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Balls and Quasi-Metries: A Space

of Homogeneous Type Modeling

the Real Analysis Related to the
Monge-Ampeére Equation

H. Aimar, L. Forzani, and R. Toledano

ABSTRACT.  We prove that having a quasi-metric on a given set X is essentially equivalent to have a
family of subsets S(x, r) of X for which y € S(x, r) implies both S(y,r) C S(x, Kr) and S(x,r) C
S(y, Kr) for some constant K. As an application, starting from the Monge-Ampére setting introduced
in [3], we get a space of homogeneous type modeling the real analysis for such an equation.

1. Introduction

It is well known that such real analytic problems as boundedness and type for the Hardy-
Littlewood maximal operator, the John-Nirenberg estimate for the distribution of BMO functions, its
parabolic extensions, weight theory and so on, can be solved in the setting of spaces of homogeneous
type, where Wiener-type covering lemmas hold true.

In arecent paper of Caffarelli and Gutiérrez [3], a Besicovitch type covering lemma is proved for
the family of sections S(x, r) coming from the Monge-Ampere equation where the Monge-Ampére
measure

det D2¢ =u

satisfies a doubling condition.

Moreover, they assume certain natural properties for the family of sections { S(x,r) : x €
R", r > 0} (see Section 3), which allow them to prove the “engulfing property of the sections”
(see [4]):
(1.1) There exists a constant K > O such thatif y € S(x,r) then S(x,r) C S(y, Kr).

As we show in Section 3, it is also possible to prove the following property:
(1.2) There exists a constant K > Q such that if y € S(x,r) then S(y, r) C S(x, Kr).
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In Section 2 we prove an abstract result showing essentially that if a family {S(x, r)} satisfies
the engulfing properties (1.1) and (1.2), then the function

d(x,y) =inf{r/ x € S(y,r), y € S(x,r)}

is a quasi-metric, with triangular constant K, whose d-balls are equivalent to the family {S(x, r)} in
the sense that

S (x, i) C By(x,r)C S (x, _Ir?)

holds for every r > 0 and x € X.

As a consequence of that result (R", 4, ;1) becomes a space of homogeneous type, where ¢ is
the Monge-Ampére measure.

Finally, the equivalence of sections with d-balls shows that BMO spaces, parabolic BMO
sraces, and Hardy-Littlewood maximal function, defined by the class of sections, are all equivalent
to the corresponding concepts on the space (R”, d, ) where the results are known. See, for example,
[1,2,5,6].

2.

Given a set X, let us consider a function S : X x Rt U {0} —> P(X) such that S(x, r) has
the following properties

(21) (),50Sx,r) ={x}, forevery x € X;

22) U,.0S8(x,r)=R" forevery x € X;

(2.3) foreach x € X, S(x, r) is a non-decreasing function in r;
(2.4) there exists a constant K such that for all y € S(x, r)

S(x,r)Cc S(y,Kr)

and
Sy, r)c Sx,Kr).

Lemma 1.
Let X be a set and S a function satisfying properties (2.1) to (2.4) above. Then, the function
d: X x X — RY U {0} defined by

dx,y)=inf{r/ x € S5(y,r), y € S(x,r)}
is a quasi-metric. On the other hand, given a quasi-metric d defined on X, the family of d-balls in
X satisfies the above four properties.

Lemma 2.
Let d be the quasi-metric associated by the first part of the previous lemma to the given family
S satisfying (2.1) to (2.4). Let By(x, r) be a d-ball of center x and radius r, then

r
S (x, -2——15) C By(x,r)y C S(x,n).
Proof of Lemma 1. The function d is defined on all of X x X because of (2.2), the symmetry

is a direct consequence of the definition of d. It is clear that d(x, x) = 0. On the other hand, if
d(x,y) = 0, by definition we have, for all n € N, that x € S(y, ﬁ). Hence, using (2.1), we see that
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x = y. Let us now prove the quasi-triangular property. For x, y,z € X, given € > 0 there exist
positive numbers r; and r2 such that

€
d(x,z)+-2->r1, x€8(z,r), z€8S(x,r)

and ¢
d(z,)’)+5>r2, y€eS(z,r), z€Sy,r) .

Since z € S(y,r2), using (2.4), we have that S(z,r) C S(y, Kr) with r = max{r|, rz}, but
x € 8(z,r1) C S(z,r), thenx € S(y, Kr). The same argument is used to prove that y € S(x, Kr).
Therefore,

Kr

€ €
K (d(x,z) +3 +d(z, y) + 5)
< K{dx,2)+dz, y)+e).

d(x,y)

IA

1A

Hence, d(x, y) < K(d(x,2) +d(z, y)).
Suppose now we have a quasi-metric d on X with constant C in the quasi-triangular inequality.
Then the function S : X x R* U {0} — P(X) defined by

Stx,ry={yeR"/dx,y) <r}

easily verifies (2.1), (2.2), and (2.3). To show (2.4) we have to prove that there exists a constant K
such thatif y € S(x, r); then S(x,r) C S(y, Kr). Let z € S(x, r), since y € S(x, r) we have

d(z,y) < C(d(z,x) +d(z,y)) <3Cr .

Hence, z € §(y, 3Cr). Taking K = 3C we have the thesis. The other inclusion holds even with a
smaller X, namely K = 2C. [

Proof of Lemma 2. The second inclusion is nothing but the definition of 4. In order to prove
the first one, we observe thatif y € S(x, 7%), then, because of (2.4), we have that x € S(x, 7’17) C
S(y, %). Hence d(x, y) < r.

3.

Following [3], let ¢ be areal convex function defined on R*. Given apointx € R" let Lbe a
supporting hyperplane of ¢ at the point (x, ¢(x)), and given r > 0 we shall write S(x, r) for the set

S(x,r)=Spx,r)={yeR": p(y) <L+r}.

They are convex sets obtained by projecting on R” the points on the graph of ¢ that are below
a supporting hyperplane lifted in r. These sets will be called sections. So, for each x € R” a family
of convex sets F, = {S(x,r) : r € (0, +00)} is considered. Moreover, given a section S(x, r) we
shall consider an affine transformation T that “normalizes” S(x, r), i.e.,

B(0,a(n)) C T(S(x,r)) C B(O, 1),

where a(n) is a constant depending only on the dimension and B denotes the usual Euclidean ball.
In order to obtain a Besicovitch type covering lemma, Caffarelli and Gutiérrez start working
with the following set of conditions on the family of all sections:
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(a) There exist constants k|, k3, k3, €] and €, all positive, and with the following property: given
two sections S(xg, ro), S(x, r) with r < rp, such that

S (x0,r0) [ ) S(x,r) # @

and given T a transformation that normalizes S(xo, o), there exists z € B{(0, k3), depending on
S(xo, ro) and S(x, r), such that

r\© €
B (z,kz (;-6) ) CT(Sx,r)CB <z,kl (r—o) )
P
T(x) € B (z, e (i> ) _
2 ro

(b) There exists § > 0, such that given a section S(x,r) and y ¢ S(x, r), if T is an affine transfor-
mation that normalizes S(x, r) then

and

B(T(), )] T (Sx,(1-€)r) =20

forany0 < e < 1.
© Nyso Stx, 1) = {x}.

The purpose of this section is to show that such a family F = | J, .gr Fx satisfies (2.1) to (2.4)
of Section 2, hence Lemmas 1 and 2 hold. It is clear that property (2.1) is precisely condition (c).
Properties (2.2) and (2.3) follow easily from the definition of S(x, r) as sections of a convex function
defined on all of R". In the following lemma we shall prove that the sections verify (2.4).

Lemma 3.
There exists a constant K, depending only on 8, ki, and €|, such that for y € S(x, r) we have

i S{,r)C S(x,Kr), and
@) S(x,r)c SO, Kr).

L
Proof of Lemma 3. (i) Take X > sup{ 2, 2%*!k))* }. Suppose there exists w € S(y, r) such
that w ¢ S(x, Kr). Then, because of (b), taking € = %, we have

B(Tw),2)(\T (S (x, %)) =0.

Then, since K > 2, we have that 7(y) € T(S (x, &)) and

IT(w) =Tl >27%. (3.1)

On the other hand, since S(y, r) and S(x, Kr) have a non-empty intersection, from (a) we get

T(S(y.r)) C B (z,kl (%) ) ,

where T normalizes S(x, Kr) and z € B(0, k3). .
€ !
Then |T(y)—z| < k; (%) ] and |T(w)—2z| < ki (%) . Asaconsequence [T (y) —T(w)] <

ITG) =zl + |z = T(w)] < 2k (7{;)6'. But, because of the choice of X, |T(w) — T(»)| < 2-°.
This is in contradiction with (3.1).
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(ii) Now, let us take w € S(x, r) such that w ¢ S(y, Kr) and consider K as in (i). Then, because of
(b), taking € = % we have that

B(Tw), 2T (s (y, %)) =0,

hence |T(w) — T(¥)| > 2~% which is again in contradiction with the fact that |T(w) — T ()| <
€
% (%) =27 O
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