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In this note we will describe the main results in [28] and [27]. We will start out by making some 
historical remarks, in order to put our work in perspective. 

In [19], Fatou showed that bounded harmonic functions in the upper half-plane have non- 
tangential limits for almost every (dx) boundary point in R. This result easily extends to the higher 
dimensional situation in R~. + 1. A far-reaching extension was obtained by Calderrn [4]: If  a harmonic 

function u in R~_ +l is non-tangentially bounded on aset  E C ttn = OR~. +l,  then u has non-tangential 
boundary values at almost every point (dx) on E. This was extended by Carleson [6], who obtained 
the same conclusion, under the weaker assumption that u is non-tangentially bounded from below 
on E. Related results were also obtained in terms of the square function 

S2(u)(x) = f r  IVu(y , t ) l  2 y l - n  dydt , 
(x) 

where I ' (x )  denotes a (truncated) circular cone with vertex at x. Here we have [5], [35]: On a set 
E C R n, the following two conditions are equivalent: 

(i) u is non-tangentially bounded for almost every x in E(dx). 
(ii) S(u)(x) < + ~  for a.e. x in E(dx). 
In the mid 1960s, Hunt and Wheeden [24] extended Fatou's theorem (as well as Carleson's 

theorem) to bounded Lipschitz domains f2 C R n+l. These domains have uniform interior (and 
exterior) cones, and thus, the notion of "non-tangential convergence" makes sense. To recall their 
results precisely, we recall the notion of "harmonic measure." 

Consider the classical Dirichlet problem: 

A u  = 0 in ~ ,  
(D) ultra = f E C(Of2), u E C('~) . 

Then, by the exterior cone condition, (D) is uniquely solvable, and thus, by the maximum 
principle and the Riesz representation theorem, there exists a family of  positive Borel probability 
measures {o) x }, so that, for X ~ f2, we have 

u(X) = ~ f dco X 
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for the solution to (D). This family of  measures is called harmonic measure. Harnack 's  principle 
implies that they are mutually absolutely continuous. We usually fix X.  e f2, and set dw = doJ x, ,  
and by abuse of notation, call this measure harmonic measure. In [24] it was proved that 

oo(B(Q, 2r) n OE2) _< Cw( B(Q, r) n ag2) , 

for Q E o~ ,  r > 0 and small, i.e., dw is a "doubling measure." It was also proved that, for f > 0, 
N(u)(Q) ~ Mw(f ) (Q)  uniformly for Q e a~2, where N(u)(Q) = suPx~r(Q ) ]u(X)] denotes the 
non-tangential maximal function (here F (Q) denotes a "regular" family of  interior cones), and 

, s Mo~(f)(Q) = sup f am 
r>0 og(B(Q, r)  n Og2) (Q,r)naf~ 

denotes the Hardy-Littlewood maximal function with respect to the measure dw. 
As a consequence of these facts, they showed that the following Fatou-type theorem holds: 

I f  Au ----- 0 e ~2, u is bounded in f2, f2 Lipschitz, then u has non-tangential boundary values at 
almost every Q(dw) in Of 2. (In fact, the analog of Carleson's theorem is also shown in [24], with 
the exceptional set having zero harmonic measure.) A natural question is then, whether dw and da, 
the surface measure, are mutually absolutely continuous. This was answered by Dahlberg [10], who 
showed: 

Theorem 1. 
If f2 is a bounded Lipschitz domain in R n+ t, harmonic measure and surface measure are 

mutually absolutely continuous. Moreover, k = do~ belongs to Aoo(dcr), i.e., it verifies a scale- 
invariant version of absolute continuity. More precisely, k e L2(Of2, da), and 

! 

cr(B(Q, r) O 0~2) (Q.r)n~Jf~ - cr(B(Q,r) O O~) (Q,r)no~ 

for all Q E a~2 and all small r > 0 (k E Bz(dcr)). 

In a related work [ 11 ] Dahlberg also proved that, for harmonic functions u on Lipschitz domains 
for which u(X,)  = O, we have 

I IN(u)llLv(Zm.d,,) ~-- I IS(u)IILPO~.d~) 

for 0 < p < oo, and thus extended the Calder6n-Stein theorem to Lipschitz domains.  The key 
difficulty in doing this is that, unlike in the case of  the upper half-plane, the distance function 
is far from being harmonic, making it difficult to apply Green's theorem. On the other hand, if 
G(X) = G(X, X. )  is the Green's function for f2, A G  = - ~ x . ,  and if Au = 0, u(X . )  = 0, we 
have: 

From this, it is easy to obtain the result mentioned above with dtr replaced by dw. Then,  real-variable 
techniques (good J~ inequalities [1, 11]) allow one, since da e Aoo(dw) (unlike absolute continuity, 
A ~  is an equivalence relationship [8]), to obtain the result for dtr. 

In 1979, in [25] a new proof of Dahlberg's theorem was found, using an integral identity. It is 
the following: Assume for simplicity that ~ = {(x, y) : x e R n, y > ~o(x)}, where tp : R n --+ R is 
Lipschitz and ~o(0) = 0. Let X.  = (0, 1). Then, 

~ k2(Q)Nn+l(Q)dw(Q) = cn ~ ,  k(Q)dtr(Q) 
 -SYT-" 

where Nn+l denotes the n -4- 1 component of  the outward unit normal to the boundary ("Rel- 
lich Identity"). Note that since w is a probability measure, f k d t r  --- 1, and that, for Q e af2, 
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I(Q - (0, 1))1 _>_ co, Nn+I(Q)  > co, where co depends only on the Lipschitz constant of ~o. This 
immediately shows that k ~ L2(Of2, dcr). 

A possible approach to the Lipschitz domain results explained above is as follows: Consider 
the change of variables Q : R~. +1 ~ f2 given by #(z, t) = (z, t + ~o(z)). Then, if Au = 0 in ~2, 

then v = u o Q verifies Lo = 0 in R~. +l , where L = div AV,  and A is real, symmetric, and bounded 
(since it depends on the Jacobian matrix of Q), i.e., 

&l~l 2 _< (A(z , t )~ ,~)  < ~.-llsel2, s e E ~ n + l .  

The natural question that arises is whether the Hunt-Wheeden-Dahlberg theory extends to this general 
situation. The works of  De Giorgi, Nash, and Moser [ 16, 33, 34] give local Hrlder  continuity of  the 
solutions, and the work of Littman et al., [30] shows that, under the exterior cone condition, we have 
unique solvability of  the classical Dirichlet problem for such L, and hence an "elliptic measure" dco~. 
(Morrey [32] and Gruter-Widman [23] observed that the symmetry of A is not necessary for this). 
Caffarelli et al. [3] showed the analog of the Hunt-Wheeden estimates explained above. (Again, 
these estimates hold without the symmetry of A ). Nevertheless, in 1981, Caffarelli et al. [2], and, 
independently, Modica and Mortola [31] found examples of A symmetric and even continuous, so 
that ~OL is purely singular with respect to surface measure. The natural question is then: What 
distinguishes the A coming from Lipschitz domains? Since A depends on the Jacobian of O above, 
it is easy to see that A(z,  t) = A(z). In fact, in [26] it was shown that, if A is symmetric, and A is 
smooth in t, then kL = ~ is also in B2(dz), via another "Rellich Identity." 

In a paper in 1982, Fabes et al. [20] showed that if A is uniformly continuous, and if its modulus 
of continuity r/in the t direction verifies the "Square Dini Condition" 

f 0 0 2 ( s ) - ~  < + o  r  

then kL = "~z is in B2(dz) (and, in fact, in every Lq(dz),  q > 1, and in Bq(dz)). The "Square Dini 
Condition" is, in a precise sense, sharp to guarantee absolute continuity [7, 2]. This work led to a 
series of  works by Dahlberg [ 13], and R. Fefferman, and culminated with the work of R. Fefferman 
et al. [21]. The result in this paper deals with "perturbation theory:" Suppose that we have two 
operators L I and L2 as above, with coefficient matrices A1 and A2, so that 

E(Z, t) = sup IAI (x , s )  - Ax(x , s ) l  
iz_xl< t 

~ <s <t 

verifies the "Carleson measure condition" 

fo - -  E2(z, t) dz <_ C ,  
h n _zol<h 

for all z0 ~ R n, h ~ R +. Then, ifwL~ ~ A ~ ( d z ) ,  then o9z,2 ~ Ac~(dz). Moreover, in [21] it was 
shown that the theorem is optimal in a number of  ways. It is worth noting that only in the result of  
Jerison and Kenig [26] mentioned above does symmetry play a role. 

Another significant development that played a role in the recent results we want to describe 
occurred in the paper of  Dahlberg [ 12], with a simplified proof due to Kenig and Stein (unpublished). 
Here a "better" change of variables than the naive 0 described above was found and used. In fact, 
one sets 

O(Z, t) = (z, ct + (Or * ~0) (z) ) , 

where 0 ~ C ~ ( R  n) is even. It can then be shown that 0 is still bi-Lipschitz, and that, in addition, 

t IV2o(z, t)l 2 dzdt  is a Carleson measure. If  we now pull back A from f2 to R~_ +l,  using the new O, 
we obtain A(z,  t) elliptic, symmetric, with two extra properties: 
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(i) IXTA(z, t)l < C/t  ; 
(ii) t IVA(z, t)[ 2 dzdt is a Carleson measure. 

Two natural questions arose from these considerations: 

Question 1 (Dahlberg --. 1984) If A verifies (i) and (ii) above, does OgLe Aoo(dz)? 

Question 2 (Fabes -.~ 1984) If A(z, t) = A(z), but A is not necessarily symmetric, does 
kL e B2(dz)? Does (at least)COL e Aoo(dz)? 

These questions seemed to be beyond the methods developed in the 1980s. We will now 
discuss the new methods developed recently in order to begin understanding these questions. 

In [18], Dahlberg et al. found a way to use the improved "distance function" generated by the 
Kenig-Stein mapping 0 described above to give a "direct" proof of 

fiJ N(u)2 dt7 ~- ~ S2(u)dt7 
n n 

for solutions of Au = 0 in ~2, without the use of harmonic measure, by integration by parts. This 
then extended to solutions to Et~ = 0 in f2, where E is any homogeneous, symmetric, constant 
coefficient, higher-order elliptic system. The "integration by parts" yielded two estimates, valid on 
all Lipschitz domains f2: (for Au = 0) 

(I)  fa~ S2(u)dcr < c f~,~ N(u)2 da , 

1 i 

(2) f o .  u2da < C ( f m N ( u ) 2 d c r ) ~  (fonS2(u)dcr) : + C  f o n S 2 ( u ) d a .  

One then obtains f N(u)2da "" f S2(u)do, using representation formulas for solutions in 
terms of layer potentials, Rellich identities, and the theorem of Coifman et al. [9], to show that 
fan N(u)2 d a  _< C fen u2 dcr. This was the starting point for our new methods that provided some 
progress in understanding the two questions posed above. We have: 

Theorem 2. [28] 
Suppose that n = 1, A(z, t) = A(z), but A is not necessarily symmetric. Then WL e Aoo(dz), 

and this is the best possible conclusion. (In particular, examples are exhibited where kg q[ B2(dz).) 

Theorem 3. [27] 
I lL is definedon a Lipschitz domain f2 C R n+l, and [VA (X)[ _< C /dist (X), dist (X)[V A(X)[2 

is a Carleson measure, then WL e Aoo(da). 

We will now sketch some of the new ideas in the proofs of the above results, as a series of observations. 

Observation 1: Suppose that the Fatou theorem is true for all bounded solutions to Lu = 0, with 
an exceptional set having measure zero da .  Then, 

lim I fB f dc~ 
r$o WL(B(Q,r)  n an) (o,~)n~,a 

exists for almost all Q (da)  on 0f2, and all f e L~176 dWL). (This is nothing but the estimate 
N(u) (Q)  ~ Mo~L(f)(Q).) Moreover, if wz is any doubling measure, and WL(E) = 0, then the 
following "converse to the Lebesgue differentiation theorem" holds ([18]): There exists 0 _< f < 1 
such that, for all Q e E, 

lim 1 fB f dwL 
r$0 wL(B(2, r) n an) (2.r)nas2 
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fails to exist. Thus, in view of the Fatou theorem, or(E) = 0. All of this can be done quantitatively, 
and so if "a quantitative Fatou (d(r) holds for bounded solutions," then cr �9 Aoo(dWL). (Again 
see [28]). 

Observation 2: If  for all solutions to Lu = 0 we have fa~ S2(u) da  ~- f'oa N(u)2 da  for all 
Lipschitz domains, then the "quantitative Fatou (dcr) holds, for bounded solutions." This is a con- 
sequence of  ideas due to Varopoulos [36], Garnett [22], and Dahlberg [14] in the late 1970s. In fact, 
the assumed estimate gives an approximation result for bounded solutions, which in turn gives the 
"quantitative Fatou da . "  (Again see [28] for details.) 

Observat ion 3: If  for all solutions to Lu = 0 in f2 and all Lipschitz domains f2 we have 

(1) f~m S2(u) tic: < C f j  n N(u) 2 da ,  and 

1 1 

(2) <_ c N(u)2 S2(u)do)  + c S2(u)d ), 

then (2) can be strengthened to 

(2') f'Jf2 N ( u ) 2 d a  < cf.of ~ S2(u)da .  

The idea for this is a "stopping-time" argument. For each j ,  we let 

Ej = {z : Nu(z ,  ~0(z)) > 2 j, S(u)(z,  9(z)) < 02 j } . 

Let hi(z)  = sup{t > (p(z) : sup(x.s)er(z)+(o,o lu(x, s)l > 2J}. Then hj is Lipschitz, independently 

of j ,  and, for Q small, Mhy u (z, hj (z) ) > C2 j for all z �9 Ej, where Mh I denotes the Hardy-Littlewood 
maximal operator with respect to surface measure on the graph of  hi. One then obtains (2 ' )  from 
(2) on the graph of  hj, via a "good ~. inequality" (see [28]). 

Finally in [28] and in [27] we adopt the ideas in [ 18] to obtain (1) and (2) above in the framework 
of Theorems 2 and 3, respectively. The argument for this in Theorem 2 is in fact quite intricate, and 
depends on some changes of  variables that are available only when n = 1. Moreover, it is further 
complicated by the fact that (1) and (2) are only obtained for domains f2 with "small Lipschitz 
constant", and one then needs to use. David's "build up scheme" [15], in combination with the ideas 
sketched above. Whether Theorem 2 remains valid for n > 1 is a challenging problem. 
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