b(k ,d)  ,f e-1 
< ' f m ( f - - P o ; Q o ) L ~ " + ( 1 - - s ) k - I  m( i~=o(Pi -P i+ ' ) ;QO]ui ' ,  

But 

Cm ( f  - Po; QO)L~., < IIf  - POIIL*.,(Q,,) 

= Ek ( f ;  QO)Lr 

and 

\ i = 0  L~s 

'-' ) 

l - I  

< E C r u  (Pi - Pi+I;  QO)L~ 
i=0 

l - I  

i=0 [al--m 
l - I  

< c ( k ' d ) r n Q o E  Z 
i=0 lal=m 

1106 (P, - m,§ 

II a~ (p, - e,+,)IIL=(~,+,) �9 
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From Markov's inequality, 

II o~ (P, - Pi+~)ll,oo(~,+,) <- c(k,d>r~,m+, IlPi -- Pi+lllL~o('~i+l ) 

and from Theorem 10, 

IIP~ - Pi+lllL~t~+,~ ~ c(k,d,s) sup gk ( f ;  Q)L+, �9 
~'~_CQ_Cg~+~ 

We choose Qi, 0 < i < e - 1 so that 

~_i ~ Qi+l c ~ i + I  

and 

Thus: 

sup 
QiCQcQi+l 

Ck ( f ;  Q) t : ,  <2C~( f ;Qi )Lr  

gm ( f  -- Pal ; QO)L+ _< Cm ( f  - P0; Q0)L+ + c (k, d , s )  r mQo 

l - I  

~ Iio= (e, - ei+l)l[L=(~' ,+,) 
i=O ]aj=m 

< s ( f ;  QO)LOs "+- c (k, d, s) r m 
- -  a o  

e--I 

2 r-m~'i+l tlei - ei+l[lLOO(~i+l ) 
i=0 

" (  ) 
< ~'k ( f ;  QO)L*.~ h- c (k, d, s) Z rQ~ & f ;  Qi 

i=0 \r~i+, ] Lr 

( ) < gk ( f ;  QO)Le:.~ + c (k, d, s) ~_, gk f ;  Qi . 
i=0 LCs 

Definition 4. 
We say that 

if 

f e B M O ~ ( R  d) 

IIfIIBMo~(Ra) = supgk ( f ;  Q)L~." < 00 . [] 
Q 

Clearly, B M Oks (R d) is a space of equivalence classes of functions mod (Pk-1). 
We are now able to prove an extension of  Theorem 2. 

Theorem 13. 
ForO < s < l andk > 1 

= 

P r o o f .  From the previous theorem it follows that if Q c Q', then 

El ( f  -- PQ',k,s ( f )  ; Q)L~., < c (k, d, s) IlfllsMok(Ra) . 

[ ]  

(2.9) 

(2.10) 
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To show that this implies B M 0 ( R d ) / 79k_ i = B M Oks ( R a) we need to show that if f ~ B M Oks ( R a ) 
then there exists a polynomial P ~ Pk-l  so that f - P ~ B M O  (Rd). 

We follow in outline an idea of Brudnyi. 

Let Qi = [_2  i, 2i] d and let Pi --" Poi,k,s ( f ) .  Then 

gl ( f  - PQi; Q0)Lr < c (k, d, s)IlfllBMO,k(Ra) . 

Let us prove that {IIPQ, I1~o(~,,)] is bounded: 

We denote by coo ( f  - PQi) a constant of best approximation in L 4~,' (QO) to f - PQi. Let 
us denote 

,~, = eQ, + c o , , ( : -  PQ,). 
Then 

II~Q, IIL~(Q,,) 
b (k, d) 

< II,~o/ - ( 1  _ s ) k - !  II~,,(e,,) 
b2(k'd) ([lfllL*., + llf- ~O'II,.*.,'(Q,,)) 

-< t(1- iS(~=L): - '  (Q") 

= [(l - JS(q~Es)]k-~ (Q") :L*. : 

< c (k, d, s) (llfllLr o) -k IIfIIBMO.~(Rd)) 

so that {11 ~ ,  II ~(4o) } is bounded. This implies that the family of coefficients of the polynomials 

PO' is bounded. Therefore there exists a subsequence, {PQi~ }, and a polynomial P so that for any 
cube Q 

Let Q be an arbitrary cube, we can find Q~" so that Q c Q~,. By (2.10) 

E, ( : -  Q,.; o),:, = ~1 ( f  -- PQi. ; Q)Lr 

< c (k, d, s) IlfllBgo~(Ra) 

so that 

gl ( f  - P; Q)L~,," = Cl (f--eQin - ' ] - ( P Q i n - P ) ;  Q)LC, s 

b (k, d) 
<_ El (f -- ffQin; Q)Lr q- (I--s) k-IEl (PQin - P; Q)LCs 

<_ c<,,,,,,> + - ,', o.)...) 

<_ c(k,d,s)(llfll,,,,oe(~,) + II,~Q,. - PIIL~<Q>) 

and so 

IIf - PIIBMo(Rd) < C (k, d, s) I l f l lBgaf(R a) . 

The converse inequality is clear. [ ]  
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Remark  6. 
l f  s > �89 andk > 1, then BMOks (R d) ~ BMO (R d)/79fc_t. Any choice of Pl ~ P2 below 

gives a counter example. Let A be a measurable set and 

f lA = P16 79k-1 

f l Ac = Px~79k_l  

then for s > �89 we have 

and if f is continuous, then also 

IlfllaMo.,(g~) = 0 

llfllBgO~ (Ra) = O . [] 

Let us see that Theorem 13 implies that for 0 < p < oo condition (1.3) characterizes f 

We denote by I f ]  the equivalence class of f (modT'k-1). Condition (1.3) can be written 

II[flllLP:a,axQ~, , < ~ -  sup 
Q 

By Chebycheff 's inequality we have for 0 < s < 1 

1 

sups~ [f l* 'Q (s) < sup II[f]IILP(Q.dXQ) - 
Q Q 

This implies 

IIflIBMo#(Ra) = s u p [ f ]  *'Q (s) 
Q 
_• 

_< s r s u p t l [ f l l l L ~ ( a . a x Q )  
Q 

which, by Theorem 13, implies that for 0 < s < �89 and k > 1 

Il f tl B M O( Ra)/7~k_l c ( k , d , s )  IlftZBMO~(Re) 

< c (k, d, s) sup II[f]IILp(Q,aXQ) �9 
Q 

The converse for 1 < p < c~ is well known and implies the converse in the case 0 < p < 1. 

3. Local Polynomial Approximation and Dyadic BMO 

Let ot = (oq . . . . .  0ld) ~ {(4-1)a}. We denote 

-_ {x l si } 

Since each dyadic cube is contained in an R d it makes sense to consider dyadic B M O (R d) rather 

than dyadic BMO (Re). Since the theory does not depend on the choice of u, we carry it out in 

d and Q stands for a dyadic cube in R(~,l ..... l)" In this section functions are defined on R(1A ..... 1) 

R(aL 1 ..... 0 '  i.e., 
a = {x l kj2-n < xj < (kj + l) 2-n; l < j < d } 
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where kj ~ Z+ and n E Z. We denote by c o = Ca.s ( f )  a constant of best approximation for f in 
L ~., (Q). We denote by D B M O  the dyadic version of B M O .  

De f in i t i on  5. 
Let 0 < s < 1 and let f be a measurable function. We define 

IlflloSmO., = sup& ( f ;  Q)Lr 
0 

and write D B M O s  for  DBMOIs.  

We will show: 

[] 

T h e o r e m  14. 
l fO < s < t l+-~2 , then D B M O s  = D B M O .  

We will prove this by showing: 

T h e o r e m  15. 
Let f ~ D B M O s ,  0 < s < 1-~2 " Then fora l l  Q and t  > 0 we have 

c(d)t 
~Q {I f -co l  > t} _< 2ae-~ . 

T h e o r e m  16. 
Let Q c Q ^  and)~(Q) = 2-d~. (Q^). I f  

then 

Proof. 

1 
S <  - -  

- -  1 + 2  d 

ICQ - CQA I < gl ( f ;  Q)L4', + gl ( f ;  QA)Lr �9 

Assume that (3.1) does not hold. Let e > 0 be such that 

ICQ - cQ^ I > El ( f ;  Q)Lr + El ( f ;  QA)L*.,. + 2e. 

xo {If-col > E l ( f ;  Q)Lr +g} <s 

XO^ {If--co^l > E, (f; Q̂ ),.,.,. +,} < s. 

We have 

We define: 

A = {xEQ I If(x)-cQl<_,~,(f;Q)z.r +e} 
A A = {x~QAI lf(x)--CO.^I<_EI(f;Q^)L,, +~}- 

Clearly, A c_ QA \A A and therefore 

~.(A) < ~.(QA\A^) 

< ~ (0 ̂ ) . 

~.(A) > ( 1 - s ) ~ . ( Q )  
= ( 1  - s) z--d~.(QA) 

But 

(3.1) 
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so that 

i.e., 

1 so that (3.1) holds when s < 1-~-ff" 

( l - s ) 2  -a  < s ,  

1 

s >  l + 2 a  

[] 

We define a maximal function corresponding to best approximation in L r : 

Def in i t i on  6. 

M#sf (x) = sup gl ( f ;  Q)L~" �9 [] 
{Qlx~O} 

Thus, llflID MO, ----llM,#f II,.:. 
The following lemma, which has some independent interest, will be used in a version of the 

Calder6n-Zygmund Lemma which we prove below. 

L e m m a  2. 
Let f be a measurable function and 0 < s < 1. Let A be a set with the following property: 

for  all x E A there exist arbitrarily small cubes Q so that x ~ Q and CQ = CQ,s ( f )  ~ [a, b]. Then 
at a.e. x E A we have f (x) ~ [a, b]. 

Proof .  Let us assume that 
),{x ~ AI f (x) > b} > O. 

Then for some 8 > 0 we have that 

L{x 6 AI  f (x) > b + 8 }  > O 

from which follows that there exists 1 < j so that 

8 L 
Letx0 be a point of density of this set. Let Q be such that c o 6 [a, b], xo ~ Q, and Q is sufficiently 
small so that 

8 
L Q {  f - ( b + ( j + l ) , )  < ~ }  > m a x { s , l - s }  

which proves gl ( f ;  Q)t : ,  < ~- But 

~-e { I f - c o l  < ~ (f; Q)L~,} > 1 - s  

so that since c a < b we must have ~1 ( f ;  Q)L~., >--- 8, a contradiction. [ ]  

The next lemma, with minor differences, is proved in [9]. 

L e m m a  3. 
1 (Calder6n-Zygmund Lemma for  best approximants) Let O < s < l+-f-~72 , 8 > O, fl > O. I f  g is 

a measurable function defined on Q so that 

M#s g (y) < fl 

for  some y E Q, and 
IcQI <- 8,  

then there exists a family { Qj } of(dyadic) subcubes of  Q so that: 
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, 

2. 

3. 

Qj are non-overlapping. 

There exists y e Qj so that M#s g (y) < ~. 

a < Ica, I 8 + 2/~. (3.2) 

4. Ig (x)[ < 8 a.e. on 

P r o o f .  We bisect each side of Q to get 2 a dyadic cubes. Let Q'  be a cube in this generation. 
Then: 

1. I fM~g (x) > /~  foral lx  E Q 'weleave i t .  Theunionof thesecubeswi l lbe  {x e Q IM#s g (x) > ~ }. 

2. If  for some y e a '  we have M.#,g (y) < 1~ and if ICQ, I > 8, then we select a '  into our 
sequence { Qj }. From Theorem 16, 

ICQ - CQ, I < 2M#s g (y) < 2~ . 

But from the hypothesis, 

so that 

and we have 

ICQI ~ a 

Ica'l < 8 +2/~ 

8 < IcQ, I 8 + 2ft. 

. Finally, if for some y e Q'  we have M#sg (y) < ~ and [c a, I < 8, we continue to divide Q'.  
Observe that in this case f on Q'  has the same properties as on Q so that the argument 
above repeats verbatim, yielding { Qj }. 

The cubes Qj do not overlap and 8 < IcQjl < 8 -I- 2/~. Let 

Then there are arbitrarily small cubes Q so that x e Q and [CQ[ < 8. By Lemma 2 this implies that 
Ig[ < 8 a.e. in this set. [ ]  

Theorem 17. 
Let f be a measurable function defined in R d and let Q be a cube, 0 < s < I+-~2 " Then for 

all t, y > 0 

 Qllf -cQI > t }  <2ae  - v + t Q  M#sf > g . (3.3) 

Proof.  
If  

The proof follows the ideas of Str6mberg's proof [9]. 
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then the theorem holds trivially. We can assume therefore that there exists y ~ Q so that # Ms f (y) < 
y. We apply the Calder6n-Zygmund Lemma to g : =  f - ca  ( f )  with/~ = y and ~ = 2y ,  getting a 
sequence of  cubes { Qi} .  We have 

CQ, (g) = cai ( f )  - c a ( f )  

so that from (3.2) 

2y  < Ica,  " ( g ) l  

= [co. i ( f )  - - c o  ( f ) [  

< 2 y - b 2 y  = 4 y .  

From here on we write c a for c a ( f ) .  Let 

A = { x E  Q] [ f ( x ) - c a l  < y }  

B, = { x~Q i l  I f<x)-cQ, l<-y} . 

Clearly, 

Also, of  course, if i # j then 

so that 

0'(y'i) 
3.( i N 

~_~ 3.a (Bi) 
i 

< 3.Q ( Q \ A )  

= 3.~ {l:-c~l > y} 

- 3.~ {If-col > M#,f (Y)} 
< S. 

For each i there exists y ~ Qi so that # M s f (y) < g and so that repeating the argument above we 

have 

3.0, {If -ca, l > • <_ s 

Therefore, 

and so 

3. (Bi) > (1 - s) 3. (Qi) 

i 

1 
< - Z 3 . ( B i )  
- -  1 s 

i 
s 

< ~ 3 .  (Q) 
- 1 - s  

_< 2-dX ( a )  . 

Let  

and recall that ICQi - ca l < tl. 

tk = 4ky 
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Since M#g = M # f ,  from the Calder6n-Zygmund decomposition, for almost every x in 

we have 

I f  (x) - CQ[ = Ig (x)l < tl �9 

If  we ignore sets of  measure 0 below we have: 

and so also 

Consider aj  : 

c. 

{x ~ 0. I I: <x)- cQ.l > tk } 

{x ~ Q./ l lf <x>-cQl > ,k } 
{x ~ QJl If <x>-cQ, l + IcQ-~Q:I > ~} 

c_ {x~Qj I If(x)-cQ, l+4~,>,k} 
= {x ~ Q./llf (x)-~Q:I > tk-i } 

and hence 

{If <x)-co.l > ,,,} 

). 
We repeat the process. We consider only cubes Qj which contain a point y = yQ so that M s f ( y  ) #  < 
y.  The other Qj we can reject from the union since they are contained in {x ~ Q [M#,f (x) > }, }. 
We get 

{x ~ ai IIf (x)-cQ~I > ,k-, } 

~_ {x~Q M,:<x)>y}U(./U{x~Qj.j,_, :<x>-~o.,.,,_ll>t,,_.,}) 

so that 

c. 

{x~Ql l:<x)-~Ql >/~} 
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and 

j Jk-l J 

< 2-za~. (Q) . 

Repeat the procedure k times and get 

c 

c 

{x ~ ~ l I: <x> - ~QI > t~ } 

..., ..... ,l 

Ix~ ~ ~,;:~x~> ~/u ,,,u..,,, 
Therefore, 

x{x~Ql If(x)--CQl>tk}<_X{x~Q M # f ( x ) >  y } + 2 - k d ) , ( Q ) .  

If 

we have 

and 

t k < t  <tk+l 

t 
k > - - - I  

- 4 y  

~Q{If --cQl>'} 

<_ ~{~::> ,}+~e r 
Y 

where 
d log 2 

c ( d )  - 
4 

Of course if t < q,  (3.3) holds trivially. [ ]  

1 Let f E DBMOs,  0 < s < l+-f'gff" Let us take y = Ilf]lDSMO.~ SO that 

and then for all Q and t > 0 we have 

c(d)t 

~.Q {If (x)- CQl > t} < 2 a e - ~  

proving Theorem 15, and hence, also Theorem 14. 

E x a m p l e  1. Let us see that 

IIflIDBMO ~ C (S, d) IlfllDBgOs 
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fails when 

Define 

1 
$ : >  m 

1 + 2  `/ " 

1 , :  ') 
f (x) = 

o i: 

I We claim that i f s  > 1+---~' then gl ( f ;  Q)L~s = 0 for all dyadic cubes. 

Clearly f is a constant on any dyadic cube which is not of  the form [0, 2J] d. 

[0, 22m+1] d, then 
If Q = 

),{x e Q l f ( x )  = I} = E (--1)k 2(2m+l-k)d 

k=0 

2 a 
= ) , ( e )  l + 2 e  

so that 

Similarly, if Q = [0, 22'n] a then 

~-0 { I f -  11 > 0} - - -  
1 + 2  a " 

1 
XQ {Ifl  > O} = 1 + 2 - - ' - - ~  " 

I Clearly, we have, for s > ]~-r  

IIfIIDBMO., = 0 

and 
1 

[[flIDBMO = I + 2  d " 

1 Observe that this example also shows that Theorem 16 fails when s > 1+-'~7- For cubes of the form 

[0, 21] d we have 

[ C Q - C 0 ^ [  = 1 

whereas 

El ( f ;  Q)L*, = El ( f ;  Q^)L*., = O. 

We consider now the dyadic version of BMOks. 
As elsewhere in this section we consider functions on R~l ..... 1) and Q stands for dyadic cubes 

in R d 
(1  . . . . .  l ) "  

We will prove: 
1 a n d  k > 1 For 0 < s < 

D B M O / P k - 1  =DBMOks . 
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Theorem 18. 
1 andk  > 1. I f f i s a m e a s u r a b l e  Let Qo c QI and ~.(Qo) = 2 -dL(Ql) ,  0 < s < 

function, then 

2d ) k - I  

IIPt2"-Pt2~tlL~(t2~) -< 1 - - s ( 2 d + l )  b(k ,d ) (Ck ( f ;  QO)L*~ + 3 k ( f ;  QI)L*.,) - 

Proofi Let 

i = 0, 1 and let 

Yi > & (f ;  Qi)L*, 

F = ?'o+Yl �9 

Suppose that 

Define 

2d )k-1 

IIPa,, - e o ,  IlL~(o,) > 1 - s  (2 d + 1) b (k, d)  y .  

Ai = {x E Qi I If <x)- Pa, (x)l ~ y, } 
and let us estimate ~. (Ao A AI). 

Since 

Ilea,,- Pa, IIL~(A,,Na,) - Y 

from the Brudnyi-Ganzburg Theorem 

(3.4) 

2d )k-1 

1 -- s (2 d + 1) b (k ,d )  y < IlPo,,- Po, llL~(o,) 
k-1 

-~ b (k,,~) \~. (-;oogT~,) ] 
k-l 

-< b(k,e) \ x ( ~ g ? , ) ]  

II PQ,,- PQ~IIL~(A,,NA,) 

and so for k > 1, 

Therefore, 

)~o, ( A o A A I )  < 1 - s ( 2 d  + l) 
2 d 

L (Ao) = L ( A o \ A 1 ) + ~ . ( A o ~ ' ~ A I )  

1 - s (2 d + 1)L ( a l )  
< ~- (QI\A1) + 2d 

< + 2, / )~ (Q1) 

1 - s  
= - ' ~ - ( a l )  �9 

On the other hand we also have 
3. (Qo\Ao) < s~. (Qo) 
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so that 

i.e., 

(1 - s)  X ( Q o )  < X (Ao) 
1 - s  

< -'77--., X(QI) 
z "  

X (Qo) < 2-dX (Q1) 

a contradiction. This shows that the original hypothesis, (3.4), fails, proving 

II PQ,, - PQ, IIL~<~,> -< l-s(2 d + i) b <k, d) y. 

Since y > (& (f; Qo)t.r + gk (f; QI)L~.,) is arbitrary, the theorem is proved. 

Theorem 19. 

Let Qo C Ql, m < k and O < s < i I+-~2 . Let 

Q o = Q ~  C QI c . . .  C Q t = Q I  

[] 

be such that 

We then have 

Proof. 

X (Qo) = 2-idx (Qi)  . 

i=O 

Let Pi = PQi~,s ( f )  so that Pl = PQl,k,s ( f ) .  By Theorem 9, 

( ,-, ) 
gm ( f  -- Pc; QO)Lr = gm f -- 190 "F E (Pi - Pi+I) ; Qo 

i=0 Las 

b (k, d) e-I ) 
< ~ m ( f - P o ; Q O ) L C ~ " - b ( { : s S - I E m ( i ~ = o ( P i - P i + I ) ; Q o  L~., 

But 

gm ( f  -- P0; Q0)L~.," < IIf -- POIIL'~.,'(Q,,) 

= Ek ( f ;  QO)L~., 
and by Theorem 11 

~-1 ) 

~m( i~=o(P i -P i+ l ) ;Q~  Le~s 

'-' ) 

--< ~ Cm ( f  -- P~+l; Oo)w o 
i=o 

~-1 
r ra 

i=o lal=m 
l - I  

r m < c<,,d) E 
iffiO Iotl=m 

[I a'~ (Pi - ";+0 tl L=(O,,) 

II a= <pi - P ~ + O [ l t _ o o ( Q i + , )  �9 
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From Markov's inequality, 

I1o  ( P ,  - <= c <k, d> r=Q~+t Ilei - -  Pi+I IIL=(Q'+,> 

and from Theorem 18, 

I]Pi - Pi+lllL~(Qi+l) < c(k,d,s)  (~k ( f ;  Qi)Leps -[-~k ( f ;  Q ]LCJ,,) �9 

Thus: 

gm ( f  - -  PQt; QO)L*.*" _< gin ( f  -- PO; QO)L+ + c (k, d, s) r mQoZ Z 
i=0 lal=m 

II 0= (ei -- P,+,)IIL=(o,+,) 
~-1 

< gk ( f ;  Q0)L•., +c(k ,d , s )  rm ~-'~roim+, llPi -Pi+IlIL~(Q,+I) 
- -  Q o  

i=0 

e-I rQo (Sk f;  Qi 
_< 8k ( f ;  Q0)L#s + c (k, d, s) ~ \rQi+, ] Lr 

i=0 

e-I 
--< ~'k ( f ;  QO)Le~., +c(k ,d , s )  Z 2-ira (~k ( f ;  Qi)Lr " 

i=0 

/ L#s / 

-i,. )L*., [] < & ( f ;  QO)L*., + c (k, d,s) Z 2  gk ( f ;  Qi 
i=0 

Theorem 20. 
l For O < s < l +--~- f f  

DBMO /Vk-I  = DBMO.~ . 

Proof .  In the proof of Theorem 13 replace the cubes [ -2 i ;  2i] d by the dyadic cubes [0, 2/]. The 
rest of the proof holds without change. [ ]  

Let us see an example which shows that the last theorem is sharp in the case of d = 1. 

E x a m p l e  2. Let 

f (x) = min {x, 1} �9 

Let us show that IIflIDBMO] = 0 although clearly, IlfllDsgo/7,~ # O. 

Let us see: If  
1 - E Q = ( k 2  - n , ( k + l )  2 -n) 
3 

( k > 0 a n d w e d e n o t e L =  k2 -n, , then either _ < � 8 9  
l If n < 0, then �89 �9 Q implies k = 0 in which case ~ < 7" 

If n > 0, then 
1 k2 -n < ~ < (k + l)2 -n 
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implies  
3k < 2 n < 3k + 3 

} L(L) 2 so that either 2 n = 3k + 1, or 2 n = 3k + 2 which correspond to = and ~ = 7" 

On each interval which contains I we subtract from f the polynomial  (i.e., x or 1) which 

agrees with f on at least 2 of  the interval. This  proves IIfIIDBMO] ---- 0. Since f is not  a l inear 
3 

function IIflIoBMO/~,~ ~ O. 
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