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Sobolev Type Embeddings in the 
Limit ing Case 

Michael Cwikel and Evgeniy Pustylnik 

ABSTRACT. We use interpolation methods to prove a new version of  the limiting case of the Sobolev 
embedding theorem, which includes the result of  Hansson and Brezis-Wainger for  Wkn/k as a special 

case. We deal with generalized Sobolev spaces W k, where instead of requiring the functions and their 
derivatives to be in Ln/ k, they are required to be in a rearrangement invariant space A which belongs to 
a certain class of  spaces "close" to Ln/k. 

We also show that the embeddings given by our theorem are optimal, i.e., the target spaces 
into which the above Sobolev spaces are shown to embed cannot be replaced by smaller rearrangement 
invariant spaces. This slightly sharpens and generalizes an earlier optimality result obtained by Hansson 
with respect to the Riesz potential operator. 

In memory of Gene Fabes. 

1. Introduction 

The theory of Sobolev type embeddings has its origins in classical inequalities from which 
integrability properties of  a real function can be deduced from those of its derivatives (see, e.g., 
[2, chapter V]). In his fundamental work [17] Sobolev was the first to apply methods of functional 
analysis to this topic. His results deal with functions defined on a suitable domain in R n. 

In the 1960s it was discovered (for systematic treatments see, e.g., [5, 16]) that the original 
rather complicated proofs of  embedding theorems given by Sobolev and his followers could be 
simplified by using interpolation of linear operators, in particular the Marcinkiewicz interpolation 
theorem. 
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Subsequently a series of papers appeared, treating the so-called "limiting case" of the Sobolev 
embedding theorem, and culminating in the result of Hansson [11] and Brezis-Wainger [7]. As 
shown by Hansson, this result is best possible in some sense. 

In this paper we shall use interpolation methods to provide an alternative proof of  the Hansson- 
Brezis-Wainger limiting case embedding theorem. Our proof is considerably simpler, at least from 
our point of view, than those in [11] and [7]. We shall also show that this embedding theorem is best 
possible, in a slightly stronger sense than that considered by Hansson. 

In fact our methods will also give analogous optimal embedding theorems for generalized 
Sobolev spaces where the classical Lp conditions on the function and its derivative are replaced by 
requirements in terms of some other rearrangement invariant space. 

2. Some Terminology and some History 

Throughout this paper f2 will denote a domain in ~n. For one special application (in a proof 
in the last section) we will take f2 = R n. Apart from this particular case, we will always suppose 
that f2 is bounded and also that it is star shaped with respect to every point of some euclidean ball 
contained in f2. (Quite possibly our results here can be extended to more general domains, such as 
those studied in [15] in a context similar to ours.) 

We shall denote n-dimensional Lebesgue measure by/z, but we will also use the usual notation 
f f ( x ) d x  or f f ( y ) d y  for integration with respect to/z on R n. 

We shall use the standard notation Ixl = ~ and (x, y) = )-'~-7=1 x j y j  for norms and 

inner products of elements x = (xl, x2 . . . . .  xn), y = (Yl, Y2 . . . . .  Yn) of R n. We shall also use the 
standard notation 

a[~l 
a" f = at ~2 ~, f 

OX 1 OX 2 �9 . .  OX n 

for (generalized) partial derivatives, for each multi-index c~ = (~l, ~2 . . . . .  an) of  order I~1 := 
Ot I - - I - O t 2 + . . . + O ~  n .  

Let Wek(f2) denote, as usual, the Sobolev space of (equivalence classes of) functions f 
Lp(f2, lz) whose generalized partial derivatives of order k are all in Lp(~,  lZ). This space may be 
norrned by 

Ilfllw~(~) = IlfllLp(~)+ ~ Ilo fllc,(a) �9 (2.1) 
lul=k 

Sobolev's classical embedding theorem [17] states that if f2 C R n is a bounded domain which 
is star shaped with respect to every point of some euclidean ball contained in f2, then 

wk p np n and q < ~ (2.2) (f2) C Lq(~) continuously, whenever p < -~ - n - pk 

In the limiting case, i.e., when p = ~, this inclusion does not hold for q = c~. However, we do 
have that 

Wk/k(~) C Lq(~,  lz) for all q < c~ .  (2.3) 

In other words, the optimal integrability conditions satisfied by functions in W~k/k cannot be specified 
as simple Lp conditions. 

In the late 1960s Peetre [16] and Trudinger [22] independently found refinements of (2.3) 
expressed in terms of Orlicz spaces of exponential type. Using methods which are rooted in the 
work of Yano [23] (see also [24, p. 119]), they were each able to prove that a continuous embedding 
of the form 

W~n/k(f2) C L~(f2,/z)  (2.4) 
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holds for some Orlicz space L,~(f2, p.) generated by the function ~ ( u )  = e ux for some L > 1. Such 
n Orlicz spaces are clearly contained in Lq(~) for every q < co. In Trudinger's result ~. = ~ for 

all k = 1, 2 . . . .  and he also showed that this value of L is best possible when k = I. Subsequently 
Strichartz [20] strengthened this result by obtaining the above embedding when L = 7~-k'n He also 

n observed that ~ is the best possible value of ~. for any choice of  k < n - 1. In fact, this is the 
same value of ~. as was found by Peetre using interpolation properties of  Sobolev spaces. Somehow 
Peetre's contribution has gone largely unnoticed by many authors, probably because it is rather 
inconspicuously embedded in a long article dealing with other topics. 

Remark  1. 
We wish to thank Igor Verbitsky for drawing our attention to some additional historical infor- 

mation given in the monograph [1, p. 81] concerning the embedding (2.4). Furthermore he informed 
us of the connection between (2.4) and a capacitary inequality of Maz ~ia [1, (7.6.1) on p. 209], which 
can also be exploited to obtain optimal constants in (2.4). 

To obtain further refinements of the limiting case of the Sobolev embedding theorem, it is 
necessary to work with a wider class of  function spaces. The rearrangement invariant spaces con- 
stitute a natural class to consider if one wishes to study integrability-like conditions of  functions in 
wnk/k(~). This class contains the Lp and Orlicz spaces appearing in the results mentioned thus far, 
and  furthermore, although of course Sobolev spaces are not rearrangement invariant, the Sobolev 
norm of a function depends on the size of the function and of its derivatives, rather than on the 
particular location of the places where they are large (e.g., the Sobolev norm of a function having 
compact support in f2 is invariant under translations of  the function which keep its support within 
~2). 

One rearrangement invariant space which turns out to be of  very great interest in the present 
context is the space, which we shall denote here by V or V(f2,/z),  which consists of  all (equivalence 
classes of) measurable functions f : f2 --+ R for which 

Ilfl lv := \ 1 - - ~  ,/ (2.5) 

is finite. Here f *  denotes the nonincreasing rearrangement of f ,  i.e., the right continuous non- 
increasing function f *  : (0, co) ~ [0, co) such that the linear Lebesgue measure of  {t ~ (0, co) : 
f*( t )  > a} equals/z ({x ~ f2 : I f (x ) l  > ~}) for all ~ > 0. Of course f* ( t )  = 0 for all t >/z(s 
Although it is not clear that the homogeneous non-negative functional f ~ I lf l lv satisfies the 
triangle inequality, it can be shown to be equivalent to a norm, and so it is a quasinorm, i.e., for some 
absolute constant C it satisfies 

Ilu+ollv <_C(llullv+llvllv) forall  u,v  ~ V .  (2.6) 

Remark  2. 
We can also consider a variant of(2.5) where the interval of integration (0, 1) is replaced by 

(0, 8) for some positive number 8 ~ 1. Of course if8 > 1 the function \ l-ff~ ] may not be non- 

negative nor even real valued on (1, 8) and so, on that part of the range of integration, it should be 
replaced by some bounded non-negative function. It is easy to see that any new quasinorm obtained 
by such modifications will be equivalent to II f II v. 

In 1979 Hansson [ 11, pp. 96-101] and, independently, in 1980 Brezis and Wainger [7, Theorem 
2, p. 781] proved the continuous embedding 

Wnk/k(~) C V .  (2.7) 

As pointed out in both [1 I] and [7], the space V is strictly smaller than the various versions of the 
space L~ which appear in (2.4). The proofs of (2.7) in these two papers are very different from each 



436 Michael Cwikel and Evgeniy Pustylnik 

other, and they each use rather elaborate techniques (related to capacities, convolution inequalities, 
etc.). The main step in both proofs is to show that the Rieszpotential operator, i.e., the operator Jn.~ 
defined by 

f~  f (Y)  Jn,kf(x) = Ix Z - ~ - k  dy ,  (2.8) 

satisfies 

Jn.k : Ln/k(f2, lZ) -'+ V boundedly.  (2.9) 

This will also be the main step in the alternative proof of  (2.7) which we will present in the next 
section. 

To explain why (2.9) is sufficient to imply (2.7), we need to recall an integral representation 
formula from the classical work of Sobolev which, in some approximate sense, enables a function to 
be reconstructed from its partial derivatives of  order k. More precisely, for any given fixed domain f2 
satisfying the above-mentioned star shape condition, Sobolev constructs special bounded functions 
Q,~ : f2 x f2 ~ R for each multi-index a such that either et = 0 or t~l = k, with the property 
(cf. [18, equation (7.12), p. 55] or [15, Theorem 1, p. 20] that 

f a (x,y) f ( x )  = Qo(x, y ) f ( y )dy  4- ~ Ix - yln-k Oaf(y)dy for a.e. x 6 s (2.10) 
[a I=k 

for each f : f2 --+ R whose generalized partial derivatives of  order k are all integrable on f2. (In fact 
Q0 : f2 x [2 ---> R is continuous and, for each ot with I~1 = k, Q~ : f2 x f2 ---* R is continuous at 
all points (x, y) such that x :fi y.) 

In view of the easily checked continuous inclusions 

Lc~(fZ,/z) C V  and Ln/k(f2,1x) CLl ( f2 ,1z ) ,  (2.11) 

k it is obvious that, for every f ~ W~/k(f2 ), the first term on the right of  (2.10), i.e., the function 

u(x) --- fa  Qo(x, y) f (y)dy satisfies 

Ilullv < Cl IlullLoo(~) -< C211flILI(~) <--C311fllwk/~(~) (2.12) 

for suitable absolute constants Ci depending only on f2, n, and k. Furthermore it is clear that the abso- 
lute value of the remaining sum of terms is dominated by a constant multiple of  ~-'~-[al=k Jn.k (la '~fl) .  
Thus, we obtain from (2.9), (2.12), and (2.6) that 

Ilfllv < C411fllwk/ - -  , ( ~ ) ,  

which is of  course equivalent to (2.7). 

Remark 3. 
(i) In fact, Sobolev followed a similar line of reasoning in his original proof of (2.2). He 

obtained (2.2) as a consequence of the boundedness of the mapping Jn.k : L,(s Ix) "+ Lq(~,  lz). 
Some subsequent alternative proofs use Fourier transform methods instead of the integral represen- 
tation (2.10). 

(ii) Igor Verbitsky has pointed out to us that the embedding (2. 7) can also be deduced from the 
same capacitary inequality of  Maz ~ia mentioned above in Remark I and the standard isoperimetric 
estimate for capacity from below. (See [15, pp. 109, 1051.) 

(iii) Another result rather similar to (2.7) was obtained by Brudnyi [8], also in 1979. Rather 
than working with rearrangement invariant spaces, he considered spaces which are variants of the 
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John-Nirenberg space B M O .  For p ~ [1, oo) let BMOP(f2) be the space of  all locally integrable 
functions f : f2 --+ R for which the seminorm 

l/p 

(:o II f II = s u p  . . . . .  

is finite. Here the supremum is taken over all cubes K C f~ with sides parallel to the axes, and 
f K = ~ f K f (x )dx for  each such K. When p = n / k one can consider B M O P ( f2 ) as a sort of  

oscillatory analogue of  the space V, i.e., it measures the local oscillation rather than the absolute 
size of  the function f ,  with respect to a similar weighted Lp norm. The embedding theorems in [8] 
immediately imply the continuous inclusion 

k Wn/k(f2) C BMOn/k(f2) 

whenever n > 2k. 

3. A New Proof of the Hansson-Brezis-Wainger Embedding 
Theorem, and some Generalizations 

The starting point of our investigation of this topic is the observation that the space V is a 
member  of  the class of  Lorentz-Zygmund spaces L p.r (log L) ~, which were introduced and studied 
by Bennett andRudnick [3] (see also [4, p. 253]). We have learned that some other authors have also 
noticed and used this fact about V, e.g., in [10] and in other papers referred to in [10]. In our case, 
as we shall see in this section, this observation enables us to give an alternative and perhaps easier 
proof of  (2.9) and (2.7), by applying a general interpolation theorem from [3] to the operator Jn.k. 

For any underlying measure space (.h4, v) such that v(A4) < oo, the space LP'r(log L) ~ on 
(A/f, v) is defined to consist of  all (equivalence classes of) v-measurable functions f : M ---> • for 
which the quasinorm 

][f[[p,r:a=(fol[t l /Pf*(t)( lnl)a]rd-~:)  l/r (3.1) 

is finite. As usual, the integral is replaced by a supremum when r = ~ .  

R e m a r k  4. 
In fact these spaces can be defined for an arbitrary underlying measure space and it is possible 

to use a norm that takes into account the behavior of f *(t) as t tends to infinity. But here we have 
restricted attention to the case where v(A4) < oo because this simplifies the formula~ for the norms 
and is sufficient for our applications here. 

The Lorentz-Zygmund spaces include as particular cases some previously known and impor- 
tant spaces, such as Lp = L p'p (log L) ~ and also the Lorentz space Ap = LP. l(log L) ~ whose norm 
is 

fo" Ilfll^p = t F - l f * ( t ) d t  (where ~ = v ( .M)) .  (3.2) 

Another example is the Marcinldewicz space or weak Lp space Mp = L p'~ (log L) ~ whose norm is 

1 • f0 t IlfllMp = sup t':f**(t)----- sup tp f * ( s ) d s .  (3.3) 
0<t<8 0<t<8 
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Let (.A,4j, vj) for j = 1, 2 be two (possibly different) measure spaces. Again, for our purposes here 
it is sufficient to consider the cases where vj(.,k4]) < c~ for j = 1, 2. The interpolation theorems 
which are relevant for our purposes here deal with linear operators T which map some class of  
measurable functions on (A.41, vl) into some (possibly different) class of  measurable functions on 

(J~2,  v2). 
I f  T : Lp(vl)  --+ Lq(v2) boundedly, then we say that T is of strong type (p, q) .  If T satisfies 

the weaker condition that T : Ap(Vl) --+ Mq(v2) boundedly, then we say that it is of  weak type 

(P, q). 

R e m a r k  5. 

This terminology is not always used with exactly the same meaning. What we call "weak type" 
here is often referred to as "restricted weak type." The terminology "weak type (p , q ) "  is classically 
taken to mean that T : Lp(Vl) --+ Mq(v2) is bounded. See, e.g., [4, p. 230] and [13, p. 130]for 
definitions of  various variants of  this notion. 

The following theorem is part of the statement of  [3, Theorem C1 (b) on page 10]. There, by 
using a suitably generalized definition of weak type operators, the result is also obtained for p = oo. 
We do not need this case for our application here. In the statement of  Theorem C1 the underlying 
measure spaces A41 and AA2 are both taken to be T, but exactly the same proof works for general 
finite measure spaces (cf. also [9, Section 7]). 

T h e o r e m  1. ( B e n n e t t - R u d n i c k )  

Every operator T ofweak types (a, b) and (p, q) forO < a < p < oo, 0 < b < q < c~, acts 
continuously from the space L p'r (log L) a+l defined on ( M l ,  vl) into Lq's(log L) fl on (.hal2, v2) for  

l all 1 < r < s < c~ and all or, f l e  ]R such that ot + 1 = fl _{_ 7 < O. 

From here the proof of the Hansson-Brezis-Wainger embedding theorem is a lmost  immediate: 
Let us choose (A.41, vl) = (.M/2, v2) = (f2, p.). Then it is easy to check that the operator Jn.k maps 
An/k into Lc~ and also maps Ll into Mn/(n-k), i.e., Jn.~ is of weak types (~, co)  and (1, nn_--~) 
(see, e.g,, [12, p. 153]). From Theorem 1 we then deduce that Jn.k maps Ln/k boundedly into 
L~176 L) - l  = V, proving (2.9) and consequently also (2.7). 

Recently [9] we have obtained a new interpolation theorem which includes and sharpens certain 
cases of  Theorem 1 and which applies to more general classes of rearrangement invariant spaces. 
We shall now describe this theorem and use it to obtain a generalization of (2.7) to a broader class 
of Sobolev spaces. 

For our purposes here, as in [9], we shall define the rearrangement invariant spaces (or r.i. 
spaces) on a given measure space (.M, v) to be those Banach spaces E of v-measurable  functions on 
f : M --* R which are exact interpolation spaces with respect to the Banach pair (L l (v), Loo (v)). 

Various authors use this terminology with slightly different meanings than ours, and others 
refer to similar spaces as "symmetric spaces." See, e.g., [13, p. 122], for an example o f  a symmetric 
space which is not rearrangement invariant in our sense. Where necessary we can use the more 
explicit notation E(A,4, v) or E(A,~) or E(v)  to indicate the underlying measure space. 

For each r.i. space E on (0, ~ )  with Lebesgue measure dr, we define the space /~ to be 
the collection of  (equivalence classes of) all functions f : (0, 1) ~ JR, which are of the form 

f ( t )  = ~o (ln ~) for some ~o ~ E. We norm ff: by 

Ilfll• = II~lle, where f ( t ) = c p ( l n l )  . 

Given any such r.i. space E and numbers p ~ (1, ~ ) ,  q ~ (1, ~ ]  we shall define the r.i. spaces 
A(.M, v) and B(.M, v) to be the collections of all measurable real valued functions f on  an arbitrary 
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given measure space (A4, v) for which the norm 

]lf]la(~.v) = t~ f**( t )  .~ (3.4) 

or, respectively, the norm 

sup ~ e II flls(aa,v) = s T f * * ( s ) / l n  (3.5) 
o<s<t ~" 

is finite. Note that although f** is defined on the whole interval (0, e~), we only take its values on 
(0, 1) into account for calculating these norms. 

Some important examples of  the space A(.Ad, v) are obtained when we choose E to be Lr for 
some r ~ [1, c~]. Then the norm of the space L r is 

l{fl[ L = I f ( t )[  r for r < ~ ,  or [[fIlYo~ = ess sup I f ( t ) [  . 
O<t<l  

Consequently, if r < e~, 

(L 
and, when r = c~, 

I 

IIfIIA(M.u) = sup t F f * * ( t )  = H/IIM e . 
0 < t < l  

If  v(.Ad) < o0, then A(A4, u) coincides with the two-parameter Lorentz space L t' 'r on (.A4, v) [14]. 
(Since p > 1, the preceding norm is equivalent to the quasinorm for L p'r obtained by replacing f** 
by f* . )  

R e m a r k  6. 
In fact, for  all choices o f  E, again assuming that v(Ad) < ~z, the space A(Ad,  v) is rather 

"close" to Lp(.A4, v). More precisely (see [9, Theorems 4.6, 4.8, and 7.7]), A(.A4, u) lies between 
the two spaces A p ( :k4, v) = L p'I and Mp (.h/l, v) = L P" ~ and is an interpolation space with respect 
to them. 

We will be interested here in those spaces A(.h4, v) and B(.M, v) which are obtained using an 
r.i. space E on which the Hardy operator H 

l f0' H f (t) = t f (s) ds (3.6) 

is a bounded mapping. In fact, the boundedness of H on E is equivalent to requiring qE, the upper 
Boyd index of E, to satisfy 

q E < l .  

A proof of this equivalence can be found in [13]. (It follows from the discussion on pp. 127-128 
together with Theorem 6.6 on p. 138.) 

To simplify our presentation in [9], many results, including our main interpolation theorem 
in Section 5, are stated for r.i. spaces where the underlying measure space is (0, 1) with Lebesgue 
measure dt. However, for our applications here, we need a version of  the corollary of  this theorem 
where (0, 1) is replaced by the bounded domain ~ C R n. In fact, it is rather obvious that the proof 
of  the interpolation theorem works, with trivial modifications, for arbitrary measure spaces. In any 
case it can be also extended to those measure spaces by a simple method described in [9, Section 7]. 
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More specifically, if we apply Theorem 7.6 and Examples 7.5 to Corollary 5.3 of  Theorem 5.1 
(all of  these are in [9]), then we immediately obtain the following result: 

Theorem 2. 
Let (.A41, vl) and (.Ad2, v2) be arbitrary measure spaces such that vt (Al l )  and v2(.A42) are 

finite. Let T be a linear operator mapping measurable functions on .Ad I to measurable functions on 
3332. Suppose that T is of  weak types (a, b) and (p,  q) where 1 < a < p < c~ and 1 < b < q < oo. 
Let E bean r.i. space on ((0, co), dt)  satisfying qe < 1 andlet  A(3331, vl) and B(A42,  v2) bedefined 
by (3.4) and (3.5), respectively. Then T maps A(A,t l, vl) boundedly into B(3332, v2). 

Remark 7. 
As explained in [9], Theorem 2 implies and even strengthens the conclusion o f  Theorem 1 in 

the case where ot = ~ = - 1. We also remark that, again by [9, Examples 7.5], it follows that, in the 
statement of  Theorem 2, we can omit the requirement that v1(3331) and v2(.Ad2) are finite, provided 
that we replace the weak type conditions on T by the requirements that T is a bounded map from 
Aa(Vl) + Lec(Vl) into Mb(v2) + Leo(v2) and from Ap(Vl)  + Loo(Vl) into Mq(v2) n t- Loo(v2). 

We are now ready to define the generalized Sobolev spaces for which we can obtain an analogue 
of the Hansson-Brezis-Wainger  embedding theorem. We choose the underlying measure space to 
be (f2,/z), and for some p �9 (1, c~) and some r.i. space E we define the space A(g2,/z) as above. 
Then we take WAk (f2) to be the (generalized Sobolev) space of (equivalence classes of) functions 
f �9 A(f2, /z)  whose generalized partial derivatives of  order k are all in A(f2,/z)  (cf. [21, p. 39]). 
This space is normed by 

= It flla(n.lz) �9 Ilfllw~(a) IlftlA(a,~) + ~ 0 c' 
lal---k 

If  we choose E = Lp((O, cx~),dt), then A(f2,/z) = LP'P(f2, Ix) = Lp(f2,  It) and so 
WAk(f2) = Wpk(~). More specifically, if we choose p = n/k ,  then we obtain the Sobolev space 

k Wn/k(f2) which appears in the limiting case of  the embedding theorem. 
If, for this same choice of p, we allow E to be an arbitrary r.i. space on ((0, c~), dt),  then, 

since A(f2, /z)  is "close" to Ln/k (cf. Remark 6), we get a Sobolev space "close" to k W~/k(f2). Here 
is our embedding theorem for such spaces. It contains (2.7) as a special case (i.e., for  E = Ln/k). 

T h e o r e m  3. 
Let E be an r.i. space on ((0, e~), dt ) satisfying q e < 1. Let the spaces A ( f2, lz ) and G( f2, tz ) 

be defined by 

A(f2,/z) :=  { f ( x )  : IlfllA(n,lz) = t~ f**( t )  .~ < cx~} and 

{ I ell / G(f2, /x)  :=  f ( x )  : IlfllG(a.~,~ = f ** ( t ) / In  t ~" < ~ " 

Then 
Wak(f2) C G(f2,/z). (3.7) 

P r o o f .  This is analogous to our proof of (2.7) except that we now use Theorem 2 instead of  
Theorem 1. Again we use the fact that the Riesz potential operator J,,k is of  weak  types (~, oo) 

n n and (1, h--~_k). So we take p = ~, q = e ~ , a  = 1 and b = ~ and apply Theorem 2 with 
(.Adl, Vl) = (.A42, v2) = (f2,/z) to obtain that Jn,k is a bounded map of A(f2 , /z )  into B(~ , / z ) .  
From the definition of this latter space ((3.5) with q = c~) it is clear that B(f2, /z)  is continuously 
embedded (with norm one) in G ( ~ , / x ) .  Thus, analogously to (2.9), we have that 

Jn,k : A(f2,/z) ~ G(f2, /z)  boundedly.  (3.8) 
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To complete the proof we have to show that (3.8) implies (3.7). Here the argument is almost 
exactly the same as the proof given before that (2.9) implies (2.7). There are only a few small 
changes. First, in view (cf. Remark 6) of the continuous inclusion A(f2, IX) C Mn/k(~2, IX), we 
have that A(f2,/z) C LI(~2,/z). (This can also be easily proved directly from the definition of 
A(f2, IX).) Consequently all the generalized partial derivatives of order k of functions f ~ W k (f2) 
are integrable. This enables us to apply (2. I0). Then, in place of the inclusions (2.11), we now need 
to use the two continuous inclusions L~(f2,  IX) C G(f2, IX) and A(f2, IX) C Ll(f2, IX). The second 
of these has just been discussed. To obtain the first, we need to use the property qe < 1, i.e., the fact 
that the Hardy operator H (3.6) is bounded on E. This ensures that H(X(0. l))(t) = rain{ 1, 1/t} ~ E. 

1 is atso in E or, equivalently, ~o (in ~) l /~. Consequently the smaller function {0(t) = i%-7 = ~ ~ 
1 Then IlfllG(n,~) _< IIt-'~fll?" �9 IlfllL~ for each f ~ G(~ ,  IX), which is equivalent to the required 

inclusion. All other parts of the proof are exactly analogous to before. [ ]  

R e m a r k  8. 

In the preceding proof we used the obvious fact that B(f2, Ix) C G(f2, Ix). Our proof also im- 
plies the seemingly stronger result WAk (f2) C B(f2, Ix). However, since here q = oo, the two spaces 
B(~ ,  lz) and G (f2, Ix) coincide to within equivalence of norrns. This is proved in [9, Theorem 6.27] 
when the underlying measure space is (0, 1) and the result extends obviously to our measure space, 
e.g., by the methods of[9, Section 7]. 

4. The Optimality of the Hansson-Brezis-Wainger Theorem 
and its Generalizations 

Among the results in his paper [11], Hansson also shows that the property (2.9) of the operator 
Jn,k is best possible, in the sense that J,.k does not map L,/k(~2, IX) into any r.i. space which is 
strictly smaller than V. This suggests that perhaps (2.7) is also the best possible, in the analogous 
sense that it too does not hold if V is replaced by a smaller r.i. space. 

On the one hand this is not entirely obvious; in the transition from (2.9) to (2.7) the methods 
used to estimate the size of the right-hand side of (2.10) are quite crude. So it is conceivable that a 
more delicate argument could show that f is significantly smaller. On the other hand, the optimality 
of (2.7) seems very likely in the light of various results in [19, pp. 130-138], which show a close 
relationship between the Riesz potential operator and the Bessel potential operator, which is relevant 
for defining Sobolev spaces when the bounded domain f2 is replaced by the whole of R n. 

In this section we shall show that indeed V is the optimal space for the embedding (2.7). In 
fact, we will obtain this as a special case of a more general result, that a//of the embeddings obtained 
in Theorem 3 are optimal. Before formally stating and proving this (as Theorem 5), we shall discuss 
a number of auxiliary results which will be needed for the proof. 

One key fact is a certain property of the special operator T of "weighted Hardy type" defined 
on measurable functions f : (0, 1) --+ R by 

T f ( t )  = t -~  sp f ( s ) d s  )- 
1 / b -  1/q 

for all t E(O, 1), where m -  1 / a - 1 / p "  (4.1) 

This operator has already been studied in [9]. It is very easy to check (cf. the proof of Theorem 3.4 
of [9]) that it satisfies all the conditions of Theorem 2 in the case where both of the measure spaces 
(.A41, Vl) and (.Ad2, v2) are chosen to be ((0, 1), dt). But it has the following additional property 
(cf. [9]): 
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T h e o r e m  4. 
Let T be the operator defined by (4.1) f o r  some choice o f  p, q, a, and b satisfying 1 < a < p < 

and I < b < q < cx~. Let E be an r.i. space on ((0, cx~), dt ) which satisfies qE < I and define the 
spaces A((O, 1), dt)  and B((O, I), dt) by (3.4) and (3.5). Then, for  every function g E B((O, 1), dt), 
there exists a positive non-increasing function h E A((O, I), dt)  such that Th( t )  > g*(t) for  all 
t 6 (0, 1). 

In fact the function h is a constant multiple of  the function f whose construction and description 
constitute the main part of  the proof of  Theorem 5.7 of  [9]. The purpose of this result in [9] is to show 
that, at least in the case where (A41, vl) = (.3.42, v2) = ((0, I), dr), the space B = B((0, I), dt)  is 
optimal, i.e., the conclusion of Theorem 2 does not hold for any space smaller than B. It is perhaps 
rather surprising that this optimality can be established by considering just this one special operator, 
and we will exploit this fact further here. 

The simple results to be discussed in the following paragraphs will be used later for calculations 
with the Riesz potential operator. 

For any fixed u ~ R n with lul = 1, let K~, C ]R n be the cone K~u = {y ~ R n : 2 (y, u) > [y[}. 
For 0 < a < b < cxz we let ICu(a, b) = {y ~ ICu : a <_. [y[ < b}. We shall need a rather standard 
integration formula for radial functions in R n, namely that 

f0 q~(lYl)dy = cn q~(r)rn-t dr  (4.2) 
u 

for all measurable cp : [0, c~) ---> [0, cr where, as before, /z denotes n-dimensional Lebesgue 
measure and where the constant cn = n �9 lz (ICu(O, I)). It is important to note that cn is independent 
of our choice of  the "unit vector" u. The formula (4.2) can be obtained using n-dimensional spherical 
coordinates. Alternatively, we can use the fact that/z(]C~,(0, b)) = bnl~(ICu(O, 1)) and therefore 
Iz(ICu (a, b)) = (b n - a  n)/x (Eu (0, 1)) to first obtain (4.2) when 4> = X[a,hl for all a, b with 0 < a < b. 
It can then be extended to all non-negative measurable q~ by standard arguments. 

We will also need to use the fact that 

[y - x l  < lyl for all y ~ K:u(Ixl ,b)  if x = Ixlu and Ixl _< b .  (4.3) 

To check this, observe that each such y satisfies [y - xl 2 = (y - x, y - x) = [y12+lx12-2  (y, x) = 
lYl 2 + Ixl 2 - Ixl 2 (y, u) < lyl 2 + Ix] 2 - Ixl lYl -< lYl 2, as required. 

We are now ready to state our main result: 

T h e o r e m  5. 
Let E be any r.i. space on ((0, ~ ) ,  dt)  satisfying qe < 1 and let the spaces W~(f2) and 

G ( ~ ,  lz) be defined using E as in Theorem 3. Then every r.i. space X on (f2,/z) which satisfies 
WkA(~2) C X must also satisfy G(f2, tz) C X.  

R e m a r k  9. 
This theorem also implies o f  course that Jn.k cannot map A(f2,  # )  into any rearrangement 

invariant space which is smaller than G(f2, lz), i.e., we also have a generalization of  Hansson's 
optimality result to this context. 

P r o o f  o f  T h e o r e m  5. For each positive number p, let D(p)  denote the open euclidean ball of  
radius p in R n centered at the origin. Let us denote the volume of  the unit ball, i.e.,/z (D(1)) by 
wn. We can suppose without loss of  generality that our bounded domain f2 contains the origin. 
Therefore, there exists some ~ > 0 such that 

D(2~) C f2 and /z (D(2~)) = con(2E) n < 1 . (4.4) 

Suppose the theorem is false, i.e., suppose that there exists an r.i. space X on (f2, lZ) such that 
Wak (f2) C X and a function w : [2 --+ R such that w 6 G(f2 , /z ) \X.  We shall show that this leads 

to a contradiction because it implies the existence of  a function | 6 WA k (g2) which is not in X. 
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Since G(S2, p.) C L l(f2,/z), it follows that there exists a number/~ > 0 which is sufficiently 
large to ensure that 

/z ({x ~ f2 : lw(x ) l  > fl}) < / z ( D ( E ) )  . (4.5) 

Since L1(~2,/z) N Loo(f2,/z) is contained in both G(f2,/z) and in X, we obtain that the func- 
tion w �9 X{x~S2,1w(x)l<_~} is an element of G(f2,/z)  f'l X. Consequently, the function v = w �9 
X{x~s2,1w(x)l>/~)} = w - w'Xlx~2.1w(x)l<~} is also in G(~2,/z)\X. By the definition of  non-increasing 
rearrangements, for each positive s, the set {t 6 (0, ~ )  : v*(t) > s} is the interval (0, X(s)) where 
L(s) = / x ( { x  ~ ~ : to(x)[ > s}). Because of  (4.5)we have 

X(s) < lz (D(E)) for all s > 0 .  (4.6) 

Let g : Rn\{0} ~ [0, oc) be the function defined by g(x) = o*(oJnlxln). Then, for each positive s, 

set {x 6 Rn\{0} : g(x) > s} = {x 6 ~n\{0} : conlxl n ~ (0, X(s))} = D ( ~ ) \ { 0 } .  the Since 

/z (D  ( ~  \{0}) = X(s) we see from (4.6) that 

{x ~ R n : g(x) > 0} C D(E) . (4.7) 

So g = g �9 Xn and its non-increasing rearrangement g* is the same function, whether we calculate it 
with respect to the measure space (f2,/x) or with respect to (R n , It). Furthermore, from the previous 
calculation, g*(t) = v*(t) for all t 6 (0, o0) and so g 6 G(~2,/z)\X. By (4.7) and (4.4) it follows 
that {t 6 (0, co) : g*(t) > 0} C (0,/z (D(E))) C (0, 1)and so g*, when considered as a function on 
(0, 1), is an element of  G((0, 1), dt) = B((0, 1), dt) (cf. Remark 8). Consequently, by Theorem 4, 
there exists a positive non-decreasing function h : (0, I) --+ [0, cx~) with h ~ A((0, 1), dt) such that 
the weighted Hardy operator (4.1) satisfies 

Th(t)  > g*(t) for all t E (0, I ) .  (4.8) 

n In our case here we have to choose p = n /k ,  q = cx~, a = 1, and b = ~_--~, so that this operator is 

given by T f ( t )  = ft~e sk/n-1 f ( s )ds .  
Let us now introduce the non-increasing function h l = (h + M) �9 X(0.u(D(2E))) where the 

number M > 0 is chosen to satisfy 

fix(D(2,)) /, 
M �9 sk /n- lds  = sk/n- ih(s)ds  . 

a lz(D(e)) (D(E)) 

Clearly hl ~ A((O, I), dt). Furthermore, for all t ~ (0,/z (D(e))), we have 

f t l  tz(D(2E)) S k/n- 1 h sk /n- lh l ( s )ds  = f (s)ds 1 
e Jt/e 

r f~,(D(2~)) 
> ,]t/le s k / n - l h ( s ) d s  + M �9 s k / n - l d s  

,tu(D(E)) 

f; = sk/n- lh(s)ds  = Th ( t ) .  
e 

Combining this with (4.8) shows that 

f t l  sk /n- lh l ( s )ds  > . g*(t) (4.9) 
e 

In fact this inequality holds for all t ~ (0, 1) since g*(t) = 0 for t ~ [/z(D(e)), 1). 
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We have made the transition from h to hi  because we need to have a function in A((0, I) ,  dr) 
which is equimeasurable with a function ~p supported on D(2E) C f2. Since ht is equal a.e. to its 
non-increasing arrangement h~ we can in fact suppose that h I = hT. Let us define ~p : R n \{0} ---> R 
by setting lp(x) = hl(oJnlxln). Then we can show that r = hi and that q/ is  supported in D(2~) 
by exactly the same reasoning as was used above to show that g* = o* and that the support of  g is 
contained in D(E). Since h 1, like h, is an element of  A((0, 1), dr), we also obtain that r ~ A(f2,/z).  

i x  and apply the Riesz potential operator to ~p to obtain, For each x ~ D(E), we choose u = Ixt 
using (4.3) and (4.2), that 

= f , ,  hi (oJnlYl n) Jn,k V:(x ) 
r Ix -- yl n-k dy 

Jr..:-,(Ixl.2,) hi (o~nlYl n) , 2, [y---~ a y = c n  flxl hl (r~_krn)rn-ldr > 

cn logo(2,: _ sk/n- I h I (s)ds. (4.1 O) 
ncokn/n d~o, lxt" 

Since h i ( s )  = 0 for all s > / z ( D  (2E)) = COn (2E) n this last integral equals 

C sk/n-lhl(s)ds,  
n Ixl" 

where C = ~ .  So, using (4.9), we deduce that 

Jn .k~(X)>Cg' (eCOnlx ln)=cv ' (econlx ln)=Cg(e l /nx)=Cgl (x )  (4.11) 

for all x ~ D(~). But in fact this inequality holds for all x ~/R n since the function gl (x) = g(el/nx) 
on the right-hand side is supported in the smaller ball D(e-l/n~). It is rather obvious that gl ,  like 
g, is in G(f2, /z)  but not in X. (Both G(f2 , /z)  and X are r.i. spaces on (f2,/z) and the two truncated 
dilation maps S• given by Sf(x)  = f(e•  �9 Xo(~)(x), which map between g and gl ,  are both 
bounded on L l (S'2,/z) and Loo(f2,/z).) So (4.11) shows that Jn.k does not map A(f2, /z)  into X. 

We note that this last fact establishes that Hansson's  version of the optimality result extends 
to our more general context (as already mentioned in Remark 9). 

We shall now take this line of argument a little further and construct the function | ~ WA k (f2) 
referred to at the beginning of the proof. We will show that it is not in X by comparing it with Jn,k ~. 
It will provide the contradiction required to complete the proof of our theorem. It is given by the 
formula 

O(X) = / Gk(X -- y)hl (w~lYl n) dy , (4.12) 
dD (2E) 

where the function Gk ~ LI(R n,/1.) is strictly positive and continuous, and is defined by [19, 
Equation (26), p. 132] i.e., 

Gk(x) = CI e-rrlx12/Se-~/47r8 (-n+k)/2dS- (4.13) 
8 

for all values of  k ~ (0, n) including the integer value of interest to us here. Here, Cl, like the 
constants Cj to follow, stands for a strictly positive absolute constant whose value depends only on 
k and/or n. The formula (4.12) is an analogue of the formula in (4.10) for Jn.k ~, where convolution 
with the function l is replaced by convolution with Gk (x). But the ratio of  these two functions 

can be controlled for small x. Using the formula 

1 e-  ~lx12/83(_n+k)/2 d8 (4.14) 
ixl~_ k = C2 "-~ 
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(cf. [19, (28), p. 132]) it is easy to show (e.g., via the change of variables s = cS/Ixl 2) that 

lim Ixl k-n �9 Gk(X) = C3. 
x---~O 

Consequently Gk(X -- y) >_ ~ for all x e f2 and all y ~ D(2e),  where this time the strictly 

positive constant C may depend on E and the diameter of f2 as well as on n and k. This gives that 
O(x) > CJn,k~//(x) for all x ~ ~ and shows that | ~ X. 

The only remaining step required to complete our proof is to show that | ~ wAk (f2). In order 
to do this, we use the fact that | is defined by (4.12) on all o f R  n and also some additional properties 
of the function Gk related to Sobolev spaces on the whole of ]R n, which are presented in [ 19]. 

We recall that in [19] the notation LP(~, n) is used for the intersection of  Sobolev spaces 

N~=I W/(Rn)" (Although we do not explicitly need to use it here, we may remark in passing 

that in fact this intersection equals wk(Rn). More generally, by the corollary on page 23 of [15], 

1")~=! Wt~(~2 ) --- W~(~2) for a large class of domains, including f2 = ~n and also all bounded 
domains having the star-shaped property specified in Section 2.) In [19, Theorem 3, pp. 135-136], 
it is proved that for all p e (1, e~), f ~ LkP(R n) if and only if it can be expressed as a convolution 
f = Gk * g for some g ~ Lp(Rn). Furthermore tlfllL~,(~n) :=  ~l,~l<__k 11~4flILp(R".,) is equivalent 

to llgllLp(Rn,). As a consequence of all this we have that for each multi-index ~ with I~1 -< k 
the linear operator T4 defined by T4h = Oa (Gk * h) is a bounded operator from Lp(R n, It) to 
Lp(R n, It). (Here of  course 04 denotes the operation of taking a generalized partial derivative.) 
This operator can be modified in an obvious way to give an operator $4 which maps boundedly 
from Lp(f2, It) into Lp(f2, It), namely we take S~f  (x) = ~4 (f~ Gk(x -- y) f (y)dy) and restrict 
our attention to points x which are in ~2. 

Now we apply the real interpolation method to the operator $4. Given any p ~ (1, o~), we 
choose P0 and Pl such that 1 < P0 < P < P! < oo. Then, since S~ : Lpj(f2, It) ~ Lpj(f2, It) 
is bounded for j = 0, 1, we deduce (see, e.g., [5, Theorem 5.3.2, p. 113]) that Sa : Lp'r(f2, It) --+ 
Lp'r(~, lz) boundedly for each r e (0, oc]. In particular, by setting r = 1 and r = oo, we obtain 
that Sa is bounded on Ap(f2, It) and also on Mp(f2, It) .  We can of course choose p to be n /k  in 
the preceding argument. Then, since (cf. Remark 6) our space A(f2, It) is an interpolation space 
with respect to the couple (A, /k(f2 ,  It), Mnlk(f2,/z)), we obtain that Sa : A(~2, p.) --+ A ( ~ , / z )  is 
bounded. 

Using the definition and properties of ~k established above, we can rewrite (4.12) as 

O(x) = fn  Gk(X -- y)~/(y)dy. (4.15) 

Let ~ be any multi-index of order I~l <_ k. We can see from (4.15) that 04|  = $4~ .  Since 
e A(f2, It), the boundedness of Su on this space now shows that a4 |  e A(f2, It). In particular, 

applying this to the multi-indices for which Io~1 = 0 or I~1 = k, we have that | ~ W~(f2). This 
completes our proof. [ ]  
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