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Bal ls  and Quasi-Metrics: A Space 
of H o m o g e n e o u s  Type Model ing 
the  Rea l  Analys i s  Re la ted  to the 

Monge-Amp re Equation 

H. Aimar, L. Forzani, and R. Toledano 

ABSTRACT We prove that having a quasi-metric on a given set X is essentially equivalent to have a 
family of subsets S(x, r) of X for which y ~ S(x, r) implies both ,..q(y, r) C S(x, Kr) and S(x, r) C 
S(y, Kr) for some constant K. As an application, starting from the Monge-Ampbre setting introduced 
in [3], we get a space of homogeneous type modeling the real analysis for such an equation. 

1. Introduction 

It is well known that such real analytic problems as boundedness and type for the Hardy- 
Littlewood maximal operator, the John-Nirenberg estimate for the distribution of BMO functions, its 
parabolic extensions, weight theory and so on, can be solved in the setting of spaces of homogeneous 
type, where Wiener-type covering lemmas hold true. 

In a recent paper of Caffarelli and Guti6rrez [3 ], a Besicovitch type covering lemma is proved for 
the family of sections S(x ,  r) coming from the Monge-Amp~re equation where the Monge-Amp~re 
measure 

det D2~ = 

satisfies a doubling condition. 
Moreover, they assume certain natural properties for the family of sections { S(x ,  r) : x 

]R n, r > 0 } (see Section 3), which allow them to prove the "engulfing property of the sections" 
(see [4]): 
(1.1) There exists a constant K > 0 such that i f  y E ,.q(x, r) then S (x ,  r) C S ( y ,  Kr) .  

As we show in Section 3, it is also possible to prove the following property: 
(1.2) There exists a constant K > 0 such that i f  y ~ $(x ,  r) then S (y ,  r) C S (x ,  Kr) .  
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In Section 2 we prove an abstract result showing essentially that if a family {S(x, r)} satisfies 
the engulfing properties (1.1) and (1.2), then the function 

d(x, y) = i n f { r / x  ~ S(y,  r), y ~ S(x,  r ) l  

is a quasi-metric, with triangular constant K, whose d-balls are equivalent to the family {$(x, r)} in 
the sense that 

r r (x (x 
holds for every r > 0 and x e X. 

As a consequence of that result (R n, d , /z )  becomes a space of homogeneous type, where/z  is 
the Monge-AmpSre measure. 

Finally, the equivalence of  sections with d-balls shows that BMO spaces, parabolic BMO 
sFaces, and Hardy-Littlewood maximal function, defined by the class of  sections, are all equivalent 
to the corresponding concepts on the space (R n, d , /z)  where the results are known. See, for example, 
[ 1 ,2 ,5 ,6 ] .  

. 

Given a set X, let us consider a function S : X x R + U {0} ~ 79(X) such that S(x,  r) has 
the following properties 

(2.1) Ar>0 S(x,  r)  = {x}, for every x e X; 

(2.2) Ur>O S(x,  r) = Rn, for every x e X; 

(2.3) for each x ~ X, S(x,  r) is a non-decreasing function in r; 

(2.4) there exists a constant K such that for all y ~ S(x,  r) 

S(x,  r) C S(y,  Kr) 

and 

S(y, r) C S(x,  Kr) . 

Lemma 1. 
Let X be a set and S a function satisfying properties (2.1) to (2.4) above. Then, the function 

d : X x X ) ]R + U {0} defined by 

d(x, y) = i n f { r / x  E S(y,  r), y ~ S(x,  r)} 

is a quasi-metric. On the other hand, given a quasi-metric d defined on X, the family of d-balls in 
X satisfies the above four properties. 

Lemma 2. 
Let d be the quasi-metric associated by the first part of the previous lemma to the given family 

S satisfying (2.1) to (2.4). Let Bd(x, r) be a d-ball of center x and radius r, then 

r 
S (x, - ~ )  C Ba(x,r) C S (x , r )  . 

Proof of Lemma 1. The function d is defined on all of  X x X because of (2.2), the symmetry 
is a direct consequence of the definition of d. It is clear that d(x, x) = 0. On the other hand, if 
d(x, y) = 0, by definition we have, for all n ~ N, that x ~ S(y,  4)" Hence, using (2.1), we see that 
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x --  y. Let  us now prove the quasi-triangular property. For x, y, z ~ X, given ~ > 0 there exist 
positive numbers rl  and r2 such that 

E 
d ( x , z ) + ~  >r l ,  x E S ( z ,  rl) ,  

and E 
d(z, y) + 

Since z ~ S(y,  r2), using (2.4), we 
x ~ S(z, rl) C S(z, r), thenx ~ S(y, 
Therefore, 

Z E S(X, rl) 

> r 2 ,  y E  S(z ,  r2) ,  z E  S ( y ,  r2) . 

have that $(z, r) C S(y,  Kr) with r = max{rl ,  rE}, but 
Kr). The same argument is used to prove that y ~ S(x, Kr). 

d(x, y) < Kr 

< K d ( x , z ) + ~ + d ( z , y ) +  

< K(d(x, z) q- d(z, y) + ~) . 

Hence, d(x, y) < K(d(x, z) + d(z, y)). 
Suppose now we have a quasi-metric d on X with constant C in the quasi-triangular inequality. 

Then the function S : X • ~ +  U {0} ..... > 7~(X) defined by 

S(x,  r) = {y E Rn /d (x ,  y) < r } 

easily verifies (2.1), (2.2), and (2.3). To show (2.4) we have to prove that there exists a constant K 
such that if  y ~ S(x ,  r ) ;  then S(x, r) C S(y,  Kr). Let z ~ S(x,  r), since y ~ S(x,  r) we have 

d(zl y) < C(d(z ,x)  + d(z, y)) < 3Cr . 

Hence, z E S(y, 3Cr). Taking K = 3C we have the thesis. The other inclusion holds even with a 
smaller K,  namely K = 2C. [ ]  

P r o o f  o f  L e m m a  2. The second inclusion is nothing but the definition of d. In order to prove 
the first one, we observe that if y E S(x, ~-gK)' then, because of (2.4), we have that x ~ S(x,  ~-~K) C 
S(y,  ~). Hence d(x, y) < r. [] 

. 

Following [3], let ~ be a real convex function defined on R n. Given a point x ~ R n let E be a 
supporting hyperplane of ~b at the point (x, ~b (x)), and given r > 0 we shall write S(x, r) for the set 

S ( x , r ) = S ~ ( x , r ) =  { y E N n  : qb(y) < E + r  } . 

They are convex sets obtained by projecting on ]i~ n the points on the graph of  q~ that are below 
a supporting hyperplane lifted in r.  These sets will be called sections. So, for each x ~ R n a family 
of convex sets ~-x = {S(x, r)  : r ~ (0, +co)}  is considered. Moreover, given a section S(x, r) we 
shaU consider an affine transformation T that "normalizes" S(x, r), i.e., 

B(O, et(n)) C T(S(x, r ) )  C B(0, 1) ,  

where t~(n) is a constant depending only on the dimension and B denotes the usual Euclidean ball. 
In order to obtain a Besicovitch type covering lemma, Caffarelli and Gutirrrez start working 

with the following set of conditions on the family of  all sections: 
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(a) There exist constants kl, k2, k3, 61 and 62, all positive, and with the following property: given 
two sections S(xo, ro), S(x, r) with r < ro, such that 

S (xo, ro) ("] S(x, r) # 0 

and given T a transformation that normalizes S(xo, ro), there exists z 6 B(0, k3), depending on 
S(xo, ro) and S(x, r), such that 

C T(S(x , r ) )  C B Z, kl 
\ r o / /  \ r o /  / 

and 

T(x) EB z,~ 2\ro/ / . 

(b) There exists 3 > 0, such that given a section S(x, r) and y ~ S(x, r), if T is an affine transfor- 
mation that normalizes S(x, r) then 

B (T(y), 6 8) N T (S(x, (I - 6)r)) = 0 

for any 0 < 6 < 1. 
(c) At>0 S(x, r) = {x}. 

The purpose of this section is to show that such a family .T" = UxcR" .T'x satisfies (2.1) to (2.4) 
of  Section 2, hence Lemmas 1 and 2 hold. It is clear that property (2.1) is precisely condition (c). 
Properties (2.2) and (2.3) follow easily from the definition of S(x, r) as sections of  a convex function 
defined on all of  R n. In the following lemma we shall prove that the sections verify (2.4). 

Lemma 3. 
There exists a constant K, depending only on 3, kl, and ~1, such that for y E S(x, r) we have 

(i) S(y, r) C S(x, Kr), and 

(ii) S(x, r) C S(y, Kr). 

P r o o f  o f  L e m m a  3. (i) Take K > sup{ 2, (28+1kl)~ }. Suppose there exists w ~ S(y, r) such 
that w ~ S(x, Kr). Then, because of (b), taking 6 = l ,  we have 

Then, since K > 2, we have that T(y) ~ T(S (x, ~)) and 

IT(w) - T(y)[  > 2 - * .  (3.1) 

On the other hand, since S(y, r) and S(x, Kr) have a non-empty intersection, from (a) we get 

((1),,) 
T(S(y ,r ) )  C B Z, kl 

where T normalizes S(x, Kr) and z ~ B(0, k3). 

Then I T ( y ) - z [  < kl and I T ( w ) - z [  < kl As a consequence I T ( y ) -  T(w)l < 

IT(y)  - z[ + [z - T(w)[ < 2kl . But, because of the choice of  K, IT(w) - T(y)[ < 2-*.  

This is in contradiction with (3.1). 
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(ii) Now, let us take to ~ S(x,  r) such that to r S(y ,  Kr )  and consider  K as in (i). Then,  because of  
(b), taking ~ = �89 we have that 

B ( T ( t o ) , 2 - ' ) f ' ~ T ( S ( y , ~ - ) ) = O ,  

hence IT (w)  - T(y ) I  > 2 -8 which is again in contradict ion with the fact that IT(w)  - T(y)[  < 

2kl _< [ ]  
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