Volume 4, Issues 4 and 5, 1998

Balls and Quasi-Metrics: A Space of Homogeneous Type Modeling the Real Analysis Related to the Monge-Ampère Equation

H. Aimar, L. Forzani, and R. Toledano

ABSTRACT We prove that having a quasi-metric on a given set X is essentially equivalent to have a family of subsets $S(x, r)$ *of X for which* $y \in S(x, r)$ *implies both* $S(y, r) \subset S(x, Kr)$ *and* $S(x, r) \subset$ $S(y, Kr)$ for some constant K. As an application, starting from the Monge-Ampère setting introduced *in [3], we get a space of homogeneous type modeling the real analysis for such an equation.*

1. Introduction

It is well known that such real analytic problems as boundedness and type for the Hardy-Littlewood maximal operator, the John-Nirenberg estimate for the distribution of BMO functions, its parabolic extensions, weight theory and so on, can be solved in the setting of spaces of homogeneous type, where Wiener-type covering lemmas hold true.

In a recent paper of Caffarelli and Gutiérrez $[3]$, a Besicovitch type covering lemma is proved for the family of sections $S(x, r)$ coming from the Monge-Ampère equation where the Monge-Ampère measure

$$
\det D^2 \phi = \mu
$$

satisfies a doubling condition.

Moreover, they assume certain natural properties for the family of sections { $S(x, r)$: $x \in$ \mathbb{R}^n , $r > 0$ } (see Section 3), which allow them to prove the "engulfing property of the sections" (see [4]):

(1.1) *There exists a constant K > 0 such that if* $y \in S(x, r)$ *then* $S(x, r) \subset S(y, Kr)$.

As we show in Section 3, it is also possible to prove the following property:

(1.2) *There exists a constant K > 0 such that if* $y \in S(x, r)$ *then* $S(y, r) \subset S(x, Kr)$.

Math Subject Classifications. Primary 35J60, 42B20; secondary 35B45, 42B25.

Keywords and Phrases. Convex sets, real Monge-Ampère equation, covering lemmas, real variable theory, **BMO.**

Acknowledgements and Notes. Supported by Programa Especial de Matemática Aplicada (CONICET) and Prog. CAI+D, UNL.

^{© 1998} Birkhäuser Boston. All rights reserved
ISSN 1069-5869

In Section 2 we prove an abstract result showing essentially that if a family $\{\mathcal{S}(x, r)\}$ satisfies the engulfing properties (1.1) and (1.2) , then the function

$$
d(x, y) = \inf\{r / x \in S(y, r), y \in S(x, r)\}\
$$

is a quasi-metric, with triangular constant K, whose d-balls are equivalent to the family $\{S(x, r)\}\$ in the sense that

$$
\mathcal{S}\left(x,\frac{r}{2K}\right)\subset B_d(x,r)\subset \mathcal{S}\left(x,\frac{r}{K}\right)
$$

holds for every $r > 0$ and $x \in X$.

As a consequence of that result (\mathbb{R}^n , d, μ) becomes a space of homogeneous type, where μ is the Monge-Ampère measure.

Finally, the equivalence of sections with d -balls shows that BMO spaces, parabolic BMO sFaces, and Hardy-Littlewood maximal function, defined by the class of sections, are all equivalent to the corresponding concepts on the space (\mathbb{R}^n, d, μ) where the results are known. See, for example, [1,2,5,6].

.

Given a set X, let us consider a function $S: X \times \mathbb{R}^+ \cup \{0\} \longrightarrow \mathcal{P}(X)$ such that $S(x, r)$ has the following properties

(2.1) $\bigcap_{r>0} S(x, r) = \{x\}$, for every $x \in X$;

(2.2) $\bigcup_{r>0} S(x, r) = \mathbb{R}^n$, for every $x \in X$;

(2.3) for each $x \in X$, $S(x, r)$ is a non-decreasing function in r;

(2.4) there exists a constant K such that for all $y \in S(x, r)$

$$
\mathcal{S}(x,r)\subset \mathcal{S}(y,Kr)
$$

and

$$
\mathcal{S}(y,r)\subset \mathcal{S}(x,Kr)\ .
$$

Lemma 1.

Let X be a set and S a function satisfying properties (2.1) *to* (2.4) *above. Then, the function* $d: X \times X \longrightarrow \mathbb{R}^+ \cup \{0\}$ *defined by*

$$
d(x, y) = \inf\{r / x \in S(y, r), y \in S(x, r)\}\
$$

is a quasi-metric. On the other hand, given a quasi-metric d defined on X, the family of d-balls in X satisfies the above four properties.

Lemma 2.

Let d be the quasi-metric associated by the first part of the previous lemma to the given family S satisfying (2.1) to (2.4). Let $B_d(x, r)$ be a d-ball of center x and radius r, then

$$
\mathcal{S}\left(x,\frac{r}{2K}\right)\subset B_d(x,r)\subset \mathcal{S}(x,r)\ .
$$

Proof of Lemma 1. The function d is defined on all of $X \times X$ because of (2.2), the symmetry is a direct consequence of the definition of d. It is clear that $d(x, x) = 0$. On the other hand, if $d(x, y) = 0$, by definition we have, for all $n \in \mathbb{N}$, that $x \in S(y, \frac{1}{n})$. Hence, using (2.1), we see that

 $x = y$. Let us now prove the quasi-triangular property. For $x, y, z \in X$, given $\epsilon > 0$ there exist positive numbers r_1 and r_2 such that

$$
d(x, z) + \frac{\epsilon}{2} > r_1, \ \ x \in S(z, r_1), \ \ z \in S(x, r_1)
$$

and

$$
d(z, y) + \frac{\epsilon}{2} > r_2, \quad y \in S(z, r_2), \quad z \in S(y, r_2).
$$

Since $z \in S(y, r_2)$, using (2.4), we have that $S(z, r) \subset S(y, Kr)$ with $r = \max\{r_1, r_2\}$, but $x \in S(z, r_1) \subset S(z, r)$, then $x \in S(y, Kr)$. The same argument is used to prove that $y \in S(x, Kr)$. Therefore,

$$
d(x, y) \leq Kr
$$

\n
$$
\leq K\left(d(x, z) + \frac{\epsilon}{2} + d(z, y) + \frac{\epsilon}{2}\right)
$$

\n
$$
\leq K(d(x, z) + d(z, y) + \epsilon).
$$

Hence, $d(x, y) \le K(d(x, z) + d(z, y))$.

Suppose now we have a quasi-metric d on X with constant C in the quasi-triangular inequality. Then the function $S: X \times \mathbb{R}^+ \cup \{0\} \longrightarrow \mathcal{P}(X)$ defined by

$$
S(x,r) = \{ y \in \mathbb{R}^n / d(x,y) < r \}
$$

easily verifies (2.1) , (2.2) , and (2.3) . To show (2.4) we have to prove that there exists a constant K such that if $y \in S(x, r)$; then $S(x, r) \subset S(y, Kr)$. Let $z \in S(x, r)$, since $y \in S(x, r)$ we have

$$
d(z, y) \leq C(d(z, x) + d(z, y)) \leq 3Cr.
$$

Hence, $z \in S(y, 3Cr)$. Taking $K = 3C$ we have the thesis. The other inclusion holds even with a smaller K, namely $K = 2C$.

Proof of Lemma 2. The second inclusion is nothing but the definition of d. In order to prove the first one, we observe that if $y \in S(x, \frac{r}{2K})$, then, because of (2.4), we have that $x \in S(x, \frac{r}{2K}) \subset$ $S(y, \frac{r}{2})$. Hence $d(x, y) < r$.

.

Following [3], let ϕ be a real convex function defined on \mathbb{R}^n . Given a point $x \in \mathbb{R}^n$ let $\mathcal L$ be a supporting hyperplane of ϕ at the point $(x, \phi(x))$, and given $r > 0$ we shall write $S(x, r)$ for the set

$$
S(x, r) = S_{\phi}(x, r) = \{ y \in \mathbb{R}^{n} : \phi(y) < \mathcal{L} + r \} .
$$

They are convex sets obtained by projecting on \mathbb{R}^{n} the points on the graph of ϕ that are below a supporting hyperplane lifted in r. These sets will be called *sections*. So, for each $x \in \mathbb{R}^n$ a family of convex sets $\mathcal{F}_x = \{S(x, r) : r \in (0, +\infty)\}\$ is considered. Moreover, given a section $S(x, r)$ we shall consider an affine transformation T that "normalizes" $S(x, r)$, i.e.,

$$
B(0, \alpha(n)) \subset T(S(x, r)) \subset B(0, 1)
$$

where $\alpha(n)$ is a constant depending only on the dimension and B denotes the usual Euclidean ball.

In order to obtain a Besicovitch type covering lemma, Caffarelli and Gutiérrez start working with the following set of conditions on the family of all sections:

(a) There exist constants $k_1, k_2, k_3, \epsilon_1$ and ϵ_2 , all positive, and with the following property: given two sections $S(x_0, r_0)$, $S(x, r)$ with $r < r_0$, such that

$$
S\left(x_{0},r_{0}\right)\bigcap S(x,r)\neq\emptyset
$$

and given T a transformation that normalizes $S(x_0, r_0)$, there exists $z \in B(0, k_3)$, depending on $S(x_0, r_0)$ and $S(x, r)$, such that

$$
B\left(z, k_2\left(\frac{r}{r_0}\right)^{\epsilon_2}\right) \subset T(S(x, r)) \subset B\left(z, k_1\left(\frac{r}{r_0}\right)^{\epsilon_1}\right)
$$

and

$$
T(x) \in B\left(z, \frac{1}{2}k_2\left(\frac{r}{r_0}\right)^{\epsilon_2}\right).
$$

(b) There exists $\delta > 0$, such that given a section $S(x, r)$ and $y \notin S(x, r)$, if T is an affine transformation that normalizes $S(x, r)$ then

$$
B(T(y),\epsilon^{\delta})\bigcap T(S(x,(1-\epsilon)r))=\emptyset
$$

for any $0 < \epsilon < 1$. **(c)** $\bigcap_{r>0} S(x, r) = \{x\}.$

The purpose of this section is to show that such a family $\mathcal{F} = \bigcup_{x \in \mathbb{R}^n} \mathcal{F}_x$ satisfies (2.1) to (2.4) of Section 2, hence Lemmas 1 and 2 hold. It is clear that property (2.1) is precisely condition (c). Properties (2.2) and (2.3) follow easily from the definition of $S(x, r)$ as sections of a convex function defined on all of \mathbb{R}^n . In the following lemma we shall prove that the sections verify (2.4).

Lemma 3.

There exists a constant K, depending only on δ *, k₁, and* ϵ_1 *, such that for* $y \in S(x, r)$ *we have*

(i) $S(y, r) \subset S(x, Kr)$, and (ii) $S(x, r) \subset S(y, Kr)$.

Proof of Lemma 3. (i) Take $K > \sup\{2, (2^{\delta+1}k_1)^{\frac{1}{\epsilon_1}}\}\$. Suppose there exists $w \in S(y, r)$ such that $w \notin S(x, Kr)$. Then, because of (b), taking $\epsilon = \frac{1}{2}$, we have

$$
B\left(T(w),2^{-\delta}\right)\bigcap T\left(S\left(x,\frac{Kr}{2}\right)\right)=\emptyset.
$$

Then, since $K > 2$, we have that $T(y) \in T(S\left(x, \frac{Kr}{2}\right))$ and

$$
|T(w) - T(y)| > 2^{-\delta} \tag{3.1}
$$

On the other hand, since $S(y, r)$ and $S(x, Kr)$ have a non-empty intersection, from (a) we get

$$
T(S(y,r))\subset B\left(z,k_1\left(\frac{1}{K}\right)^{\epsilon_1}\right),\,
$$

where T normalizes $S(x, Kr)$ and $z \in B(0, k_3)$.

Then $|T(y)-z| < k_1 \left(\frac{1}{k}\right)$ and $|T(w)-z| < k_1 \left(\frac{1}{k}\right)$. As a consequence $|T(y)-T(w)| \le$ $|T(y) - z| + |z - T(w)| < 2k_1 \left(\frac{1}{K}\right)^{\epsilon_1}$. But, because of the choice of K, $|T(w) - T(y)| < 2^{-\delta}$. This is in contradiction with (3.1).

(ii) Now, let us take $w \in S(x, r)$ such that $w \notin S(y, Kr)$ and consider K as in (i). Then, because of (b), taking $\epsilon = \frac{1}{2}$, we have that

$$
B\left(T(w),2^{-\delta}\right)\bigcap T\left(S\left(y,\frac{Kr}{2}\right)\right)=\emptyset,
$$

hence $|T(w) - T(y)| > 2^{-\sigma}$ which is again in contradiction with the fact that $|T(w) - T(y)| <$ $2k_1 \left(\frac{1}{K} \right) \leq 2^{-\circ}.$ \Box

References

- [1] Aimar, H. (1988). Elliptic and parabolic BMO and Harnack's inequality, *Trans. Amer. Math. Sot.,* 306, 265-276.
- [2] Aimar, H. and Forzani, L. (1993). On continuity properties of functions with conditions on the mean oscillation, *Studia Mathematica,* 106, 139-151.
- [3] Caffarelli, L. and Gutiérrez, C. (1996). Real analysis related to the Monge-Ampère equation, *Trans. Amer. Math. Sot.,* 348, 1075-1092.
- [4] Caffarelli, L. and Gutiérrez, C., Properties of the solutions of the linearized Monge-Ampère equation, preprint.
- [5] Coifman, R. and de Guzmán, M. (1970). Singulars integrals and multipliers on homogeneous spaces, *Rev. Un. Mat. Argentina,* 25, 137-143.
- [6] Coifman, R. and Weiss, R. (1972). *Analyse harmonique non-commutative sur certains espaces homogènes*, Lecture Notes in Math., 242, Springer, Berlin.

Received August 27, 1997

Programa Especial de Matemática Aplicada (CONICET), Dpto. de Matemática, FIQ. UNL. haimar @fiqus.unl.edu.ar

Programa Especial de Matemática Aplicada (CONICET), Dpto. de Matemática, FIQ. UNL. forzani@pemas.unl.edu.ar

Programa Especial de Matemática Aplicada (CONICET), Dpto. de Matemática, FCEF-QyN, UNRC. rtoledan@intec.unl.edu.ar